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1. Introduction 

The use of mesh generation methods for dividing a complex 

problem into small elements plays a crucial role in the finite 

element simulation, which determines the accuracy of the finite 

element model and the required computational time. The 

effectiveness of the mesh size distribution on the accurateness of 

numerical analysis results has been inspected by many researchers. 

Based on the finite element methods, as the mesh is fine with a 

small size as the precision of the results will be high but may take 

longer computational time. Furthermore, the simulation with 

coarse mesh leads to reduce the precision of the results with less 

computational time. 

One of the most popular methods used to generate unstructured 

meshes is the advancing front method, first proposed by [1], with 

the more details form described by [2] and [3]. Most of the mesh 

generators utilizing advancing front techniques have been 

developed in the past few decades. The advancing front approach 

is known to be robust, versatile over domains of different 

dimensions with diverse geometrical and topological 

characteristics, and is able to generate elements of various types 

such as triangles, quadrilaterals, tetrahedra and hexahedra close to 

the well-shaped ideal geometry in compliance with the specified 

node spacing specification.  Lo [4] presented a dynamic grid 

approach for the advancing front method to generate adaptive 

triangular meshes of variable element size over arbitrary planar 

domains.  He [4] proposed a simple domain partition scheme with 

little demand on additional memory, which could drastically 

reduce the search time over the generation front. 

Malekan et al. [5] presented an object-oriented implementation 

of the extended finite element method to model the crack 

nucleation and propagation in structures made of either linear or 

nonlinear materials. They used the Stress intensity factor and 

singularity of the localization tensor to determine the crack 

propagation direction for linear elastic materials and nonlinear 

material models. Liu [6] obtained a methodical study on finding 

the effects of the mesh size on the accuracy of the finite element  

analysis results, based on which brief procedures of choosing best 

element size in finite element modeling are provided. Benamara et 

al.  [7] proposed the displacement extrapolation technique (DET) 

for homogeneous materials to obtain the stress intensity factors 

(SIFs) at crack-tip. Soman et al. [8] proposed a simple and efficient 

finite element based technique using the crack face nodal 

displacements for the accurate estimation of mode I, mode II and 

mixed mode I/II stress intensity factors. Yaylaci [9] presented a 

comparative study of finite element method (FEM) and analytical 

method for the plane problem of a layered composite containing 
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an internal perpendicular crack by using a finite element software 

ANSYS  for two dimensional analysis. Main goal of the numerical 

simulation is to investigate the normal stress, stress intensity 

factors at the crack tip and the crack opening displacements. 

An analytical-computational method along with finite element 

analysis (FEA) has been employed by [10] to analyze the dynamic 

behavior of deteriorated structures excited by time- varying mass. 

They focused on the comparative study of a double cracked beam 

with inclined edge cracks and transverse open cracks subjected to 

traversing mass. They also considered the influence of the 

parameters like crack depth and crack inclination angles are 

investigated on the dynamic behavior of the structure. More and  

Bindu [11] Studied, the effects of element size on the accuracy of 

finite element models has been studied by  . They investigated that, 

through static analysis, and buckling analysis it was found that for 

static analysis which assumes steady loading and response 

conditions the model should be discretized into elements of size 

40 mm in order to obtain accurate results, consuming fewer 

computer resources and computing time. For bucking analysis the 

FE model which is meshed between 30 and 50 mm size can give 

us an optimal combination of accuracy and efficiency.  

  The present software has been developed by using Visual 

FORTRAN language to enable the user to determine the fracture 

mechanics parameters such as the stress intensity factors history, 

the stress distribution, the strain distribution at each node and 

element, the deformed mesh, the crack path direction as well as the 

contour distribution.  

2. Adaptive Mesh Refinement 

Conceptually, the advancing front method is one of the 

simplest mesh generation processes. The element generation 

algorithm, starting from an initial ‘front’ formed from the specified 

boundary of the domain, generates element, one by one, as the 

front advances into the region to be discretized until the whole 

domain is completely covered by elements. The mesh is 

constructed by progressively adding mesh elements starting at the 

boundaries. This iteration results in a propagation of a front which 

is the border (internal boundary) between the meshed and the 

unmeshed region. The positions of the internal nodes are 

dependent on the element densities at these positions. The nodes 

on the front is updated, with the new element edges forming the 

new front. This process is continued, working into the interior of 

the domain until the whole of the object domain has meshed. 

The mesh refinement can be controlled by the characteristic 

size of each element, predicted according to the error estimator. 

This initial mesh is modelled by the incremental theory adopting 

the von Mises yield criterion to solve the first model. At the end of 

each load step, the solution has converged in order to estimate the 

percentage of error based on the mesh size of each element. In the 

case of exceeding the  specified maximum error  at any point in 

the domain,  the construction analysis is interrupted and a new 

mesh domain model is constructed ([12] and [13]). The element 

error estimator is subsequently used to compute the optimal mesh 

size as:          
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where
eA  is the area of the triangle element. The norm stress error 

for each element is defined as:                                 
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while the average norm stress error for the whole domain is 
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where m is the number of total elements in the whole domain,σ  

and 
*
σ is the stress and smoothed stress vector respectively which 

components are clearly given in equation (2). 

 In the present study, we have attempted here to keep the error 

to 5% in the relative energy norm e  less than some specified 

value  . Thus 
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and the new element relative stress error norm with the permissible 

error of   defined as 
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This means any element with the new element size 1e   need to 

be refined and consequently, the new size of mesh refinement need 

to be constructed based on the new element size. Based on the new 

element size the asymptotic convergence rate criteria whereby is 

assumed as:                                                              
p
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where p is the polynomial order of approximation. In our case 

2p   since we are using quadratic polynomial for the finite 

element approximation. The approximate size of the new element 

is:                                                               
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3. Determination of Stress Intensity Factors and Crack 
Direction 

One of the most important parameters in linear elastic fracture 

mechanics is the stress intensity factor which is able to correlate 

the crack growth and fracture behavior. For this reason, the 

accurate value of the stress intensity factor must be predicted 

precisely in all steps of crack growth. In the present study, the 

displacement extrapolation method has been used to calculate the 

stress intensity factors values which depend on the nodal 

displacements around the crack tip. Crack tip elements based on 

this approach were proposed independently  [14] and [15]. In this 

work, the natural triangle quarter point element is chosen as the 

crack tip elements type and their construction follows in the 
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schematic rosette formation around the crack tip as shown in Fig. 

1. The near tip nodal displacements at nodes b, c, d and e shown 

in Fig. 1. The displacement tangential and normal to crack plane 

are denoted as 'u  and 'v  respectively. 

 
Fig. 1 The quarter-point singular elements around the crack tip. 

 

The  displacement extrapolation method configurations for 

estimation of mode I and mode II stress intensity factor are given 

by [16] as: 
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In order to simulate crack propagation under a linear elastic 

condition, the crack path direction must be determined. The 

maximum circumferential stress theory [17] asserts that, for 

isotropic materials under mixed-mode loading, the crack will 

propagate in a direction normal to maximum tangential tensile 

stress. In polar coordinates, the tangential stress is given by                       
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The direction normal to the maximum tangential stress can be 

obtained by solving 0/d d    for  . The nontrivial solution 

is given by 
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which can be solved as:                              
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4. Results and Discussions 

 

4.1 Compact Tension Specimen 

 

Consider the geometry of a compact tension specimen with an 

initial crack length, 9cma  and width, 18.8 cmW  as shown 

in Fig. 2. The formula of stress intensity factor for this geometry 

according to ASTM Standard E-399-72 specimen can be obtained 

from [18] as follows:       
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(13) 

where P is the applied load and B  is the specimen thickness. 

 
Fig. 2 Problem statements for the compact tension specimen 

  

Fig. 3 shows two types of the generated mesh with different 

densities, however, as the mesh density is increased a high-quality 

contour plot is obtained as well as increasing the precision of the 

stress intensity factor prediction. The adaptively of the mesh 

density is clear which are needed at the vicinity of loading, fixity 

and near to the crack tip. 

 
 

 

 

  

  

 

  

  

 

 

Fig. 3 Two different steps of the adaptive mesh for compact tension specimen 
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(b) (a) 

Fig. 4 Comparison of stress intensity factor, 
IK  values for steel specimen of thickness 0.83cmB   with results from (a) the 

analytical formula and (b) [19] 

The stress intensity factor 
IK is calculated for a range of loads 

is compared with those of the analytical formula obtained in 

equation (13) as shown in Fig. (4a) and also the results of  [19] as 

shown in Fig. 4b. Fig. 4 Comparison of stress intensity factor, 
IK  

values for Steel specimen of thickness 0.83cmB   with results 

from (a) the analytical formula and (b) [19] also include the 

analytical solution (labelled as ‘Theory’ in the legend) and 

ANSYS FEM solution beside their experimental result. The 

analytical formula correlates very well with the numerical result 

under the plane stress condition.  

Fig. 5 shows the calculated stress intensity factor for the 

Aluminium specimen compared to the analytical solution. The 

relative error is very small for all values. Since the difference is 

very small, one can conclude that the material properties do not 

have an effect on the stress intensity factors values under linear 

elastic assumption. The numerical result for steel specimen is more 

accurate than that for Aluminium with reference to the analytical 

formula.  

Fig. 6(a) shows the normal principal stress 
1  and Fig. 6(b) 

shows the Von Mises stress 
VM  contours in N/cm2  when 

I I cK K  . The area around crack tip and the load point are 

enlarged in Fig. 6(b) to enable the clear view of contour.  

The crack growth simulation is sufficiently carried out in four 

increment steps as shown in Fig. 7. As expected, the simulation 

clearly exhibits the pure mode I fracture path. Fig. 8 shows the 

experimental result for the compact tension specimen by [20]. 

 

 

 

4.2 Three Points Bend Specimen 

The geometry of the three points bend specimen is illustrated in 

Fig. 9 where a is the crack length, W is the width and S is the 

span length. The analytical formula to calculate the stress 

intensity factor for the specimen is given by [18] as  
2
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(14)  

where P is the applied load and B is the specimen thickness. 

Consider the specimen as steel where the dimensions are B = 

1 cm, S = 32 cm, W = 8 cm and a = 4 cm subjected to the applied 

load  P = 1 KN. Under plane stress assumption, the calculated 

stress intensity factor is 3.7652MPa mIK   with a relative 

error of 0.003 % compared to the analytical value which is 

3.7653MPa mIK  .  

Fig. 10 shows the final adaptive mesh, the normal principal stress 

and the Von Mises stress (MPa) for plane strain condition where 

I I cK K  and before performing the splitting node procedure.  

The maximum value of  
1  value was noticed at the crack tip. 

The maximum
VM  value is at the constraint and loading points 

but the Von Mises stress  
VM  values at the crack tip is less than 

the yield stress. According to ASTM standard, in order to satisfy 

the plane strain condition, the specimen thickness must be 

 
2

2.5 /IC YB K  where 
Y  is the yield strength.

 
Fig. 5 Comparison of stress intensity factor, 

IK  values for aluminium specimen of thickness 0.83cmB   
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(a) (b) 

Fig. 6 (a) Normal principal stress and (b) Von Mises stresses (N/cm2) contour plots for compact tension specimen. 
 

 

Fig. 7 Crack propagation simulation for the compact tension specimen 

 
Fig. 8 Experimental crack trajectory for the compact tension specimen by [20] 

 

 

Fig. 9 Problem statement for the three points bend specimen 
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(a) 

 
(b) 

 
(c) 

Fig. 10 (a) The adaptive mesh, (b) Normal principal stress and (c) Von Mises stress (10-2 MPa) contour plots for the three points 

bend specimen. 

 

Step 1 

 

Step 2 

Step 3 

Step4 

Fig. 11 Crack propagation simulation for the three points bend specimen 
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The crack propagation is shown in Fig. 11 in four crack 

increment steps. The crack path trajectory clearly follows the pure 

mode I fracture or pure opening mode which can be easily 

predicted from the boundary and loading conditions applied. The 

normal principal stress contour is plotted together merely to show 

the symmetrical pattern and the maximum value is always at the 

crack tip. 

 

5.  Conclusions 

The simulation of crack propagation under linear elastic 

condition using dens mesh finite element method has been 

described in details.  Furthermore, applying the global adaptive 

mesh refinement is essential in obtaining accurate stress intensity 

factor value, which a critical requirement in employing the 

displacement extrapolation technique. In addition, a dense rosette 

consisting of many singular elements is constructed around each 

of the crack tip to facilitate the calculation and also to correctly 

represent the stress field singularity in the vicinity of the crack tip. 

The fracture is modeled by the splitting node approach and the 

trajectory follows the successive linear extensions of each crack 

increment. The crack trajectories in the simulation qualitatively 

similar to the experimental and numerical results obtained by other 

researchers. This indicates that the developed program based on 

the dens mesh finite element method has been successfully 

predicted the crack growth direction and other related parameters. 
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