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ABSTRACT: In this paper a league championship algorithm (LCA) is developed for 

structural optimization where the optimization variables are of discrete type and the set of 

the values possibly obtained by each variable is also given. LCA is a relatively new 

metaheuristic algorithm inspired from sport championship process. In LCA, each individual 

can choose to approach to or retreat from other individuals in the population. This makes it 

able to provide a good balance between exploration and exploitation tasks in course of the 

search. To check the suitability and effectiveness of LCA for structural optimization, five 

benchmark problems are adopted and the performance of LCA is investigated and deeply 

compared with other approaches. Numerical results indicate that the proposed LCA method 

is very promising for solving structural optimization problems with discrete variables. 
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INTRODUCTION 

 

Optimal design of structures, a fundamental 

problem in structural engineering, has 

attracted increasing interest from researchers 

in recent decades. It generally aims to achieve 

minimum structural weights by different 

optimization methods across a number of 

design constraints. Based on the type of the 

design variables, three major types of 

structural optimum design problems include: 

i) Size optimization that considers only the 

size variables of structural elements as design 

variables, which is suitable for optimal design 

of skeletal structures with fixed shape and 

connectivity (Jalili and Hosseinzadeh, 2015); 

ii) Layout optimization that aims to minimize 

the weight of the structure with considering 

size and shape variables together 

(Hosseinzadeh et al., 2016; Jalili and 

Talatahari, 2017); and iii) Topology 

optimization that tries to find optimal 

connectivity of structural elements by 

considering stability requirements of the 

structure (Xu et al., 2003). This paper will 

focus on the first class of the optimum 

structural design problems. 

In recent years, meta-heuristic 

optimization methods have been successfully 

applied to solve various problems in civil 

engineering (Meshkat Razavi and 

Shariatmadar, 2015; Moosavian and 
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Jaefarzadeh, 2015). These methods have 

shown great potential in solving structural 

optimization problems, such as Genetic 

Algorithms (GAs) (Pezeshk et al., 2000), 

Particle Swarm Optimizer (PSO) (Doğan and 

Saka, 2012), Ant Colony Optimization 

(ACO) (Camp et al., 2005), Big Bang-Big 

Crunch (BB-BC) (Camp and Huq, 2013) 

algorithm, Biogeography-Based 

Optimization (BBO) (Jalili et al., 2016), and 

Harmony Search (HS) (Lee et al., 2005, 

Degertekin 2008; Saka et al., 2011) 

algorithm.  

The advantages of using the meta-heuristic 

search methods for attaining optimal 

structural designs are the finding global 

solutions with the high quality, simple but 

powerful search capability, easy to 

understand, simple framework, and ease of 

use. However, it has been experimentally 

observed that the construction of a perfect 

optimizer to solve all types of structural 

optimization problems, using a specific 

heuristic search method, is often impossible. 

In another word, most of the meta-heuristic 

optimization algorithms only give a better 

solution for some particular problems than 

others. Therefore, researchers have been 

developed novel optimization methods for 

different structural optimum design 

problems. The Colliding Bodies 

Optimization (CBO) developed by Kaveh 

and Mahdavi (2014), League Championship 

Algorithm (LCA) introduced by Jalili et al. 

(2016), Optics Inspired Optimization (OIO) 

developed by Jalili and Husseinzadeh Kashan 

(2018), Search Group Algorithm (SGA) 

proposed by Gonçalves et al. (2015), and 

Social Spider Algorithm (SSA) utilized by 

Aydogdu et al. (2017) are examples of these 

methods. In addition, a series of 

improved/hybridized versions of the standard 

meta-heuristic methods have been developed 

for solving structural optimum design 

problems more efficiently (Jalili and 

Hosseinzadeh, 2018a; Baghlani et al., 2014; 

Jalili et al., 2014; Kaveh et al., 2015; 

Aydoğdu et al., 2016; Taheri and Jalili, 2016; 

Aydogdu et al., 2017; Jalili and 

Hosseinzadeh, 2017; Jalili and Hosseinzadeh, 

2018b)  

In relatively recent years, more and more 

modern meta-heuristics inspired by nature are 

introducing by researchers. The power of 

most these algorithms comes from the fact 

that they mimic the successful characteristics 

of natural evolvable systems, e.g., selection 

of the fittest and adaptation to the 

environment. Among these algorithms is the 

League Championship Algorithm (LCA) 

which is an evolutionary stochastic search 

algorithm. LCA follows the concept of 

championship in sport. In this sense it is one 

of the socio-inspired algorithms. The idea of 

using sport as a social phenomenon to 

develop a modern meta-heuristic has been 

employed for the first time in LCA. In LCA 

each individual solution in the population is 

regarded as the team formation adopted by a 

sport team. These artificial teams compete 

according to a given schedule generated 

based on a single round-robin logic. Using a 

stochastic method, the result of the game 

between pair of teams is determined based on 

the fitness value associated to the team’s 

formation in such a way that the fitter one has 

a more chance to win. Given the result of the 

games in the current iteration, each team 

preserves changes its formation (a new 

solution is generated) following a SWOT 

type analysis and the championship continues 

for several iterations. In this paper, LCA is 

used to solve structural optimization 

problems with discrete variables. 

Effectiveness of the method is verified by 

solving five benchmark structural design 

examples. The results demonstrate the 

surpassing ability of the proposed algorithm 

compared with existing techniques available 

in literature. 

The remaining contents of the paper are 

organized as follows. Next section formulates 
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the problem of optimum design of structures 

with discrete variables. Then, the basic 

concepts of the league championship 

algorithm are explained in detail. Numerical 

results and comparison are provided by using 

five benchmark design examples. Finally, 

concluding remarks are summarized. 

 

PROBLEM DEFINITION 

 

The main target of the optimum structural 

design problem is the minimization of a 

structure’s weight, while enforcing a number 

of constraints on deflections and stresses. The 

optimum discrete design of structures can be 

formulated as: 

 

Find: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑒𝑔} 

To minimize:  𝑊(𝑋) = ∑ 𝛾𝑥𝑖𝑙𝑖
𝑚
𝑖=1  

𝑥𝑖 ∈ {𝑥1, 𝑥2, … , 𝑥𝑘} 

(1) 

 

where 𝑋:  is the vector containing cross-

sectional areas; 𝑒𝑔: is the number of element 

groups; m: is the number of structural 

members; W(.): is the structural weight; 𝛾: is 

the material density; 𝑥𝑖 and 𝑙𝑖: are the cross-

sectional area and length of member i, 

respectively; {𝑥1, 𝑥2, … , 𝑥𝑘}:  represents the 

discrete set of cross-sectional areas, and k: is 

the number of available cross-sectional areas.  

When applying a meta-heuristic method to 

the structural optimum design problem, a key 

issue is how the method handles the 

constraints relating to the problem.  The 

literature proposes several approaches for 

constraint handling in the meta-heuristic 

methods (Mezura-Montes and Coello, 2011). 

However, the penalty function method is one 

of the simplest and very widely utilized 

constraint handling approaches in the field of 

the structural optimization. In this study, in 

order to consider the constraints of the 

problem during search process, following 

penalized weight is defined: 

 
𝑊𝑃(𝑋) = 𝑊(𝑋)(1 + 𝜑(𝑋))𝜀 ) (2) 

where 𝑊𝑃(. ):  is the penalized structural 

weight; 𝜑(. ): is the penalty function, and 𝜀: 
is a constant positive value. The value of the 

penalty function is calculated based on the 

constraints of the problem. It has a positive 

value when the design constraints are violated 

and it is zero when the constraints of the 

problem are satisfied. Based on the type of the 

structure (truss or frame), the problem of the 

structural optimum design is subjected to the 

following inequality constraints.  

 

Truss Structures 

For a truss structure, it is assumed that the 

members are subjected to the axial loads. 

Therefore, the axial stresses caused by these 

axial forces should not exceed from the 

allowable compression or tension stresses. In 

addition, the displacements of all free nodes 

in all directions should be less than a given 

allowable value. Thus, by considering stress 

and displacement constraints, following 

penalty function is defined for each candidate 

solution: 

 

𝜑(𝑋)=∑ (𝑚𝑎𝑥 (𝑔𝜎𝑡𝑖
(𝑋), 0) +𝑚

𝑖=1

𝑚𝑎𝑥 (𝑔𝜎𝑐𝑖
(𝑋), 0)) +

∑ 𝑚𝑎𝑥(𝑔𝛿𝑗(𝑋), 0)
𝑛𝑑
𝑗=1  

(3) 

 

where:  

 

𝑔𝜎𝑡𝑖
(𝑋) =

𝜎𝑖

𝜎𝑡
𝑖
− 1 ≤ 0 (4) 

𝑔𝜎𝑐𝑖
(𝑋) = 1 −

𝜎𝑖

𝜎𝑐
𝑖
≤ 0 (5) 

𝑔𝛿𝑗(𝑋) =
𝛿𝑗

𝛿𝑎𝑙𝑙
𝑗
− 1 ≤ 0 (6) 

 

where 𝑔𝜎𝑡𝑖
(. ) and 𝑔𝜎𝑐𝑖

(. ): are the tension and 

compressive stress constraints for the ith 

member; 𝑔𝛿𝑗(. ): is the deflection constraint 

for jth node; 𝜎𝑖, 𝜎𝑡
𝑖, and 𝜎𝑐

𝑖: are the existing, 

allowable tension, and compressive stresses 

for the ith member, respectively;  𝛿𝑗: is the 
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displacement of the jth node and 𝛿𝑎𝑙𝑙
𝑗
: denotes 

its allowable value; and nd: is the number of 

free nodes. 

 

Frame Structures 

In the frame structures, the members are 

subjected to the combined axial force and 

bending moment. According to LRFD 

(1994), interaction formula given in Eq. (7) 

should be checked for each member: 

 
𝑔𝜎𝑖(𝑋)

=

{
 
 
 
 

 
 
 
 

𝑃𝑢
2𝜙𝑐𝑃𝑛

+ (
𝑀𝑢𝑥

𝜙𝑏𝑀𝑛𝑥
+

𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦
) − 1 ≤ 0

 𝑓𝑜𝑟:      
𝑃𝑢
𝜙𝑐𝑃𝑛

< 0.2    

𝑃𝑢
𝜙𝑐𝑃𝑛

+
8

9
(
𝑀𝑢𝑥

𝜙𝑏𝑀𝑛𝑥
+

𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦
) − 1 ≤ 0

𝑓𝑜𝑟:          
𝑃𝑢
𝜙𝑐𝑃𝑛

≥ 0.2

 
(7) 

 

where 𝑔𝜎𝑖(. ): is the interaction constraint for 

ith member of the frame structure; 𝑃𝑢: is the 

required axial tension or compressive 

strength; 𝑃𝑛: is the nominal axial tension or 

compressive strength; 𝜙𝑐:  denotes the 

resistance factor (0.9 for tension and 0.85 for 

compression); 𝜙𝑏:  is the flexural strength 

factor, which is equal to 0.9; 𝑀𝑢𝑥  and 𝑀𝑢𝑦: 
are the required flexural strengths in x and y 

directions of the section (for two dimensional 

frame structures: 𝑀𝑢𝑦 = 0 ) and 𝑀𝑛𝑥  and 

𝑀𝑛𝑦: represent the nominal flexural strength 

in the x and y directions of the section. It 

should be noted that the second order effect 

(P-delta effect) is not considered in 

calculation of 𝑀𝑢𝑥 and 𝑀𝑢𝑦. 

In the frame structures, the maximum 

lateral and inter-story displacements of the 

structure are regarded as displacement 

constraints as follows: 

 

𝑔∆(𝑋) =
∆

𝐻
− ∆∗≤ 0 (8) 

𝑔𝛿𝑟(𝑋) =
𝛿𝑟
ℎ𝑟𝛿∗

− 1 ≤ 0 𝑓𝑜𝑟 𝑟 = 1,… , 𝑛𝑠 (9) 

where 𝑔∆(. ) and 𝑔𝛿𝑟(. ): are the lateral drift 

and inter-story drift constraints, respectively; 

∆: is the maximum lateral displacement; ∆∗: 
is the maximum drift index; H: is the height 

of the structure;  𝛿𝑟:  denotes the inter-story 

displacement for the rth story; ℎ𝑟:  is the 

height of the rth story; ns: is the total number 

of stories in the structure; and 𝛿∗:  is the 

maximum inter-story drift index, which is 

considered as 1/300 according to LRFD 

(1994). Finally, the penalty function for a 

frame structure is calculated as follows: 

 

𝜑(𝑋)=(∑ max (𝑔𝜎𝑖(𝑋), 0)
𝑚
𝑖=1 +

∑ max(𝑔𝛿𝑟(𝑋), 0)
𝑛𝑠
𝑟=1 ) +

max(𝑔∆(𝑋), 0) 

(10) 

  

The positive constant of 𝜀  in Eq. (2) 

should be selected based on the optimization 

problem on hand and its value is in fact 

problem dependent. This parameter controls 

the penalization of infeasible solutions and 

helps algorithm to focus on the feasible 

regions of the search space. At the initial 

stages of the optimization process, this value 

should be small enough to increase 

exploration ability of algorithm. But by lapse 

of iterations, solutions may get very close to 

infeasible areas of the search space. 

Therefore, the value of 𝜀 should be increased 

for more focus on feasible domain of the 

search space. In this study, the value of 𝜀 

starts from 2 and linearly increases to 4 by 

lapse of the iteration.  

 

THE LEAGUE CHAMPIONSHIP 

ALGORITHM (LCA) 

 

As a socio-inspired algorithm, the league 

championship algorithm (LCA) is the first 

meta-heuristic algorithm founded on the basis 

of championship process followed in sport. 

LCA was introduced first by Husseinzadeh 

Kashan (Kashan, 2009; Kashan and Karimi, 

2010) as an evolutionary algorithm and has 

gained succeed on a number of well-known 
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optimization problems in various disciplines. 

For detailed reviews on this algorithm, the 

interested reader may refer to (Kashan and 

Karimi, 2010; Kashan, 2011; Kashan, 2014; 

Alatas 2017). 

There is a unique mapping between LCA 

and a typical evolutionary algorithm. Just 

similar to population based evolutionary 

algorithms, a set of L random solutions form 

the initial population of LCA. The population 

may referred to as “league”. The ith solution 

in the population is treated as the team 

formation associated to agent i in the 

population. The fitness value along with each 

solution is referred to as “playing strength” of 

the relevant team formation, in LCA 

terminology.  

At the core of LCA is the artificial match 

analysis process which is responsible for the 

generation of new solutions within the search 

space. Such an analysis is followed by the 

coachers when they are trying to set a suitable 

arrangement/formation for their upcoming 

match.  

Selection in LCA is the simple greedy 

selection. As output of the match analysis 

process, whenever a new better solution (or 

formation), in terms of the fitness function, 

has been produced for team i, which its 

quality exceeds the current solution, since 

after it enters into population as the best 

formation for team i. The algorithm continues 

for a number of seasons (S), where each 

season has L-1 weeks (or iterations), yielding 

)1(  LS  weeks of contests which is the 

maximum number of iterations. Remember 

that based on a single round-robin tournament 

the number of matches for each team in each 

season is L-1. 

LCA imitates the championship process 

followed in sport leagues to attain a repetitive 

method for optimization. That is, based on the 

league schedule at each week, teams play in 

pairs and the outcome is determined based on 

each team playing strength resultant from a 

particular team formation. In the recovery 

period, keeping track of the previous week 

events, each team devises the required 

changes in its formation to set up a new 

formation for the next week contest and the 

championship goes on for a number of 

seasons. Figure 1 depicts the entire process of 

LCA. 

LCA maintains an idealized league with its 

governing rules. The list of these rules that 

form the building blocks of the different steps 

of LCA can be found in (Kashan, 2009; 

Kashan, 2011). Given the flowchart of Figure 

1, in the following, a brief introduction is 

given on the main modules of LCA. 

 

Generating the League Schedule 

In LCA a single round-robin (SRR) 

schedule is used by which each participant 

plays every other participant once in a season. 

For a league composed of L teams the SRR 

tournament conducts L×(L-1)/2  matches for 

the reason that in each of (L-1) weeks, L/2  

matches will be run between all teams.  

Figure 2 shows the single round-robin 

scheduling algorithm for the case of L = 8. In 

Figure 2a the schedule of matches for the first 

week has been depicted, where team 8 plays 

with 1; team 7 plays with 2 and so on. Based 

on Figure 2b, in the second week, one team, 

say team 1, is fixed and the order is rotated 

clockwise. So, team 1 plays with team 7, team 

8 plays with team 6 and so on. In the third 

week, the order is rotated once again 

clockwise. The process proceeds until 

reaching the initial state again. Typically we 

assume that L is even. In LCA the same 

schedule is used for all of the S seasons. 

 

Determining the Winner/Loser 

Given the league schedule, let us assume 

that teams i and j will play at week t. The 

formation associated to teams i and j is 

represented by ),,...,,( 21

t

in

t

i

t

i

t

i xxxX   and 

1 2( , ,..., ),t t t t

j j j jnX x x x  and their associated 

playing strengths is )( t

i
Xf  and ( ),t

jf X  
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respectively. Recall that 1 2( ( , ,..., )nf X x x x  

is a n variables numerical function that should 

be minimized over decision space defined by 

ndxxx ddd ,..,1,maxmin  . Then Eq. (11) is 

expressed as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of LCA 

 

 

 

 

 

 
 

Fig. 2. An illustrative example of the league scheduling algorithm 

 

 

Yes No  

No 

- Randomly initialize team 

formations and determine the 

playing strengths along with 

each formation. Let 

initialization be also the 

teams’ current best formation 

Generate a league schedule 

Based on the league schedule at week 

t, determine the winner/loser among 

each pair of teams using a playing 

strength based criterion. 

-For each team i 
 

devise a new 

formation for its forthcoming match at week 

t+1, through an artificial match analysis 

-Evaluate the playing strength along with the 

resultant formation 

-If the new formation is the fittest one (i.e., the 

new solution is the best solution achieved so far 

by the ith member), hereafter consider the new 

formation as the team’s current best formation 

 

t S(L-1) 

T
erm

in
a

Start  

- Initialize the league size (L); 

the number of seasons (S) 

and the control parameters 

Mod (t, L-1) 0 
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Team 2 

Team 3 

… 
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.
ˆ2)()(

ˆ)(

fXfXf

fXf
p

t

i

t

j

t

jt

i




  (11) 

 

The probability of beating team j is addressed 

by team i at week t. )}({minˆ
,...,1

t

i
Li

t Bff


  is an ideal 

value, where ),...,,(
21

t

in

t

i

t

i

t

i
bbbB   is the best 

experienced formation by team i until week t. 

To determine t

i
B , a selection based on fitness 

values is conducted between t

i
X  and 1t

i
B . 

After computing t

ip , a  random value is 

generated and team i wins and team j loses if 

the random value is less than or equal to t

i
p .  

 

Setting Up a New Team Formation 

There are typically two types of learning 

sources available for coachers during the post-

match analysis; internal learning and external 

learning. Similarly in LCA, there are both 

internal and external learning for generating 

possibly better solutions. By internal learning 

we address the artificial analysis of the 

previous performance at week t in terms of 

strengths or weaknesses. By external learning 

we address the artificial analysis of the 

opponent’s previous performance at week t in 

terms of opportunities or threats. Such an 

analysis is known as SWOT analysis. 

To model an artificial match analysis for 

team i for generating a new solution 

correspond to it at iteration (week) t+1, if it 

had already won/lost the match from/to team j 

at iteration t, we can assume this success/loss 

had been directly the result of 

strengths/weaknesses along with team i or 

alternately it had been directly the result of 

weaknesses/strengths along with team j. 

Based on the league timetable, if the 

upcoming game of team i at iteration 1t  is 

with l, then if it already had won/lost the 

match from/to team k at iteration t, then the 

victory/fail and the formation supporting it 

may be sensed as a direct threat/opportunity 

by team i. Obviously, such victory/fail has 

been attained via some strengths/weaknesses. 

Concentrating on the strengths/weaknesses of 

team l, can provide a way to avoid from the 

possible threats. 

The above rational is modelled 

mathematically to obtain the updating 

equations for generating new solutions by 

LCA. The new formation ),...,,( 11

2

1

1

1   t

in

t

i

t

i

t

i
xxxX  

for team i ),...,1( Li   at iteration t+1 can be set 

based on one of the following equations, and 

is determined based the result of its previous 

game and its opponent previous game (for 

more details on the rationale of these 

equations please refer to Kashan, 2011, 2014). 

 

Case 1: i had won and l had won too, then  

 
1

1 1 1 2( ( ) ( ))t t t t t t

id id id kd id jdx b r b b r b b             

nd ,...,1  
(12) 

 

Case 2: i had won and l had lost, then  

 
1

2 1 1 2( ( ) ( ))t t t t t t

id id kd id id jdx b r b b r b b             

nd ,...,1  
(13) 

 

Case 3: i had lost and l had won, then  

 
1

1 1 2 2( ( ) ( ))t t t t t t

id id id kd jd idx b r b b r b b             

nd ,...,1  
(14) 

 

Case 4: i had lost and l had lost too, then  

 
1

2 1 2 2( ( ) ( ))t t t t t t

id id kd id jd idx b r b b r b b            

nd ,...,1  
(15) 

 

In Eqs. (12) and (13)
1

r  and 
2

r : are uniform 

random numbers. 1  and 2 : are scale 

coefficients. 

The feasible 
t

iX  differs from 
t

iB  in all 

dimensions. However on many functions, due 

to the early convergence of the algorithm the 

number of dimension changes should be less 

than n. Eq. (16) simulates the number of 
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changes made in t

i
B  randomly via inserting 

the randomly selected elements of 1t

i
X . 

 

0

ln(1 (1 (1 ) ) )
1

ln(1 )

: {1,..., }

n

t c

i

c

t

i

p r
q q

p

q n

   
   

 



 (16) 

 

Again r: is a random number and 1,cp   

0cp   is a control parameter. It is expected 

that the larger values for cp , enforce a smaller 

number of changes are recommended.  

 

NUMERICAL EXAMPLES 

 

The applicability of the LCA method has 

been investigated on five benchmark design 

examples namely; 52-bar planar truss, 47-bar 

transmission tower, one-bay 8-story frame, 

three-bay 24-story frame, and 582-bar tower 

structures, and results are compared with the 

results reported by a number of existing meta-

heuristic search techniques. The maximum 

number of structural analysis is considered as 

follows: 12,500 for first example, 30,000 for 

second example, 12,000 for third and fifth 

example, and 15,000 for the fourth example. 

Moreover, the parameters used to run LCA on 

all design examples considered in this 

sections are as follows. The league size L is 

set equal to 8 teams. The retreat scale 

coefficient 2  is set equal to 1.5 and the 

approach scale coefficient 1  is considered 

equal to 0.5. The value of cp is decreased in 

quadratic way from 1 to -1 to enforce a small 

number of changes made in a team’s solution 

at the start of search and preserve many 

number changes made in a team’s solution at 

the final stages of the search. In addition, 

LCA and the structural analysis are coded in 

Matlab platform and run 30 independent trials 

for each design example on a Dell Vostro 

1520 with Intel CoreDuo2 2.66 GHz 

processor and 4 GB RAM memory. 

 

A 52-Bar Planar Truss Structure 

The 52-bar planar truss structure shown in 

Figure 3 is our first design example. All 

members are made of steel: the material 

density and modulus of elasticity are 207 GPa 

and 7860 kg/m3, respectively. The structure 

members are classified in 12 groups as 

follows: (1) A1-A4, (2) A5 – A10, (3) A11 – A13, 

(4) A14 – A17, (5) A18 – A23, (6) A24 – A26, (7) 

A27 – A30, (8) A31 – A36, (9) A37 – A39, (10) 

A40 – A43, (11) A44 – A49 and (12) A50 – A52. 

The nodes 17, 18, 19 and 20 at top of the 

structure bear the loads Px = 100 kN and Py = 

200 kN in the x and y directions, respectively. 

Moreover, the allowed compressive and 

tension stresses in each member is considered 

as ±180 MPa. In addition, the cross-sectional 

area values for the members should be 

selected from the discrete set listed in the 

Table 1. 

The optimal designs obtained through 

LCA and other related optimization 

techniques in the literature are recorded in 

Table 2. From the results of Table 2, it can be 

concluded that LCA finds a better design than 

HPSO (Li et al., 2009), DHPSACO (Kaveh 

and Talatahari, 2009), SOS (Cheng and 

Prayogo, 2014), AFA (Baghlani et al., 2014), 

WOA (Mirjalili and Lewis, 2016), MCSS 

(Kaveh et al., 2015), and IMCSS (Kaveh al., 

2015) methods, and the same design as 

compared with the CBO (Kaveh and 

Mahdavi, 2014) method. However, it should 

be noted that LCA is more efficient than the 

CBO (Kaveh and Mahdavi, 2014) method in 

terms performance statistics. The average 

weight, the standard deviation, and the worst 

weight obtained by LCA are 1949.06 lb, 

60.85 lb, and 2135.96 lb, respectively, while 

these values for the CBO (Kaveh and 

Mahdavi, 2014) method are 1963.12 lb, 

106.01 lb, and 2262.8 lb, respectively. 

Although LCA requires slightly more 

structural analyses than CBO (Kaveh and 

Mahdavi, 2014) method, the required 

structural analyses to reach the optimal 
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design for LCA is significantly less than 

HPSO (Li et al., 2009), DHPSACO (Kaveh 

and Talatahari, 2009), AFA (Baghlani et al., 

2014), MCSS (Kaveh et al., 2015), and 

IMCSS (Kaveh et al., 2015) methods. 

Moreover, Figure 4 compares the existing 

values of axial stresses in the members of the 

structure with the corresponding allowable 

values. As can be seen, the axial stresses in 

some members are very close to the allowable 

tension stress. In addition, Figure 5 shows the 

convergence curves of LCA for the 52-bar 

planar truss structure. 

 

A 47-Bar Planar Power Line Tower 

Structure 

Figure 6 shows the 47-bar planar power 

line tower structure as the second design 

example. This structure consists of 47 

members and 22 nodes. Using symmetry 

about the y-axis, the members are classified 

into 27 design groups. The Young’s modulus 

and material density of members are 0.3 lb/in2 

and 30,000 ksi, respectively. The structure is 

subjected to the three different loading 

conditions as follows: i) 6.0 kips acting in the 

positive x-direction and 14.0 acting in the 

negative y-direction at nodes 17 and 22, ii) 

6.0 kips acting in the positive x-direction and 

14.0 kips acting in the negative y-direction at 

node 17, and iii) 6.0 kips acting in the positive 

x-direction and 14.0 kips acting in the 

negative y-direction at node 22. In fact, the 

first loading condition demonstrates the 

applied load by the two power lines to the 

tower at an angel and the rest of the 

conditions occur when one of the two lines 

snaps. As design constraints, both stress and 

buckling constraints are considered in this 

design example. The stress constraint is 

considered as 20 ksi in tension and 15.0 ksi in 

compression. In addition, the Euler buckling 

compressive stress for each member of the 

structure is calculated as follows: 

 

 
Fig. 3. Schematic of 52-bar planar truss structure 
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Fig. 4. Comparison of the existing axial stresses with the allowable values 

 

 
Fig. 5. Convergence curves of LCA for the 52-bar planar truss structure 

 

 
Fig. 6. Schematic of 47-bar planar power line tower structure 
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Table 1. The list of available cross-sectional areas from the AISC code 
 A (mm2)  A (mm2)  A (mm2)  A (mm2) 

1 71.613 17 1008.385 33 2477.414 49 7419.43 

2 90.968 18 1045.159 34 2496.769 50 8709.66 

3 126.451 19 1161.288 35 2503.221 51 8967.724 

4 161.29 20 1283.868 36 2696.769 52 9161.272 

5 198.064 21 1374.191 37 2722.575 53 9999.98 

6 252.258 22 1535.481 38 2896.768 54 10322.56 

7 285.161 23 1690.319 39 2961.248 55 10903.2 

8 363.225 24 1696.771 40 3096.768 56 12129.01 

9 388.386 25 1858.061 41 3206.445 57 12838.68 

10 494.193 26 1890.319 42 3303.219 58 14193.52 

11 506.451 27 1993.544 43 3703.218 59 14774.16 

12 641.289 28 729.031 44 4658.055 60 15806.42 

13 645.16 29 2180.641 45 5141.925 61 17096.74 

14 792.256 30 2238.705 46 5503.215 62 18064.48 

15 816.773 31 2290.318 47 5999.988 63 19354.8 

16 939.998 32 2341.931 48 6999.986 64 21612.86 

 

Table 2. Comparison of the optimal designs obtained by different methods for the 52-bar planar truss structure 

Element 

Group 

Li et al. 

(2009) 

Kaveh and 

Talatahari 

(2009) 

Kaveh 

and 

Mahdavi 

(2014) 

Cheng 

and 

Prayogo 

(2014) 

Baghlani 

et al. 

(2014) 

Mirjalili 

and 

Lewis 

(2016) 

Kaveh et al. (2015) 
Present 

Work 

HPSO DHPSACO CBO SOS AFA WOA MCSS IMCSS LCA 

A1-A4 4658.055 4658.055 4658.055 4658.055 4658.055 4658 .055 4658.055 4658.055 4658.055 

A5-A10 1161.288 1161.288 1161.288 1161.288 1161.288 1161 .288 1161.288 1161.288 1161.288 

A11-A13 363.225 494.193 388.386 494.193 363.225 494 .193 363.225 494.193 506.451 

A14-A17 3303.219 3303.219 3303.219 3303.219 3303.219 3303 .219 3303.219 3303.219 3303.219 

A18-A23 940.000 1008.385 939.998 940.000 939.998 940.000 939.998 939.998 939.998 

A24-A26 494.193 285.161 506.451 494.193 494.193 494 .193 506.451 494.193 506.451 
A27-A30 2238.705 2290.318 2238.705 2238.705 2238.705 2238 .705 2238.705 2238.705 2238.705 

A31-A36 1008.385 1008.385 1008.385 1008.385 1008.385 1008 .385 1008.385 1008.385 1008.385 

A37-A39 388.386 388.386 506.451 494.193 641.289 494 .193 388.386 494.193 388.386 

A40-A43 1283.868 1283.868 1283.868 1283.868 1283.868 1283 .868 1283.868 1283.868 1283.868 

A44-A49 1161.288 1161.288 1161.288 1161.288 1161.288 1161 .288 1161.288 1161.288 1161.288 
A50-A52 792.256 506.451 506.451 494.193 494.193 494 .193 729.031 494.193 506.451 

Best 

Weight (lb) 
1905.49 1904.83 1899.35 1902.605 1903.37 1902 .605 1904.05 1902.61 1899.35 

Average 

weight (lb) 
N/A N/A 1963.12 N/A N/A N/A N/A N/A 1949.06 

Standard 
deviation 

(lb) 

N/A N/A 106.01 N/A N/A N/A N/A N/A 60.85 

No. of 
structural 

analyses 

100,000 5300 3840 N/A 52,600 2250 4225 4075 3920 

Worst 
weight (lb) 

N/A N/A 2262.8 N/A N/A N/A N/A N/A 2135.96 

CPU time 

(s) 
- - - - - - - - 136.06 

𝜎𝑖
𝑐𝑟 =

−𝐾𝐸𝐴𝑖

𝐿𝑖
2  (i=1,2,3,…, 47) (17) 

 

where K: is a constant parameter which 

depends on the type of the cross-sectional 

geometry; E: is the Young’s modulus of the 

material; and Li: is the length of ith member. 

The buckling constant K is set to 3.96 as in 

Lee et al. (2005). 

Table 3 compares the designs parameters 

reported by LCA with the results of other 

methods taken from literature. From Table 3, 

it is obviously that LCA can obtain better 

design than both HS (Lee et al., 2005) and 

CBO (Kaveh and Mahdavi, 2014) methods. 

On the other hand, LCA requires 18,720 
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structural analyses to reach optimum 

solution, which is significantly less than those 

required by the other methods. In this way, 

LCA saves more than 60% and 25% 

computational effort than HS (Lee, Geem et 

al. 2005) and CBO (Kaveh and Mahdavi 

2014) methods in this design example. The 

average and standard deviation of the results 

obtained by the CBO (Kaveh and Mahdavi 

2014) method are 2405.91 lb and 19.61 lb, 

respectively, while the corresponding values 

for LCA are 2421 lb and 18.11 lb, 

respectively.  

Moreover, in order to check the feasibility 

of the best design obtained by LCA, Figure 7 

compares the existing values of axial stresses 

in the members of the structure with the 

allowable values for three different loading 

conditions. From Figure 7, it is clearly seen 

that LCA yields a better design compared to 

other methods while satisfying all the 

constraints considered. In addition, Figure 8 

depicts the convergence curves of LCA for 

this design example. From this figure, it can 

be seen that LCA reaches gradually to the 

vicinity of the optimum solutions after about 

17,000 analyses without any abrupt changes. 

 

Table 3. Comparison of the optimal designs obtained by different methods for the 47-bar planar power line tower 

structure 

Design Variables 
Lee et al. (2005) Kaveh and Mahdavi (2014) Present Work 

HS CBO LCA 

A1,A3 3.840 3.84 3.840 

A2,A4 3.380 3.38 3.380 

A5,A6 0.766 0.785 0.766 

A7 0.141 0.196 0.111 

A8,A9 0.785 0.994 0.785 

A10 1.990 1.8 2.130 

A11,A12 2.130 2.130 2.130 

A13,A14 1.228 1.228 1.228 

A15,A16 1.563 1.563 1.563 

A17,A18 2.130 2.130 2.130 

A19,A20 0.111 0.111 0.111 

A21,A22 0.111 0.111 0.111 

A23,A24 1.800 1.800 1.800 

A25,A26 1.800 1.800 1.800 

A27 1.457 1.563 1.457 

A28 0.442 0.442 0.602 

A29,A30 3.630 3.630 3.630 

A31,A32 1.457 1.457 1.563 

A33 0.442 0.307 0.250 

A34,A35 3.630 3.090 3.090 

A36,A37 1.457 1.266 1.266 

A38 0.196 0.307 0.307 

A39,A40 3.840 3.840 3.840 

A41,A42 1.563 1.563 1.563 

A43 0.196 0.111 0.111 

A44,A45 4.590 4.590 4.590 

A46,A47 1.457 1.457 1.457 

Weight (lb) 2396.8 2386.0 2385.04 

Average weight (lb) N/A 2405.91 2421.61 

Standard deviation (lb) N/A 19.61 18.11 

No. of structural analyses 45,557 25,000 18,720 

Worst weight (lb) N/A 2467.73 2421.61 

CPU time (s) - - 293.78 
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Fig. 7. Comparison of existing axial stresses with the allowable values for the 47-bar planar power line tower 

structure 

 

 
Fig. 8. Convergence curves of LCA for the 47-bar planar power line tower structure 

 

A One-Bay 8-Story Frame Structure 

The third design example is the size 

optimization of a one-bay eight-story frame 

structure shown in Figure 9. The Young’s 

modulus is taken as 200 GPa. Due to 

fabrication conditions, the members of the 

frame structure are categorized into eight 

design group as depicted in Figure 9. The 

lateral drift at the top of the structure is 

considered as design constraint, which must 

be less than 5.08 cm. Also, the cross-sectional 

areas for the members of the structure must 

be selected from 267  W-shaped sections of 

the AISC (LRFD 1994) database. 

Table 4 provides comparison of the 

optimal designs obtained using LCA with that 

of other techniques in the literature including 

OC (Khot et al., 1976, Camp et al., 1998), GA 

(Camp et al., 1998), ACO (Kaveh and 

Shojaee, 2007), and IACO (Kaveh and 

Talatahari, 2010) methods. Again, from 

Table 4, it can be checked that the design 

yielded by LCA is lighter than other methods. 

Also, LCA needs significantly fewer amount 

of structural analyses than ACO (Kaveh and 

Shojaee, 2007) method. However, LCA 

needs a little more structural analyses than 

IACO (Kaveh and Talatahari, 2010) method. 

In addition, Figure 10 illustrates the 

convergence diagrams of LCA for this design 

example. 
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A Three-Bay 24-Story Frame Structure 

The fourth design example is a three-bay 

24-story frame structure shown in Figure 11. 

The loads demonstrated in Figure 11 are as 

follows: W = 5761.85 lb, w1 = 300 lb/ft, w2 = 

436 lb/ft, w3 = 474 lb/ft, and w4 = 408 lb/ft. 

 The frame structure is composed of 168 

members. In order to impose the fabrication 

condition on the construction process, the 

members are divided into 20 design groups as 

shown in Figure 11. Each of the four beam 

element groups are selected from all of the 

267W-sections, while 16 column member 

groups should be selected from only W14 

sections. The Young’s modulus and yield 

stress of frame members are 29,732 ksi and 

33.4 ksi, respectively. The frame is designed 

based on the LRFD (1994) specification. 

Moreover, the inter-story drift displacement 

is considered as a deflection constraint, which 

should not be exceeds from 1/300 of story 

height. 

 

 
Fig. 9. Schematic of one-bay 8-story frame structure 

 

 
Fig. 10. Convergence curves of LCA for the one-bay 8-story frame structure 
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Table 4. Comparison of the optimal designs obtained by different methods for the one-bay eight-story frame 

structure 

Design Variables 
Khot et al. 

(1976) 

Camp et al. 

(1998) 

Kaveh and 

Shojaee 

(2007) 

Kaveh and 

Talatahari 

(2010) 

 Present 

Work 

Type Story OC GA ACO IACO  LCA 

Beam 1-2 W21×68 W18×35 W16×26 W21×44  W21×44 

Beam 3-4 W24×55 W18×35 W18×40 W18×35  W18×35 

Beam 5-6 W21×50 W18×35 W18×35 W18×35  W16×26 

Beam 7-8 W12×40 W18×26 W14×22 W12×22  W14×22 

Column 1-2 W14×34 W18×46 W21×50 W18×40  W21×44 

Column 3-4 W10×39 W16×31 W16×26 W16×26  W16×26 

Column 5-6 W10×33 W16×26 W16×26 W16×26  W16×26 

Column 7-8 W8×18 W12×16 W12×14 W12×14  W12×14 
        

Weight (kN) 41.02 32.83 31.68 31.05  30.8497 

No. of structural analyses N/A N/A 4500 2440  4600 

CPU time (s) - - - -  101.60 

 

 
Fig. 11. Schematic of three-bay 24-story frame structure 
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The values of effective length factor (Kx) 

for members of frame structure are calculated 

by the following approximate equation 

proposed by Dumonteil (1992), which is 

accurate within about -1.0 and +2.0% of the 

exact value (Hellesland 1994): 

 

𝐾𝑥 = √
1.6𝐺𝐴𝐺𝐵 + 4(𝐺𝐴 + 𝐺𝐵) + 7.5

𝐺𝐴 + 𝐺𝐵 + 7.5
 (18) 

 

where 𝐺𝐴 and 𝐺𝐵: are the relative stiffness of 

a column at its two ends. Also, the out-of-

plane effective length factor (Ky) is 

considered as 1.0 and all members are 

considered as unbraced along their lengths. 

The effectiveness and robustness of LCA 

are verified via the comparison of the best 

weight and structural analyses with HS 

(Degertekin 2008), IACO (Kaveh and 

Talatahari 2010), ICA (Kaveh and Talatahari 

2010), TLBO (Toğan 2012), and DE (Kaveh 

and Farhoudi 2013) methods as given in 

Table 5. As observed from the table, LCA is 

capable to find lighter structural weight than 

all other methods. The structural weight 

obtained by LCA is 202,410 lb which is  6%, 

7% and 5% lighter than those yielded by HS 

(Degertekin 2008), IACO (Kaveh and 

Talatahari 2010), and ICA (Kaveh and 

Talatahari 2010) methods, respectively. Also, 

not only the design obtained by LCA is 

slightly lighter than TLBO (Toğan 2012) 

method, but it also requires fewer amount of 

structural analyses than TLBO (Toğan 2012) 

method. In order to check the feasibility of the 

optimum design obtained by LCA, Figures. 

12 and 13 compare the value of inter-action 

ratios, Eq. (7), in the members and inter-story 

drifts with the corresponding allowable 

values. The maximum value of the inter-

action formula is 0.87. Moreover, from 

Fig.13, it can be seen that the inter-story drifts 

in seven stories of the structure approach to 

allowable value.  

Finally, Figure 14 illustrates the 

convergence diagrams of LCA for the three-

bay 24-story frame structure. The values of 

the average and standard deviation during 30 

independent runs are 209,255.37 lb and 4933 

lb, respectively. 

 

A 582-Bar Tower Structure 

Figure 15 shows the last investigated 

design example. This is a tower structure with 

pin-jointed connections that consists of 582 

members and 153 nodes. The members of the 

structure are classified into 32 independent 

design groups as displayed in Figure 15. The 

cross-sectional areas should be selected from 

the discrete set of 137 standard steel W-

shaped sections based on the area and radii of 

gyration of the section (Hasançebi et al. 

2009). The range of cross-sectional areas 

varies from 39.74 cm2 to 1387.09 cm2. The 

utilized steel for the members of the structure 

has a Young’s modulus of 29,000 ksi and a 

yield stress of 36 ksi. At the nodes of the 

structure, a load of 1.12 kips acts in the X and 

Y directions, and a load of -6.74 kips acts in 

the Z direction. For this design example, the 

design constraints consist of the displacement 

and stress constraints. For all of the free 

nodes, the displacement should not exceed 

from ±3.15 in. In addition, the stress 

constraint is calculated as follows (AISC 

(1989) code): 

 

𝜎𝑖
+ =  0.6𝐹𝑦    for 𝜎𝑖 ≥ 0 

𝜎𝑖
−                      for 𝜎𝑖 < 0

 (19) 

 

where: 

 
𝜎𝑖
−  

=

{
  
 

  
 [(1 −

𝜆𝑖
2

2𝐶𝑐
2)𝐹𝑦]/(

5

3
+
3𝜆𝑖
𝐶𝑐

−
𝜆𝑖
3

8𝐶𝑐
3)

for   𝜆𝑖 < 𝐶𝑐 

12𝜋2𝐸

23𝜆𝑖
2                                                   

for   𝜆𝑖 ≥ 𝐶𝑐

 
(20) 

 

where E:  is  the modulus of elasticity; 𝐹𝑦: 

is the yield stress of steel; 𝐶𝐶:  is the 
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slenderness ratio (𝜆𝑖) dividing the elastic and 

inelastic buckling regions  (𝐶𝐶 =

√2𝜋2𝐸/𝐹𝑦 ) ; 𝜆𝑖:  is the slenderness 

ratio (𝜆𝑖 = 𝑘𝐿𝑖/𝑟𝑖); k: is the effective length 

factor; 𝐿𝑖: is the member length; and  𝑟𝑖: is the 

radius of gyration.  

 

 
Fig. 12. The values of inter-action formula for member of the three-bay 24-story frame structure 

 

 
Fig. 13. Comparison of the inter-story drifts with the allowable value for the three-bay 24-story frame structure 
 

 
Fig. 14. Convergence curves of LCA for the three-bay 24-story frame structure 
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Table 5. Comparison of the optimal designs obtained by different methods for the three-bay 24-story frame structure 

Element Group 
Degertekin 

(2008) 

Kaveh and 

Talatahari 

(2010) 

Kaveh and 

Talatahari 

(2010) 

Toğan 

(2012) 

Kaveh and 

Farhoudi 

(2013) 

Present 

Work 

Type Bay Story HS IACO ICA TLBO DE LCA 

Beam 1,3 1-23 W30×90 W30×99 W30×90 W30×90 W30X90 W30×90 

Beam 1,3 24 W10×22 W16×26 W21×50 W8×18 W6X20 W10×12 

Beam 2 1-23 W18×40 W18×35 W24×55 W24×62 W21X44 W24×55 

Beam 2 24 W12×16 W14×22 W8×28 W6×9 W6X9 W6×8.5 

Column-E - 1-3 W14×176 W14×145 W14×109 W14×132 W14X159 W14×120 

Column-E - 4-6 W14×176 W14×132 W14×159 W14×120 W14X145 W14×159 

Column-E - 7-9 W14×132 W14×120 W14×120 W14×99 W14X132 W14×120 

Column-E - 10-12 W14×109 W14×109 W14×90 W14×82 W14X99 W14×90 

Column-E - 13-15 W14×82 W14×48 W14×74 W14×74 W14X68 W14×68 

Column-E - 16-18 W14×74 W14×48 W14×68 W14×53 W14X61 W14×38 

Column-E - 19-21 W14×34 W14×34 W14×30 W14×34 W14X43 W14×38 

Column-E - 22-24 W14×22 W14×30 W14×38 W14×22 W14X22 W14×22 

Column-I - 1-3 W14×145 W14×159 W14×159 W14×109 W14X109 W14×109 

Column-I - 4-6 W14×132 W14×120 W14×132 W14×99 W14X109 W14×90 

Column-I - 7-9 W14×109 W14×109 W14×99 W14×99 W14X90 W14×90 

Column-I - 10-12 W14×82 W14×99 W14×82 W14×90 W14X82 W14×82 

Column-I - 13-15 W14×61 W14×82 W14×68 W14×68 W14X74 W14×68 

Column-I - 16-18 W14×48 W14×53 W14×48 W14×53 W14X43 W14×61 

Column-I - 19-21 W14×30 W14×38 W14×34 W14×34 W14X30 W14×30 

Column-I - 22-24 W14×22 W14×26 W14×22 W14×22 W14X26 W14×26 

Weight (lb) 214,860 217,464 212,725 203,008 205,084.206 202,410 

No. of structural analyses 13,942 3500 7500 12,000 N/A 10,640 

CPU time (s) - - - - - 670.87 

Column-E: exterior column; Column-I: interior column 

 

Optimization results obtained from PSO 

(Hasançebi, Çarbaş et al., 2009), CBO 

(Kaveh and Mahdavi, 2014), and LCA have 

been summarized in Table 6. When Table 6 

has been examined, it is seen that LCA gives 

a better design than the PSO (Hasançebi, 

Çarbaş et al., 2009) and CBO (Kaveh and 

Mahdavi 2014) methods. LCA obtains a 

structural volume of 21.5661 m3, while it is 

22.3958 m3 and 21.8376 m3 for the PSO 

(Hasançebi, Çarbaş et al., 2009) and CBO 

(Kaveh and Mahdavi, 2014) methods, 

respectively. Moreover, the statistical results 

give a vision on the general behavior of the 

algorithms during the solution finding 

process. According to Table 6, LCA is also 

better than the PSO (Hasançebi, Çarbaş et al., 

2009) and CBO (Kaveh and Mahdavi, 2014) 

methods in terms of the average weight, the 

standard deviation, and the worst weight. 

Moreover, LCA requires significantly fewer 

amount of structural analyses than PSO 

(Hasançebi et al., 2009) method. The graphics 

showing the change of the minimum 

structural volume according to the number of 

structural analyses have been given in Figure 

16. 
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According to the investigated numerical 

tests, it can be seen that the exploration ability 

of LCA is managed well since it allows 

getting away from loser solutions in the 

population to escape from local optima traps. 

At the same time the exploitation ability of 

algorithm is managed by getting approach to 

winner solutions. So there is a balance 

between exploration and exploitation tasks 

during the search process by LCA. Moreover, 

as our experimental results indicate, the 

optimum structural weights generated and 

evaluated by the algorithm is competitive and 

on some cases is the smallest among rivals. 

This implies that the convergence speed of 

LCA is acceptable.
 

Table 6. Comparison of optimum designs obtained by various methods for 582-bar tower truss structure 

Design Variables 

Hasançebi et al. (2009) 
Kaveh and Mahdavi 

(2014) 
Present Work 

PSO CBO LCA 

Ready 

Section 
Area (cm2) 

Ready 

Section 
Area (cm2) 

Ready 

Section 
Area (cm2) 

1 W8X21 39.74 W8X21 39.74 W12X22 41.81 

2 W12X79 149.68 W12X79 149.68 W24X76 144.52 

3 W8X24 45.68 W8X28 53.22 W8X28 53.16 

4 W10X60 113.55 W10X60 90.96 W21X62 118.06 

5 W8X24 45.68 W8X24 45.68 W8X24 45.68 

6 W8X21 39.74 W8X21 39.74 W10X22 41.87 

7 W8X48 90.97 W10X68 128.38 W8X48 90.97 

8 W8X24 45.68 W8X24 45.68 W8X24 45.68 

9 W8X21 39.74 W8X21 39.74 W14X22 41.87 

10 W10X45 85.81 W14X48 90.96 W21X57 107.74 

11 W8X24 45.68 W12X26 49.35 W10X22 41.87 

12 W10X68 129.03 W21X62 118.06 W21X62 118.06 

13 W14X74 140.65 W18X76 143.87 W12X65 123.23 

14 W8X48 90.97 W12X53 100.64 W8X67 127.10 

15 W18X76 143.87 W14X61 115.48 W10X77 145.81 

16 W8X31 55.9 W8X40 75.48 W8X35 66.45 

17 W8X21 39.74 W10X54 101.93 W10X54 101.94 

18 W16X67 127.1 W12X26 49.35 W8X24 45.68 

19 W8X24 45.68 W8X21 39.74 W12X22 41.81 

20 W8X21 39.74 W14X43 81.29 W16X45 85.81 

21 W8X40 75.48 W8X24 45.68 W10X22 41.87 

22 W8X24 45.68 W8X21 39.74 W12X22 41.81 

23 W8X21 39.74 W10X22 41.87 W12X30 56.71 

24 W10X22 41.87 W8X24 45.68 W10X22 41.87 

25 W8X24 45.68 W8X21 39.74 W12X22 41.81 

26 W8X21 39.74 W8X21 39.74 W8X24 45.68 

27 W8X21 39.74 W8X24 45.68 W12X22 41.81 

28 W8X24 45.68 W8X21 39.74 W14X22 41.87 

29 W8X21 39.74 W8X21 39.74 W12X22 41.81 

30 W8X21 39.74 W6X25 47.35 W10X22 41.87 

31 W8X24 45.68 W10X33 62.64 W12X22 41.81 

32 W8X24 45.68 W8X28 53.22 W14X22 41.87 

Volume (m3) 22.3958  21.8376  21.5661  

Mean (m3) 22.48  23.41  22.0676  

Standard Deviation 

(m3) 
N/A  1.67  0.2442  

No. of analyses 50,000  6400  6400  

Worst (m3) 22.78  26.82  22.4021  

CPU time (s) -  -  1282.31  
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Fig. 15. Schematic of 582-bar tower structure 
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Fig. 16. Convergence curves of LCA for 582-bar tower structure 

 

CONCLUSIONS 

 

In this paper, the proposed league 

championship algorithm (LCA) was 

successfully implemented to solve structural 

optimization problems with discrete 

variables. LCA is a new, robust, and strong 

algorithm to solve global numerical 

optimization problems. The main idea of this 

method is inspired by the championship 

process followed by sport teams in a sport 

league. In LCA, a number of individuals as 

sport teams compete in an artificial league for 

several weeks (iterations). Based on the 

league schedule in each week, teams play in 

pairs and their game outcome is determined 

in terms of win or loss, given known the 

playing strength (fitness value) along with the 

particular team formation/arrangement 

(solution) followed by each team. Keeping 

track of the previous week events, each team 

devises the required changes in its 

formation/playing style (a new solution is 

generated) for the next week contest and the 

championship goes on for a number of 

seasons (stopping condition). In order to 

show the abilities of the new approach in 

finding optimal designs for structures, LCA 

has been implemented on five benchmark 

structural design examples with discrete 

design variables. For the all design examples, 

the same internal parameters are used in 

LCA. The results have been compared with 

those obtained by the other available 

optimization techniques in the literature. It is 

seen from the comparisons that the proposed 

LCA method performs better than other 

methods in the literature in terms of obtained 

optimum designs and required computational 

effort. The performance of LCA can be 

further tested by dividing the feasible 

solutions to some leagues (e.g. league one, 

two etc) set based on the quality of solutions, 

where the qualifiers of each league move to a 

so-called premier league. This would help 

reducing the exploration time. 
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