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ABSTRACT 

During the last decades, time-series interferometric synthetic aperture radar (InSAR) has emerged as a 

powerful technique to measure various surface deformation phenomena of the earth. Early generations of 

time-series InSAR methodologies, i.e. Persistent Scatterer Interferometry (PSI), focused on point targets, 

which are mainly man-made features with a high density in urban areas and associated infrastructure. 

Later, methodologies were introduced aiming to extract information from other targets known as 

distributed scatterers (DS), which are associated with ground resolution cells occurring mainly in rural 

areas. For some terrain types, such as agricultural terrain or pastures, the feasibility of DS-methodologies 

is not straightforward. In this paper, we investigate the feasibility of DS exploitation in pasture areas over 

a case study area over a solution salt mining-induced subsidence field in Veendam, the Netherlands. Based 

on the temporal coherence behavior of the DS-pixels in the pasture areas, we assess the feasibility of 

exploiting the DS-pixels by different satellite missions. The results show that assuming a three-year stack 

of data, the information content in DS-pixels from current C-band and X-band missions is not enough for 

the successful utilization of their entire time-series. However by using intermittent series, e.g., by 

processing individual coherent periods, the results indicate that DS-pixels can be exploited: based on the 

proposed decorrelation model, the short repeat times of Sentinel-1 (6 or 12 days) results in a sufficient 

number of coherent interferograms over each winter period, enabling DS exploitation even over 

agricultural and pasture areas.         
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1. Introduction 

     During the last decades, time-series interferometric 

synthetic aperture radar (InSAR) has emerged as a powerful 

technique to measure various surface deformation 

phenomena of the earth. Early generations of time-series 

InSAR methodologies, i.e. Persistent Scatterer 

Interferometry (PSI), focused on point targets, which are 

mainly man-made features with a high density in urban areas 

and associated infrastructure (Ferrettiet al., 2000; Ferretti et 

al., 2001; Adam et al., 2003; Werner et al., 2003; Hooper et 

al., 2004; Kampes, 2005; Costantini, et al., 2009; van Leijen, 

2014). Later, methodologies were introduced aiming to 

extract information from other targets known as distributed 

scatterers (DS), which are associated with ground resolution 

cells occurring mainly in rural areas (Sandwell & Price, 

1998; Wright et al., 2001; Berardino et al., 2002; Schmidt & 

Bürgmann, 2003; Lanari, et al., 2004; Hooper, 2008; Monti-

Guarnieri & Tebaldini, 2008; Ferretti et al., 2011; Pepe et al., 
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2015; Fornaro et al., 2015; Cao et al., 2016; Samiei-Esfahany 

et al., 2016). 

 

Figure 1. The baseline configuration of the used dataset, 

containing 25 radar images acquired between October 2011 

and May 2013. The acquisition of 24 January 2012 has been 

used as an arbitrary master image. 

     Despite the potential value in methodologies exploiting 

DS, the feasibility of such methods for deformation 

monitoring over rural areas with a pasture and vegetation 

landscape, which has a high phase-decorrelation rate 

(Morishita & Hanssen, 2015), is still a pending question. One 

of the main limiting factors in exploitation of DS-pixels is 

temporal decorrelation. This effect is the result of variation 

in scattering phases between the two SAR acquisitions, due 

to the actual changes in the scattering characteristics of the 

elementary scatterers within a resolution cell. This could be 

either due to a change in the physical distribution of 

elementary scatterers (e.g. caused by soil weathering, 

anthropogenic activities, vegetation growth, and plant 

movements in the wind), or due to the variation in electrical 

properties of the scatterers (e.g. change in the dielectric 

constant of targets influenced by a variation in moisture 

content). The phase variation due to temporal decorrelation 

results in loss of coherence. High temporal coherence is 

common on surfaces without vegetation (e.g., arid areas, 

deserts, road and building surfaces). The lower extreme of 

temporal decorrelation is associated with water bodies where 

the scattering characteristics are changing rapidly within 

seconds.  

     Some recent studies have been reported a seasonally 

varying coherence behavior of DS-pixels in pasture fields, 

resulting in a different temporal-decorrelation rate between 

summer and winter periods, e.g. in Morishita and Hanssen 

(2015) and S. Samiei-Esfahany (2017). Our objective, in this 

paper, is to investigate the feasibility of DS exploitation in 

this kind of areas. To limit the scope, we chose a case study 

area over a solution salt mining-induced subsidence field in 

Veendam, the Netherlands. First, the feasibility of exploiting 

PS, DS, and their combination over pasture and agricultural 

landscapes is empirically assessed via an InSAR timeseries 

processing over the case study area. It is shown that, under 

the condition of using the entire time-series, agricultural and 

pasture areas show only limited improvement in point 

density compared to the results of PS-only processing. It is 

hypothesized that the low number of detected DS-pixel is due 

to the seasonal behavior of the temporal coherence, which 

causes an almost complete drop in coherence during summer 

periods, mainly as a result of tillage, crop growth and 

harvesting. Then, in the second phase of this study, based on 

the temporal coherence model of typical DS-pixels in the 

pasture areas, we theoretically assess the feasibility of 

exploiting DS-pixels by different satellite missions. 

 

 

Figure 2.  The location of three example coherence matrices 

of points PA, PB, and PC in agricultural/pasture areas. The 

coherence matrices of these eight examples are 

shown/analyzed in fig. 3. The white box shows the location 

of a 1 km2 area that has been used later for estimating the 

coherence matrix used for the temporal decorrelation 

modeling/validation in Section 4. 

 

2. A Priori Analysis: coherence pattern and periodicity in 

temporal decorrelation 

     To evaluate the temporal decorrelation over pasture and 

agricultural areas, a test site around a salt mining area close 

to the city of Veendam in the north part of The Netherlands 

is chosen.  A RadarSAT2 dataset containing 25 radar images 

acquired between October 2011 and May 2013 is used for the 

study. Figure 1 shows the baseline configuration of the used 

dataset, using the image of 24 January 2012 as an arbitrary 

master image. We estimated the coherence matrix at three 

different testing locations denoted by PA, PB, and PC in 

Figure 2. For coherence estimation, an adaptive brotherhood 

area is selected around each pixel based on the two-sample.
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Figure.3  (A), (B), and (C) are three examples of coherence matrices in rural/pasture areas, corresponding to the locations PA, PB, 

and PC in fig. 2. In the coherence matrices, the images are sorted based on the acquisition date (the months of acquisitions are 

indicated above the matrices). These matrices are the result of averaging coherence matrices of surrounding pixels. The average 

number of brothers and mean coherence of averaged pixels is indicated by N̅br and γ̅ respectively. 

     The coherence matrices of the Figure.3 (A), (B), and (C) 

are three examples of coherence matrices in rural/pasture 

areas, corresponding to the locations PA, PB, and PC in fig. 2. 

In the coherence matrices, the images are sorted based on the 

acquisition date (the months of acquisitions are indicated 

above the matrices). These matrices are the result of 

averaging coherence matrices of surrounding pixels. The 

average number of brothers and mean coherence of averaged 

pixels is indicated by N̅br and γ̅ respectively. Three testing 

locations are shown in Figure 3 A, B, and C respectively. To 

get more precise coherence estimation, the matrices 

presented here are the average of the estimated coherence 

matrices of the neighboring pixels in a 300  300 meter 

surrounding.  

     The first observation is that the interferograms with a 

short temporal-baseline show a relatively high coherence in 

the winter period (note that the images are sorted based on 

the acquisition date, so the close-to-diagonal elements 

represent interferograms with shorter temporal baselines.). In 

contrast, in the summer period (between May and October), 

the coherence values are almost zero even for consecutive 

acquisitions with a 24 days temporal baseline. These results 

indicate that the temporal decorrelation in these cases is 

faster in summer than in winter, possibly as a result of crop 

growth and tillage of agricultural lands during the summer 

period. For pasture areas in the Netherlands, it has been 

shown by Morishita and Hanssen (2015) that the coherence 

level of C-band interferograms with repeat intervals of 24-35 

days (for RadarSAT2 and ERS/Envisat) is quite low. Even 

with a multilooking factor of L=200, the information content 

of such interferograms is not significant.  In fact, due to the 

loss of coherence, the summer-acquisitions do not convey 

any useful information. The results of Figure 3 also reveal 

that, although the coherence level of short-baseline 

interferograms in winters is high, there is almost no 

coherence between two winter periods (as indicated by the 

low coherence values in the upper-right and the lower-left 

part of the coherence matrices).   

     It should be noted that, in algorithms that tries to exploit 

the entire timeseries of DS-pixels, it is important to have a 

connected coherent path through all the acquisitions of the 

dataset, via relatively high-coherence interferometric phases. 

The results of Figure 3 over agricultural/pasture areas around 

Veendam, show that the summer-acquisitions cause a 

disconnect path, and so the exploitation of these kinds of 

pixels in agricultural/pasture areas may not be feasible. 

3. A posteriori analysis: combined PS-DS time-series 

processing 

     With "a-posteriori analysis" we mean the analysis of the 

results of applying ESM-phase estimation combined with a 

standard PSI processing to the RadarSAT2 stack over 

Veendam. We will compare the results of the combined PS-

DS processing with the results obtained by standard PSI 

processing, and evaluate the density improvements over 

different landscapes. 

3.1. Processing setting 

     We applied a two-step hybrid methodology similar to the 

SqueeSAR approach by (Ferretti et al., 2011). The flowchart 

of the algorithm is depicted in Figure 4. The particular 

settings that we used in each step are described in the 

following. 
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Figure.4 Generic flowchart of the hybrid 

methodology used for the Veendam case 

study. The processing steps are classified into 

the five basic Timeseries InSAR processing 

blocks (S: pixel selection, U: unwrapping, A: 

atmospheric-signal mitigation, F: filtering, 

and E: equivalent SM-phase estimation or 

phase linking.)  

 

 

 Adaptive multilooking: The multilooked phases for each 

pixel are computed by spatial averaging over 

statistically homogeneous pixels (SHP) detected by the 

Kolmogorov-Smirnov test. The brother pixels are 

selected within a window of 25  25 pixels. In order to 

reduce the spatially variable signal within the 

multilooking areas, the topographic phase component is 

computed and subtracted from all the interferograms, 

using the SRTM digital elevation model. 

 ESM-phase estimation or phase linking: After SHP 

selection and multilooking, we applied the ILS  

equivalent single-master (ESM) phase estimation (as 

proposed in S.Samiei-Esfahany (2016). using all the 

possible interferometric combinations. This step is 

applied on all the pixels in the case study area. 

 Selection of DS candidates: After ESM-estimation, the 

posterior coherence factor (as introduced in Ferretti et 

al., (2011)) was estimated for each pixel. Pixels with a  

coherence factor larger than 0.4 and with more than 25 

brothers were selected as potential DS. In order to make 

the final ESM-stack of interferograms, for the selected 

pixels, we replaced the phase of the original SM 

interferograms with the phase estimates of ILS ESM-

phase estimation. By using the pixels with more than 25 

brothers, the phase time-series of PS-pixels are not 

affected by ILS-phase estimation. In fact, in the new 

ESM-stack the PS-pixels get their original phase, 

whereas for the selected DS-pixels, the ESM-phases are 

used.  

                                                           
1 Specific settings of DePSI processing used in this study: a linear model and the bootstrapping approach have been used for temporal phase unwrapping, a 

Gaussian kernel with a length of one year has been used for atmosphere filtering, and the pixels associated with side-lobes of PS-pixels have been detected and 

removed before further processing (van Leijen 2014)}. 

 Conventional PSI processing: For PSI processing, we 

used the Delft implementation of persistent scatterer 

interferometry (DePSI) (van Leijen, 2014).We made a 

modification to DePSI regarding the combined PS-DS 

processing by changing the initial PS-candidate 

selection method. The PS candidates were selected using 

the standard amplitude dispersion method, while the DS-

candidates, which had been selected in the previous step, 

were added to the set of PS-candidates. The combined 

set of PS and DS pixels was processed by DePSI1. The 

final selection of coherent points (both PS and DS) was 

abstained by thresholding on the estimated ensemble 

coherence of the pixels. The threshold of 0.7 was used 

for the final selection. In addition, pixels with an 

absolute estimated velocity larger than 3 cm/year and an 

estimated height larger than 100 meter were selected as 

false-detections, and were removed from the final 

results.   

In the next section, we analyze the final results obtained by 

applying the aforementioned algorithm. 

 
3.2. Results 

The results of applying the hybrid PS-DS processing on the 

Veendam case are shown in Figure 5.  We applied both the 

standard DePSI processing with the original SM 

interferograms, and also with the estimated equivalent SM 

interferograms. The obtained velocity maps are presented in 

Figures 5A and 5B, respectively. The same processing setup 

has been used for both cases. Also, the density of detected 

PS/DS-pixels is shown in Figures CA and 5D. The results 
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show a significant increase in the number of scatterers, 

especially in urban areas. Although the general density is 

also improved in the rural areas, most of the new detected 

DSs are in areas around buildings or on the roads. Only a 

very low number of DS-pixels is detected over agricultural 

fields or pasture areas. In fact, this low density was expected 

based on the a-priori analysis of the temporal-coherence 

behavior over agricultural/pasture landscapes (see section 2). 

In these areas, the coherence is almost entirely lost during the 

summer period, and the phase quality of DS-pixels in ESM-

phase timeseries is not sufficient to detect these points as 

being persistent in the PSI processing. 

     Based on the land-use map of the area, we classified the 

detected PS/DS-pixels into two classes of urban/roads and 

agricultural/pasture. While the number of points in 

urban/road areas increased from 12594 to 144815 (almost 12 

times larger), it improved from 1709 to 11003 pixels in the 

agricultural/pasture areas (i.e., four times more). As stated in 

section 2, the limited relative improvement in point density 

for agriculture regions is mainly due to the fact that the entire 

timeseries is used, rather than focusing on coherent subsets 

in time. Another important remark is that the phases, and 

consequently all other phase-derived estimates (e.g. 

velocities), of adjacent DS-pixels have some degree of 

correlation. This is due to the overlap between DS 

brotherhood areas that have been used in the adaptive 

multilooking. Therefore, the effective density-improvement 

is less than what we observe just by counting the detected 

DS-pixels independently and assuming no correlation 

between them. 

     Nevertheless the main message of these results is that the 

added value of DS processing, in areas with similar 

landscape, is mainly in urbanized areas. The DS-pixels over 

agricultural and pasture regions do not generally have 

sufficiently consistent phase quality in order to be 

successfully exploited over multiple years in the PSI 

processing. Based on the a-priori analysis of section 2 over 

these areas, the main reason for this low phase quality is the 

seasonal behavior of the temporal coherence, which causes 

almost zero coherence during summer periods.  

 

4. Temporal coherence model for pastures  

     In order to evaluate the feasibility of exploitation of DS-

pixels and to study the effect of different factorssuch as 

satellite revisit time, radar wavelength, or multilooking 

factoron DS phase quality, we require an analytical model 

for temporal decorrelation capable of describing the 

observed seasonal decorrelation pattern. We use the periodic 

model as presented by S. Samiei-Esfahany (2017): 

 

 

 

Figure 5.  Predicted coherence matrices for studying the feasibility of DS exploitation for different radar satellite missions over 

agricultural/pasture areas, based on the estimated and assumed model parameters in Table 1. Three years of data are assumed 

resulting in different number of images for each mission (due to their different repeat interval). 
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Figure 6.  (A), (B), and (C) are 

three examples of coherence 

matrices in rural/pasture areas, 

corresponding to the locations 

PA, PB, and PC in fig. 2. In the 

coherence matrices, the images 

are sorted based on the 

acquisition date (the months of 

acquisitions are indicated above 

the matrices). These matrices are 

the result of averaging coherence 

matrices of surrounding pixels. 

The average number of brothers 

and mean coherence of averaged 

pixels is indicated by N̅br and γ̅ 

respectively.  
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where ω= 2π T ⁄  is the angular frequency (with T=1 year), t0 

is the initial time of the periodic signal, tM is the master time, 

𝐵𝑇  is the temporal baseline, σ1
2 is the variance factor which is 

constant in time, and 𝜎2
2 is the variance of the periodic 

component (the variance factors here are corresponding to 

the dispersion of the movement of elementary scatterers in a 

resolution cell).  For the typical landscape of the case-study 

area (i.e., the white box in Figure 2 the three parameters of 

the model has been estimated in S. Samiei-Esfahany (2017) 

as: τ1=13.5  days, τ2=17 days, t0=18th of March. 

 

These parameters and the model of Eq. (1) are used in the 

next section for the feasibility study of exploitation of the 

corresponding DS-pixels for different satellite missions. 

5. Feasibility Study 

     We used the estimated seasonal temporal-decorrelation 

for agricultural and pasture areas to simulate the 

corresponding coherence matrix for different satellite 

missions. In addition to the temporal decorrelation, other 

coherence components also are simulated. Table 1 shows the 

used parameters for each satellite.  The simulated coherence 

matrices have been visualized in Figure 6.  Note that the 

decorrelation rate components 𝜏 was estimated, in the 

previous section, only for the C-band data. For other bands 

these parameters can be simply computed as 

τX-band= (
λX

λC

)  τC-band, τL-band= (
λL

λC

)  τC-band (2) 

 

assuming that the elementary scatterers are the same for 

different wavelengths. The estimated  τ1 and τ2 components 

are presented in the last two rows of Table 1 for different 

missions. 

     To assess the feasibility, we compute the Cramér-Rao 

Bound (CRB) of the phase time-series associated with the 

synthetic coherence matrices. The CRB is computed as 

proposed by Monti-Guarnieri and Tebaldini (2007) (see 

Appendix I for more information of CRB calculation). A 

CRB standard deviation (as here denoted by σCRB) should be 

interpreted as an indicator of the amount of information that 

exists in the data stack about the geometrical phase 

corresponding to each individual SAR image. A high σCRB 

(close to ~104o) means almost no information, and a low 

𝜎CRB indicates that the information content is high. Note that, 

the CRB of the entire timeseries is an N  N matrix (assuming 

a stack of N number of images) whose diagonal elements 

provide the CRB variance (or standard deviation) an 

indicator that the information content of DS-pixels is 

sufficient to exploit their associated phase timeseries. As the 

max (σCRB) is dependent to the number of looks (L), we 

evaluated max (σCRB) for a number of looks L in the range of 

20-400. The results are shown in Figure 7 for different 

satellite missions. The standard deviation of typical PS-

pixels 25o), and the maximum possible standard deviation 

(104o) are also plotted. Note the logarithmic scaling of the 

computed max (σCRB) parameters for each phase in the time 

series. In order to reduce the all CRB standard deviations into 

a scalar metric, we compute the maximum of all the CRB 

standard deviations, denote by max(σCRB). The closeness of 

max(σCRB) to the expected standard deviation of typical PS-

pixels (e.g., 25o) is used as we see that the CRB bound can 

possibly be larger than the maximum possible standard  
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Figure 7. Predicted max(σCRB) for different multilooking 

factor L for different satellite missions in the case of six 

months data and for simulated coherence matricee Figure 6. 

The standard deviation of typical PS-pixels (25o), and the 

maximum possible standard deviation (104o$) are also 

plotted. Note the logarithmic scaling of y-axis. 

 

deviation of 104o. For interpretation, we should consider the 

CRB bound as the inverse of the Fisher information content. 

Unlike the phase standard deviation (or variance) that has the 

upper bound of 104o, the CRB bound (or its inverse, the 

Fisher information) can be between zero to infinity by 

definition. In fact, a zero coherence phase has standard 

deviation of 104o, while it has no information and 

consequently its CRB bound is infinity. For high 

information, the square root of the CRB bound approaches to 

the expected standard deviation. The results show that, 

except for the L-band ALOS mission, none of the other 

sensors can provide sufficient information for the 

exploitation of DS-pixels with the assumed coherence 

behavior. Although different coherence components are 

simulated, the main driving mechanism behind the observed 

pattern in these results is the temporal decorrelation, which 

is mainly affected by the repeat time interval. For example, 

between Sentinel-1A case and the Sentinel-1A/B 

combination, the only difference is the repeat interval (i.e., 

12 and 6 days, respectively), resulting in a better 

performance of Sentinel-1A/B. Based on these results we 

conclude that the information content of DS-pixels in three 

years datasets from these missions (except ALOS) is not 

enough for a successful utilization of these kinds of DS 

pixels, at least upto an L-factor of 400, which is already very 

large. Note that, in theory, if we continue to increase the L-

factor, at some point we will approach to the quality of 

typical persistent scatterers and even better. However, for 

large multilooking factor we require a valid assumption of 

ergodicity over extremely large areas, which is not practical 

in real cases. 

     The results of Figure 7 are an indication of the 

information content of DS-pixels within the entire phase 

timeseries of three years. One would ask what would happen 

if we only process the coherent seasons (in this case winters). 

By processing the individual winter periods, it may be 

possible to use these kinds of DS-pixels. To assess this 

possibility, we repeat the experiment but, this time, using 

only 6 months of data during the winter period. The 

corresponding coherence matrices are shown in Figure 8, and 

the evaluated max(σCRB) parameters are presented in  

Figure 9. These results show a quite promising capability of 

Sentinel-1 data, which reach to the desired quality (i.e., σps) 

with an L-factor of approximately 100 or higher 

(approximately 100  100 m), which is practical in real 

scenarios. For TSX data, the information content is still very 

poor. For other C-band data, i.e., RadarSAT2, Envisat, and 

ERS, the phase quality is still not sufficient if we only 

process six months of data during the high coherence season. 

 

 

 

 

Table 1.  Parameters used in the synthetic feasibility study for different radar satellite missions. 
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Figure 8.  (A), (B), and (C) 

Predicted coherence matrices 

for studying the feasibility of 

DS exploitation for different 

radar satellite missions over 

agricultural and pasture areas, 

based on the estimated and 

assumed model parameters in 

table 1. Six months of data are 

assumed, resulting in a 

different number of images 

for each mission (due to their 

different repeat interval). 

 

 

It should also be noted that, in addition to a sufficient phase 

quality, the number of images is also an important factor for 

a final feasibility study. By limiting the period of the full 

stack, we in fact reduce the number of final interferograms 

significantly. For example, for Envisat/ERS/RadarSAT2, 

over six months we get less than 10 images, which are too, 

low for standard timeseries processing. However the 

Sentinel-1 datasets have enough images for proper time-

series processing even over six months. In summary, the high 

revisit time of Sentinel-1 data shows a promising expectation 

regarding DS exploitation by C-band data over agricultural 

and pasture areas. The X-band data have a limited potential 

over these kinds of landscapes, and L-band ALOS data have 

very good performance, however with limitations of a lower 

resolution and a long repeat interval.  

 

6. Conclusions 

     In this study, the decorrelation pattern of typical DS-

pixels in the Veendam case study have been used to simulate 

synthetic coherence matrices associated with the pasture 

areas in the region. The simulated coherence matrices are 

used to assess the feasibility of exploitation of DS-pixels in 

pasture areas for different satellite missions. The results 

show that, assuming an example of three-year stack of data, 

the information content in DS-pixels from current C-band 

and X-band missions is not enough for the successful 

utilization of their entire time-series. However by using 

intermittent series, e.g., by processing individual coherent 

periods, the results indicate that distributed scatterers can be 

exploited. Based on the proposed decorrelation model, the 

short repeat times of Sentinel-1 (6 or 12 days) results in a 

sufficient number of coherent interferograms over each 

winter period, enabling DS exploitation even over 

agricultural and pasture areas.   

     In this study, we only studied the exploitation of DS-

pixels that show a good phase stability over the entire 

timeseries. However, over agricultural areas, as tillage and 

harvesting are known to destroy coherence completely, this 

approach is sub-optimal. The observed seasonal coherence 

behavior over agricultural areas shows the potential of 

extracting information from subsets of interferograms (for 

example subsets in the coherent seasons). In this regard, the 

potential of exploiting temporally coherent targets needs to 

be studied (e.g., see Ferretti et al., (2012)).  

     Furthermore, the focus in this study, and also in most of 

the other existing DS algorithms, is to process single-track 

data acquired from an individual satellite mission. However, 

recent research demonstrates the potential of joint processing 

of data stemming from different sensors to better estimate 

small deformation signals in pasture areas (Morishita & 

Hanssen, 2015). The feasibility of this kind of multi-sensor 

estimation over different landscapes should be assessed.   

 

Figure 9. Predicted max(𝝈𝑪𝑹𝑩) for different multilooking 

factor L for different satellite missions in the case of six 

months data and for simulated coherence matrices of figure 

8. The standard deviation of typical PS-pixels (25o), and the 

maximum possible standard deviation (104o$) are also 

plotted. Note the logarithmic scaling of y-axis 
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Appendix A: Cramér-Rao Bound for SAR Stacks 

Monti-Guarnieri and Tebaldini (2007, 2008) have proposed 

a generic formulation for the evaluation of the lower Cramér-

Rao bound (CRB) of the covariance matrix for the InSAR 

phase time-series. This CRB evaluates the highest achievable 

precision (or the lowest variance) for single-master phase 

estimators given a stack of SAR values for a pixel with a 

particular absolute coherence matrix, independent of the 

applied algorithm for the estimation. Given the N  N 

absolute coherence matrix Υ, the CRB is evaluated as 

(Monti-Guarnieri & Tebaldini, 2007)  Q
b̂
≥ (ΘTX Θ)

-1
, where 

the inequality (≥) indicates that the difference between the 

left and the right side of the inequality should be a non-

negative definite matrix, and the matrices Θ and 𝑋 are 

defined as follows:   

 the matrix Θ= [0  IN-1]
T
 is the N (N-1) Jacobian 

matrix of the first-order partial derivative of SLC 

phases with respect to the unknown parameters, 

and 

 the matrix 𝑋 is the Fisher Information Matrix 

(FIM) associated with the estimates and is defined 

as X=2L(Υ ο Υ-1-IN) where  ο  means the entry-

wise product, L is the number of looks, and IN is a  

N  N  identity matrix. 

Note that for the specific case of having only one 

interferogram constructed from two SLC images (i.e., N=2), 

the CRB is reduced toQ
b̂, {N=2}= σφ

12

2  ≥ 
1- |γ12|

2

2L|γ|12
, which has 

been already derived for single interferometric phases. 
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