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Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and 
calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature 
from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 
calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current density of 45 
mA g-1. The effects of calcination temperature on the initial discharge capacity of the electrode have also 
been investigated, The MnCo2O4 calcined at 650°C shows the higher initial discharge capacity due to the 
higher surface area (due to smaller particles) and weaker crystallinity. The influences of electrode poros-
ities also have been studied, which suggest the electrochemical performance is determined by both the 
particle-to-particle contact and wettability of the electrode. An increase of the internal resistance of the 
electrode is observed with increasing electrode thickness (active material loading), which is the main factor 
responsible for the significant capacity loss for thicker electrode.

1. Introduction
With the growth of electronic industry, 

energy storage is becoming an important issue. 
Rechargeable lithium-ion batteries (LIBs) are 
considered as unparalleled energy storage devices 
thanks to their high energy density, environmental 
benignity and long cycle life [1]. This kind of energy 
storage devices are used in a variety of technologies 
such as portable electronics [2], pure electric or 
hybrid electric vehicles [3], smart power grid [4] 
and so on [5].

Since their introduction to the market, graphite 
has been commonly used as the anode material 
in most industrial productions of LIBs, based on 
intercalation reaction [6]. Despite their several 
advantages, graphitic anodes present limited 
theoretical specific capacity of 372 mAh g-1 [7].

To cope with this limitation, conversion 

reaction-based oxide materials are fine alternatives 
for the intercalation reaction materials based on 
their high specific capacity [8]. Relatively high 
specific capacity, high metallurgical achievability, 
large resource stock, low cost, and environmental 
benignity makes transition metal oxide a unique 
candidate for anode materials among the other 
materials for the next-generation LIBs [9-12]. 

Co-based oxides (CoCo2O4) have attracted 
broad attention because of their high specific 
capacity (890 mAh g-1). Previous reports show that 
several formidable challenges still remain. Easy 
agglomeration, intrinsically low conductivity of 
this material during charge and discharge process 
and high cost of Co-based oxides [13-16].

Efforts have been made to solve these disobedient 
problems, like nanostructuring [17, 18], doping 
[19], compositing [20-22] and forming compound 
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metal oxides  [23].
Following this way, works have been conducted 

on the development of Co-based oxide anodes 
by partial substitution of Co by Zn [24], Cu [25], 
Fe [26], or other low-cost spinel oxides [27-30]. 
Embedding Manganese (Mn) to the A sites of the 
spinel oxides is an effective method to improve 
the electrochemical performance. Firstly because 
its abundance in nature lowers the cost of anode 
material. Secondly, cycling performance improves 
owing to high intrinsic conductivity caused by the 
introduction of Mn while the operation voltage 
of Co3O4 is decreased [31]. Kim and co-workers 
reported the synthesis of hollow nanofibers via 
the electrospinning, the initial discharge capacity 
of which was measured to be 1402 mAh g-1 at a 
current density of 100 mA g-1. The reported device 
could retain a reversible discharge capacity of 997 
mAh g-1 after 50 cycles [32]. Li and co-workers 
also synthesized hierarchical porous MnCo2O4 
microspheres through solvothermal method, which 
can deliver initial discharge capacity of 1034 mAh 
g-1 at a current density of 100 mA g-1 [33]. Chen 
and co-workers synthesized MnCo2O4/graphene 
sheets by hydrothermal method. Possessing a large 
surface area, the resulting material showed an 
initial discharge and charge capacity of 1350.4 and 
962.5 mAh g-1 at a current density of 100 mA g-1, 
respectively [34].

Several parameters such as anode compositions 
and morphology, slurry preparation and electrode 
fabrication process affect LIBs specific capacity, 
energy, power and cycle life performance. A key 
culprit in limiting the performance of lithium-ion 
batteries is insufficient conductivity, both electronic 
and ionic [35, 36].

The first discharge capacity is mainly determined 
by the electrochemical activity of the electrode as 
well as the kinetics of the device [37]. In particular, 
various parameters have been investigated for 
improving first discharge capacity. Adjustments 
in form factor [38], anode particle size and 
morphology [39, 40], anode particle arrangement 
[41], crystallinity index [42], porosity and thickness 
(active material loading) of the anode electrode 
[43] have all been shown to improve first discharge 
capacity. 

The MnCo2O4 has been prepared by several 
synthesis techniques, however, no reports in 
the literature to explore a study on the effect 
of electrode preparation parameters on initial 
discharge capacity of MnCo2O4, so far. In this work, 

cubic spinel MnCo2O4 nanostructures are prepared 
via co-precipitation. To consider the influence 
of calcination temperature on initial discharge 
capacity, the precursor was calcined at 650 and 
750°C. Anode laminates of various thicknesses and 
calendaring forces were prepared with the same 
chemical composition. The effects of calendaring 
(porosity) and electrode thickness (active material 
loading) on the initial discharge capacity were 
examined by discussing electrode conductivity. 

2. Materials and Methods
2.1 Synthesis of MnCo2O4

Manganese cobaltite was synthesized via co-
precipitation route. First, Co(NO3)2.6H2O (98%, 
Merck, Germany) and Mn(NO3)2.4H2O (99%, 
Merck, Germany) were dissolved in deionized water. 
Considering the molar ratio of 1.5, the aqueous 
solution of sodium hydroxide (NaOH) was added 
dropwise to the solution of metal nitrates with the 
rate of 10 ml/min at room temperature to obtain 
PH=13. The as-obtained brown precipitates were 
then filtered, washed with deionized water, and 
dried at 80°C for 18 h. Nanoparticles of MnCo2O4 
were obtained by calcining the dried powder at 650 
and 750°C for 5 h in air. 

2.2 Powder characterization 
The structure and phase purities of the products 

were characterized by X-ray diffraction (Rigaku 
Ultima IV) equipped with Cu target (Kα, λ =0.15406 
nm). Particle size and morphology was assessed 
by a field-emission scanning electron microscope 
(FESEM) (TESCAN MIRA3). Thermogravimetric 
analysis (TGA) and differential thermal analysis 
(DTA) was done by LINSEIS L70/2171 with a 
heating rate of 5°C·min-1 from 40 to 900°C.

2.3 Electrochemical Measurements
The electrochemical tests were conducted using 

CR2032 coin cells. To fabricate anodes, a slurry 
was prepared by mixing super P carbon (10%), 
polyvinylidene fluoride (PVDF) binder (10%) 
and MnCo2O4 active material (80%). The adopted 
recipe included an optimized amount of n-methyl 
pyrrolidone (NMP) solvent achieved in our 
previous research [44]. To obtain anodes of different 
thicknesses, home-made automated doctor blade 
spreader was used for coating the slurry on a Cu 
foil with 12µm thickness. The electrode dried 
overnight in a conventional oven at 80°C and then 
in a vacuum oven for 2 h at 90°C. The coated films 
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were punched into discs of 14 mm diameters and 
then calendared at various forces (2900 N, 4850 
N and 9700 N). The active material loading in the 
composite electrode ranged from 3-5 mg. In order 
to illustrate the effect of calendaring, the porosity 
of the electrode was calculated according to the 
equation 1 [45].

Porosity =
L −W((C1D1) + (C2D2) + (C3D3))

L  

 

 

 

 

 

 

  
Figure 1. (a) TGA/DTA (b) DDTA curves of the dried precipitates. 

 

 

a b 

                    (eq. 1)

L: real electrode laminate thickness (without Cu 
foil)

W: weight of the laminate per area
C1, C2 and C3: percentage of active material, 

PVDF binder and super P 
D1, D2 and D3: true density of active material 

(5.56 g cm-3), PVDF binder (1.75 g cm-3) and Super 
P (0.16 g.cm-3) 

The coin cells were assembled in an Argon 
field glove box maintaining <1ppm of H2O and 
O2.  Li metal (Gelon Co.) was used as the counter 
electrode. Solution of LiPF6 (1 M) in ethyl carbonate 
-dimethyl carbonate  (1:1 by volume) was employed 
as the electrolyte. Electrodes were separated by a 
microporous polyethylene film (Celgard 2400). The 
galvanostatic discharge-charge characteristics were 
measured in the range of 0.01 and 3.0 V using a 
Neware battery tester.

3. Results & Discussion
3.1 Thermal analysis

In order to obtain proper calcination conditions, 
TGA/DTA analysis was performed. Fig. 1 indicates 
thermal decomposition pattern of the precipitate in 
air atmosphere. The endothermic peak in the range 
of 60-150°C with a weight loss of 2% corresponds 

to the loss of absorbed and occluded water [46]. 
By increasing temperature up to 270°C, a change 
in slope of TGA curve in the range of 150-270°C 
with weight loss of about 9% is observed, which 
corresponds to the complete decomposition of 
the precipitate, complex precursor and metal 
nitrate. Although the 270°C exothermic peak, 
which is attributed to crystallization of MnCo2O4 
phase, is not obvious in DTA curve (Fig. 1(a)), it 
could be clearly observed in Derivative differential 
thermal analysis (DDTA) results (Fig. 1(b)). No 
distinguished weight loss observed above 270°C. As 
a conclusion, formation of MnCo2O4 spinel oxide 
starts around 270°C and the structure is stable at 
least up to 900°C.

3.2 Structural studies
Fig. 2 indicates XRD patterns of calcined 

MnCo2O4 powder at 650 and 750°C. The diffraction 
peaks reveal the cubic spinel structure (JCPDS card 
no.23-1237) having Fd-3m (227) space group; The 
diffraction peaks at 2θ = 18.77°, 30.78º, 36.16º, 
37.81º, 43.88º, 54.47º, 58.06º, 63.79º, 67.09º, 72.49º, 
75.48º and 76.49º respectively correspond to (111), 
(220), (311), (222), (400), (422), (511), (440), 
(531), (620), (533) and (622) planes. No obvious 
impurity peaks are found, which indicates high 
purity of the as-synthesized samples. According to 
Scherrer equation [47] and based on XRD data, the 
average crystallite size of MnCo2O4 at two different 
temperatures of 650 and 750°C were calculated to 
be 18 and 23 nm, respectively; thus showing larger 
crystallite size with augmentation of the calcination 
temperature. Lower intensities and broader peaks 
of the sample calcined at 650°C indicates poor 
crystallinity compared to the one calcined in 750°C. 

Porosity =
L −W((C1D1) + (C2D2) + (C3D3))
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Figure 1. (a) TGA/DTA (b) DDTA curves of the dried precipitates. 
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Fig. 1- (a) TGA/DTA (b) DDTA curves of the dried precipitates.



118

Dorri M, J Ultrafine Grained Nanostruct Mater, 51(2), 2018, 115-122

3.3 Morphology of MnCo2O4 powder 
The FESEM images of MnCo2O4 powders 

calcined at 650 and 750°C are shown in Fig.3 (a) 
and (b) respectively. The material calcined at 650°C, 
exhibits quasi-plate particles with mean diameter 
of 105 nm and thickness of 24 nm. By increasing 
the calcination temperature to 750°C, morphology 
of the particles gradually changes to polyhedral 
with the mean size of 115 nm as shown in Fig.2 (b).

Previous studies illustrated that the presence 
of smaller particles, results in high porosity and 
relatively large specific surface area that offer 
immense electrolyte/materials contact area and 
enhance Li+ diffusion, meanwhile the amorphous 
electrode materials bring faster reaction kinetics. 
Therefore, Confirming to previous reports, the 

calcined samples at 650°C is expected to exhibit 
better electrochemical performance due to smaller 
particles and lower crystallinity, which will be 
further discussed [42].

3.4 Electrochemical evaluation
Fig. 4 to 6 (obtained from galvanostatic cycling 

at a current density of 45 mA g-1(C/20)), indicate 
initial specific discharge capacity of the samples 
fabricated under different conditions. Obviously, 
the initial specific discharge capacity of all samples 
are much higher than the theoretical capacity 
of MnCo2O4 (906 mAh g-1) with the maximum 
of 1438 mAh g-1. Similar behavior has also been 
observed in transition metal oxides such as Cobalt 
oxide [48], Nickel oxide [49], Manganese oxide 

 
Figure 2. The XRD patterns of powder calcined at (a) 750°C, (b) 650°C and (c) Reference pattern. 
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Figure 3. FESEM image of powders calcined at (a) 650°C, (b) 750°C  
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Fig. 2- The XRD patterns of powder calcined at (a) 750°C, (b) 650°C and (c) Reference pattern.

Fig. 3- FESEM image of powders calcined at (a) 650°C, (b) 750°C.
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[50] and Iron oxide [51]. Although the reason 
of such a phenomenon is unclear, a plausible 
explanation is that the decomposition of electrolyte 
and the formation of solid electrolyte interphase 
(SEI) will lead to consumption of excess number of 
Li+ ions. The SEI layer makes the initial Coulombic 
efficiency (54.34%) lower than its subsequent value 
(97.52%).

Fig. 4 discloses the calcination temperature 
effects on the initial specific discharge capacity of 
MnCo2O4 anode. In Fig. 4 (a) the thickness is 150 
µm and two calendaring forces of 4850 and 9700 
N are applied, while in Fig. 4 (b) the thickness is 
increased to 250 µm (same forces). The powder 
calcined at 650°C shows higher specific capacity in 
all test conditions which proves the strong effect of 
MnCo2O4 particles’ inherent properties. According 

to the higher surface area (due to smaller particles) 
and weaker crystallinity, enhancement in electrode 
kinetic is concluded from XRD patterns and 
FESEM images.

Changes of the initial specific discharge capacity 
of MnCo2O4 active materials sintered at 650°C in 
different porosity for three constant thicknesses is 
illustrated in fig. 5. It is clearly observed that the 
initial specific discharge capacity increased with 
decreasing porosity in all different thicknesses. 

Notably, decrease in electrode porosity has 
two conflicting achievements; electrode layer 
compression and particle-to-particle contact 
increase, which improves electronic conductivity. 
On the other hand, as explained by Zheng et al 
[52], applying pressure on electrode turns open 
pores to closed ones. Following it, the wettability 

 
 

Figure 4. Initial discharge capacity as a function of calcination temperature at two applied calendaring forces 

(4850 and 9700 N), (a) thickness of 150 µm (b) thickness of 250 µm. 
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Figure 5. Initial discharge capacity as a function of porosities at different thicknesses for the MnCo2O4 calcined at 

650°C. 

Fig. 4- Initial discharge capacity as a function of calcination temperature at two applied calendaring forces (4850 and 9700 N), (a) 
thickness of 150 µm (b) thickness of 250 µm.

Fig. 5- Initial discharge capacity as a function of porosities at different thicknesses for the MnCo2O4 calcined at 650°C.
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of electrode with electrolyte decreases. Therefore, 
the active material may not get wet with electrolyte 
and would be electrochemically inert during 
discharge-charge cycles resulting in lower the 
electronic conductivity. Considering low electronic 
conductivity of the electrode studied in this 
work, an increase of particle-to-particle contact 
compensates the negative effect of wettability 
reduction. Thus, the higher specific discharge 
capacity is achieved [53]. 

Fig. 6 shows the capacities of MnCo2O4 
active material calcined at 650°C, obtained at 
constant calendaring forces in different laminate 
thicknesses. Fig 6 indicates that the specific 
discharge capacity decreases with thickness 
increment. A slight increase is observed when 

the electrode thickness increases from 150 to 200 
µm which is ignorable. To justify the thickness 
effect on specific discharge capacity, the electrode 
was considered as a compound consisting of two 
phases: (1) liquid electrolyte within the pores and 
(2) the porous solid matrices. The decrease in 
capacity of the anodes depends on several transport 
phenomena such as: (1) Li ions’ diffusion through 
the solid electrolyte interphase (SEI) film, RSEI; (2) 
Li ions’ diffusion within the bulk electrode, Rdiff; (3) 
transport of Li ions in the electrolyte towards the 
active material surface, Rs; (4) Electronic resistance 
of the electrode, Re; (5) Li ions charge transfer at the 
electrode/electrolyte interface, Rct.

The electronic resistance of the electrode can be 
calculated from Re = L/σ, where L is the thickness 

 
Figure 6. Initial discharge capacity as a function of thickness at different calendaring forces for the MnCo2O4 

calcined at 650°C. 

 

 

 

 

 

 

 

 

 

Table 2 Comparison of the important MCO complex oxides electrochemical performance between this work and 

the previous reports 

Complex oxide 
Initial Discharge capacity 

(mAh.g-1) 

Current density 

(mA.g-1) 
Ref. 

MnCo2O4 quasi-plate 1438 45 
This 

work 

MnCo2O4 quasi-hollow 

microsphere 
1473 200 [1] 

MnCo2O4 hierarchical porous 

microspheres 
1034 1000 [2] 

MnCo2O4 nanoparticles 1200 100 [3] 

MnCo2O4 flake-like 1460 100 [4] 

MnCo2O4 nanospheres 1184 400 [56] 

Hollow MnCo2O4 

Submicrospheres 
1425 400 [57] 

 

 

 

 

Fig. 6- Initial discharge capacity as a function of thickness at different calendaring forces for the MnCo2O4 calcined at 650°C.

Table 1-Comparison of the important MCO complex oxides electrochemical performance between this work and the previous reports
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and σ represents electronic conductivity of the 
electrode layer. The increase of  L obviously leads to 
electronic resistance rise of the electrode [54]. 

A comparison between the manganese 
cobaltite reported in literature and our product 
is summarized in Table 1. Obviously, the as-
synthesized quasi-plate MnCo2O4  exhibits good 
electrochemical performance.

4. Conclusions
In summary, nanostructured manganese cobalt 

oxide (MnCo2O4) was successfully synthesized 
by co-precipitation method. Results of thermal 
analysis indicated that crystallization of MnCo2O4 
started at 270°C which remains stable at higher 
temperatures because no prominent weight loss was 
observed. It is important to optimize the thermal 
annealing temperature for best electrochemical 
performance. MnCo2O4 powders calcined at 
650°C show higher initial discharge capacity in 
all electrode preparation conditions, as a result of 
relatively lower crystallinity and higher surface 
area. The electrode conductivity of the laminates 
depends strongly on their thickness and porosity. 
Changes in these two parameters lead to initial 
capacity change.
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