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ABSTRACT: In the present study, analytical solutions are developed for three-
dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated 
homogeneous porous medium with time dependent dispersion coefficient. It means 
porosity of the medium is filled with single fluid(water). Dispersion coefficient is 
considered proportional to seepage velocity while adsorption coefficient inversely 
proportional to dispersion coefficient. Solutions are derived for both uniform and varying 
plane input source. The source geometry, including shape and orientation, broadly act 
major role for the concentration profile through the entire transport procedure. Initially 
the porous domain is not solute free. It means domain is throughout uniformly polluted. 
With help of certain transformation advection-dispersion equation is reduced into 
constant coefficient. The governing advection-dispersion equation, initial and boundary 
condition is solved by applying Laplace Transform Technique (LTT). The desired closed-
form solution for the line source in two-dimensions and point source in one-dimension of 
uniform and varying nature are also evaluated as particular cases. Effects of parameters 
and value on the solute transport are demonstrated graphically. 

Keywords: advection-dispersion equation; isotropic; saturated; homogeneous; plane 
source. 

 
 
 
INTRODUCTION


 

In recent years, groundwater resources 

have become polluted due the human 

activities, production of chemically 

reactive contaminants from industrial 

and/or other waste, percolation of 

pesticides etc. Contaminants of 

groundwater penetrate through pores in the 

groundwater table and attenuate the 

pollution concentration as the pollutants 

cleave to the solid surface. Once 

groundwater polluted by any means it 

becomes very difficult to improve its 

quality. The transport of solutes in porous 
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media is governed by advection-dispersion 

equation which is a parabolic type partial 

differential equation of second order. 

Analytical/numerical solutions along with 

an appropriate initial and boundary 

conditions help us to demonstrate the 

contaminant distribution in geological 

formations. Properties of geological 

formations, such as hydraulic conductivity 

and porosity, generally showing high 

degrees of spatial variation and this 

mutation majorly determine groundwater 

flow and solute transport phenomena. 

Analytical solutions of one, two and three-

dimensional solute transport problems, 
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subjected to various initial and boundary 

conditions, in finite, semi-finite porous 

domain have been published in the 

literature (e.g., Kumar & Kumar, 1998; 

Singh et al., 2008; Singh et al., 2009; 

Kumar et al., 2010; Yadav et al., 2011; 

Yadav et al., 2012; Chen & Liu, 2011). In 

order to deal solute pollution, it is 

necessary to understand the physical 

mechanism of mass transport in geological 

formation. Simunek & Suarez (1994) 

obtained two-dimensional solute transport 

for variable porous media. Yadav et al. 

(1990) obtained analytical solutions 

describing the concentration distribution 

along one-dimensional unsteady seepage 

flow through adsorbing saturated finite 

porous medium. Srinivasan & Clement, 

(2008) derived analytical solution for one-

dimensional solute transport problem in 

porous domain. Sudicky & Cherry (1979) 

demonstrated that the contaminant 

dispersivity increased with distance from 

the contaminant source. Amro et al. (2012) 

observed that the effect of temporal 

variations on solute transport is disguised 

by the effect of spatial heterogeneity. Yim 

& Mohsen (1992) observed that the tidal 

effect on solute transport in homogeneous 

porous domain in one-dimensional flow. 

Wilson & Miller (1978) obtained the two-

dimensional solute transport models for the 

continuous discharge of a point source. 

Leij et al. (1991) derived an analytical 

solution for three-dimensional flow and 

Singh et al. (2010) obtained analytical 

solution by using Laplace and Hankel 

transform techniques for two-dimensional 

advection-dispersion equation in 

cylindrical coordinates subjected to 

Dirichlet and mixed type inlet conditions. 

Chen et al. (2008) obtained analytical 

solution of advection-dispersion equation 

assuming the dispersion coefficient as 

spatially dependent asymptotic function. 

Kumar et al. (2010) obtained an analytical 

solution for the advection-diffusion 

equation subject to variable coefficients in 

semi-infinite media. Yates (1990) obtained 

an analytical solution for accounting the 

one dimensional solute transport in 

heterogeneous porous media with a 

spatially dependent dispersion. Eungyu 

Park & Hongbin Zhan (2001) obtained 

analytical solutions of contaminant 

transport using Green’s function method 

from one, two and three-dimensional 

aquifer. Batu & Genuchten (1990) 

developed a mathematical model subjected 

to Dirichlet and Cauchy type of boundary 

conditions in two-dimensional solute 

transport. Cirpka & Attinger (2003) 

demonstrated that dispersion is increased 

by the conjugation of spatial heterogeneity 

and temporal fluctuations. In subsurface, 

flow and transport phenomena are not only 

dependent on spatial heterogeneity but also 

dependent on temporal variability as well. 

Temporal variability occurs due to seasonal 

variation in water level (Wang & Tsay, 

2001). Guerrero et al. (2009) provided 

analytical solutions for the advection-

dispersion equation accounted to steady 

and transient flow field in finite domain. 

Smedt (2006) presented analytical 

solutions solute transport in rivers 

considering the effects of first order decay 

and transient storage. Sanskrityayn et al. 

(2016) developed analytical solution of 

advection-dispersion equation with space 

and time dependent dispersion using 

Green’s function. Majdalani et al. (2015) 

investigated analytical model of solute 

transport with scale dependent dispersion 

through heterogeneous porous media. Zhan 

et al. (2016) explored contaminant 

transport with one-, two-, and three-

dimensional accounting for arbitrary shape 

sources. Singh & Chatterjee (2016) 

obtained three-dimensional solute transport 

phenomena considering arbitrary plane 

source. Van Genuchten et al. (2013) 

obtained one and multi-dimensional 

analytical solution for advection-dispersion 

equation accounting for zero order 

production.  
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In this study, an analytical solution for 

the three-dimensional ADE in Cartesian 

coordinates is derived in semi-infinite 

domain along the flow. The Laplace 

transform technique is applied to derive the 

exact analytical solutions. Initially the 

geological formation is supposed to be 

uniformly polluted. The input condition is 

considered uniformly continuous and of 

varying nature both. The effects of the 

parameters on the solute transport are 

studied separately with the help of graphs. 

The two coefficients (dispersion and 

seepage velocity) of the ADE is considered 

as functions time variable. Due to 

unsteadiness of the flow field the temporal 

dependence is considered. A general plane 

source is considered to demonstrate the 

impact of non-point sources in 

groundwater contamination problems. New 

space and time variables are introduced to 

reduce the variable coefficients into 

constant coefficients.  

MATHEMATICAL FORMULATION 
AND ANALYTICAL SOLUTION 
The problem is formulated mathematically 

as the plane source in three-dimensions. 

The domain is considered semi-infinite and 

the aquifer is initially not solute free. The 

geometry of the problem is shown in Fig.1. 

The advection-dispersion equation in three-

dimensions may be written as follows: 
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where ][ML 3c  represents the solute 

concentration of the pollutant transporting 

along the flow field through the medium at a 

position       LzLyLx ,,  and time  Tt . 

]T[L 12 

xD , ]T[L 12 

yD and ]T[L 12 

zD are 

dispersion coefficients along the zyx ,,  axes 

respectively. ][LT 1

xu , ][LT 1

yu
 

and 

][LT 1

yu  are the unsteady uniform seepage 

velocity along the zyx ,,  axes respectively. 

Retardation is also assumed unsteady and it’s 

components along zyx ,,  axes are xR , yR
 

and zR  respectively. First term on the left 

hand side of the Eq. (1) is represents change 

in concentration with time in liquid phase. 

Eq. (1) describes the change of the 

concentration due to advective transport in 

directions of yx,  and z  axes. The effect of 

molecular diffusion is not taken into account 

due to dominance of the mechanical 

dispersion on the hydrodynamic dispersion 

during solute transport. The medium is 

supposed to have a uniform solute 

concentration ic
 

before an injection of 

pollutant in the domain. The input condition 

is considered of uniform and varying type. 

The right boundary is assumed that the rate 

of change of concentration is equal to zero at 

infinity in directions of yx,  and z  axes. 

Van Genuchten & Alves (1982) prompted 

that the Cauchy boundary is more realistic 

than the Dirichlet boundary. The uniform 

and varying type input are discussed in two 

separate cases. 

The general plane source is introduced as 

the non-point source with the assumption 

that the geological formations are uniformly 

polluted and other end the concentration 

gradient is zero. The constant pollutant 

through plane is considered which reaches 

the water table due to infiltration. 
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Fig. 1. Geometry of plane source contamination 

The mathematical description of the 

cases follows as:  

Case 1. Uniform input plane source 
condition: 
Initial and boundary conditions follows as:  
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(4) 

where ic  is solute concentration at origin. 

The constant contamination 0c  is considered 

through the general plane fzeybxa  111
 

as the boundary condition, where 1a , 1b , 1e  

and f are arbitrary constants. The 

contaminant flux is zero when

 yx ,  and z . The dispersion, 

retardation and seepage velocity are 

temporally dependent along zyx ,,  axes 

respectively, are considered as follows:  
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(7) 

where ][ 1Tm  may be termed as an 

unsteady parameter. In order to remove the 

time function from coefficient of Eq. (1), a 

transformation is introduced as (Crank, 

1975): 

 

t

dtmtT
0

)2exp(  (8) 

Eq. (1) and Eq. (2-4) reduce into 

following form: 
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In order to reduce the Eq. (9) into single 

space variable, we take the following 

transformation (Singh et. al., 2016). 
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With transformation Eq. (13), Eq. (9) and 

Eqs. (10-12) change into following form:  
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To eliminate the convective term from 

Eq. (14), we introduce following 

transformation: 
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The Eq. (14) and Eqs. (16-18) reduce 

as: 
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Taking the Laplace transformation, Eqs. 

(20-23) reduce into following boundary 

value problem. 
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Solving Eqs. (24-26), we first obtain 

),( pXK  and then taking inverse Laplace 

transformation of ),( pXK  and using Eq. 

(19) we get following solution: 
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Particular sub cases: 
Subcase1.1. Two dimensional uniform 
input line source solution: 

Considering 0,0,0 000  zzz RuD  and 

01 e in Eq. (27), we obtain the two-

dimensional ADE solution for the line 

source of the contaminant. Solution may be 

written as: 
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Subcase1.2. One-dimensional uniform 
input point source solution:  
Now considering 

0,0,0,0 11000000  ebRRuuDD zyzyzy  

and 0a  in Eq. (27), we obtain one-

dimensional ADE solution for the point 

source of contamination as follows: 
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Case 2. Varying input plane source 
condition: 
Uniform nature input condition on the 

earth surface exist at all time is not 

possible in real situations. In fact, due to 

human or other natural activities on the 

surface, the pollutant at the source may 

increase with time. Such situation may 

mathematically defined by mixed type 

condition. The present case may be defined 

by replacing the Eq. (3) by Eq. (30) in 

previous case 
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 (30) 

Using a transformation Eq. (8), Eq. (30) 

reduces into following form: 
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Transformation in Eq. (13) reduces Eq. 

(31) in to following form: 
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Where 0000 zyx uuuu    
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Taking the Laplace transformation of 

Eq. (34). it reduces into following form 
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Now, we first solve boundary value 

problem represented by Eqs. (24, 26, 35) 

for value of ),( pXK   and then solution of 

the problem is obtained using inverse 

Laplace transform of ),( pXK  and Eq. 

(19). Solution of present problem is given 

by following equation. 
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Where, T
RD

U

0

2

02

4
  , 

RD

U

R

D

D

u

0

00

1

0

2
  







 


0

2

4

)(
exp

1

TD

RaX

T
A


 
























 T
TD

RaX
erfcaX

D

R
TE 

00

2

1
2

)(
)(exp
























 T
TD

RaX
erfcaX

D

R
TF 

00

2

2

)(
)(exp  



Yadav, R. R. and Yadav, V. 

88 

Particular Subcases: 
Subcase 2.1. Two-dimensional varying 
input line source solution: 

Considering 0,0,0 000  zzz RuD  and 

01 e in Eq.(36),we obtain the two-

dimensional ADE solution for the line 

source of the contaminations. Solution 

follows as: 
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Subcase 2.2. One-dimensional varying 
input point source solution:  
Now considering 

0,0,0,0 11000000  ebRRuuDD zyzyzy

 and 0a  in Eq. (36) we obtain one-

dimensional ADE solution for the point 

source of contamination as follows: 
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RESULTS AND DISCUSSIONS 
The concentration values are evaluated in a 

finite region defined by 6)(0  kmx , 

6)(0  kmy  and 6)(0  kmz . For 

numerical computation the plane sources is 

defined by taking 

0

0

0

0

111 ,,1
x

z

x

y

D

D
e

D

D
ba   for both 

uniform and varying plane input source 

condition. The two cases illustrated 

separately with the sub cases. For analysis 

of the results of the model with a plane 

source, numerical values of 

constants/parameters are taken from either 

published literature (Gelhar et al., 1992; 

Singh & Kumari, 2014) or experimental 

data. For example seepage velocity in 

porous media should be within the range 

daym /2  to yearkm/2  (Todd, 1980). The 

common parameters for both cases are 

taken as lmgc /10000  , lmgci /10  and
 

yearm /01.0 . The Figures 2, 3, 4, 5 and 

9, 10, 11, 12 are drawn with numerical 

values of parameters defined as: Initial 

seepage velocity along the zyx ,,  axes 

respectively are ,/12.00 yearkmux 

,/1.00 yearkmuy  yearkmu z /1.00   and 

dispersion profiles along the zyx ,,  axes 

respectively are ,/0024.0 2

0 yearkmDx 
 

yearkmDy /002.0 2

0  , 

yearkmDz /038.0 2

0   and 68.00 xR ,

34.00 yR , 23.00 zR  are the component 

of retardation along the zyx ,,  axes 

respectively and value of parameter 

4.2a . Similarly the values of the 

parameters for the Figures 6, 7 and 13, 14 

are defined as: ,/024.0 2

0 yearkmDx 
 

yearkmDy /002.0 2

0  , 

,/12.00 yearkmux 
 

yearkmuy /1.00  , 

,4.2a 78.00 xR  and .47.00 yR  For 

point source Figure 8 and 15 dispersion

,/11.0 2

0 yearkmDx 
 

seepage velocity 

yearkmux /01.00  , 0a  and retardation 

.15.10 xR
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Case 1. Three-dimensional line and 
surface graphs for uniform input plane 
source: 
The demonstration of concentration profiles 

with distance along x , y and z  axes 

respectively are shown in Figure 2. It is 

observed that the contaminant concentration 

decreases from a constant value and 

proceeds towards to zero. The decreasing 

rate of concentration with z axis is more 

rapid than the remaining two axes. 

The solute concentration profile with 

the yz ; zx and xy  planes are also 

demonstrated and shown through surface 

graph in Figures 3-5 respectively. Figure 3 

is drawn for fixed 2.0z  that the 

contaminant concentration at

)2.0,5382.1,2.0( on the plane is 1 and starts 

decreasing along x  and y axes directions. 

The contaminant concentration values 

decreases fast along x axis in comparison 

to y axis. It is also observed that on moving 

away from the plane the concentration 

reduces to its minimum level. 

  

Fig. 2. Dimension less concentration profiles for uniform input plane source described by solution (27), at 

5years 

  

Fig. 3. Concentration distribution pattern in 2D space for uniform continuous input plane source 

described by solution (27), at 5 years 
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Fig. 4. Solute concentration in 2D space for plane source described by solution (27) at the end of 5 years 

 

Fig. 5. Solute concentration in 2D space for plane source described by solution (27) at the end of 5 years 

Figure 4 is drawn for fixed x  coordinate 

at 2.0x  in yz  plane. On proceeding along 

z  axis from point )2.0,5382.1,2.0(  on the 

plane decreasing rate of concentration is 

recorded high in comparison to moving 

along y axis. Like Figure 3 concentration 

decreases asymptotically on proceeding 

away from the plane. 

Figure 5 is drawn for fixed y  

coordinate at 5382.1y  in xz plane. On 

proceeding towards z  axis from point 

)2.0,5382.1,2.0(  on the plane decreasing 

rate of concentration is recorded high in 

comparison to moving towards x  axis.  

The Figure 2 represents the line graph 

along the axes and Figures 3, 4, 5 are 

surface plots for the uniform plane source 

input. In Figure 2 it is observed that 

contaminant attenuation along z axis is 

faster in comparison to x  and y axis but 

the trends are almost similar. Surface plot 

in Figure 3 explores for the fix depth (i.e. 

fixed z  coordinate) attenuation increases 

slight as we move toward x axis. For fixed

x distance attenuation is noticed fast closer 
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to z  axis. Again for the fixed y  axis 

attenuation is recorded fast near z  axis 

comparison to x  axis. It may also be 

noticed that dimensionless concentration at 

plane is 1. 

Subcase 1.1. Two dimensional line and 
surface graphs for uniform input line 
source: 
The contaminant concentration profile with 

x  and y  are portrayed and shown in Figure 

6. The pattern of contaminant concentrations 

are decreasing pattern with distance for 

obtained analytical solutions. Rehabilitations 

of contaminant concentration are similar 

along both the axis.  

The change of contaminant 

concentration profiles are depicted for line-

source is shown in Figure 7. The 

contaminant concentration value along 

both directions decreases with position. For 

example, if the septic tank or industrial 

garbage is situated away from certain 

distance of some contamination at certain 

depth then the source does not make any 

affect the quality of water. 

 

Fig. 6. Calculated contaminant concentration obtained with Eq. (28) for line sources along the distance x  

and y -axes at the end of 5 years 

 

Fig. 7. Calculated contaminant concentration obtained with Eq. (28) for line sources at the end of 5 years 
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Subcase1.2. One dimensional point 
graph for uniform input point source: 
Figure 8 illustrate the distribution of solute 

concentration at various times 7,3t  and 

11 years with same set of data. It is 

observed that the solute concentration 

rehabilitates up to same position for all 

times and attains minimum and harmless 

concentration, but near the source 

boundary the concentration values are little 

higher for higher time. The trend of 

contaminant concentration with time and 

distance travelled is almost identical at all 

times. The concentration values are 

changing with time and position. 

Case 2. Three dimensional line and surface 
graphs for varying plane Input source: 
Figure 9 illustrates the solute transport 

from the plane source along three 

directions described by the solution in Eq. 

(36). The input concentration, ( 0/ cc ) at 

point )2.0,5382.1,2.0(  on plane is 9084.0  

at time 5 years. It attenuates with position 

along yx,  and z axes but it attenuates 

fastest along z axes. 

 

Fig. 8. Calculated contaminant concentration obtained with Eq. (29) for point sources at the end of 

11,7,3  years 

 

Fig. 9. Calculated contaminant concentration obtained with Eq. (36) for plane sources along the distance 
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Fig. 10. Calculated contaminant concentration obtained with Eq. (36) for plane sources at the end of 5 

years 

Figure 10 demonstrates concentration 

profile in xy  plane for fixed z coordinate (z= 

0.2) at time t= 5years. Concentration at point 

)2.0,5382.1,2.0( on the plane is recorded 

9084.0  and on proceeding along both x  and 

y axes directions it decreases. Rate of 

concentration decrement along y axis is fast 

in comparison to x axis. Concentration 

reduces to its minimum level on moving 

away from the plane. 

Surface plot Figure 11 is drawn to 

illustrate the concentration pattern in zy  

plane for fixed 2.0x .On moving away 

from the point )2.0,5382.1,2.0(  on the plane 

along z  and y  axis a rapid attenuation in 

concentration is observed along z  axis than 

y  axis. 

 

 

Fig. 11. Calculated contaminant concentration obtained with Eq. (36) for plane sources at the end of 5 

years 
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Fig. 12. Calculated contaminant concentration obtained with Eq. (36) for plane sources at the end of 5 

years 

 

Fig.13. Calculated contaminant concentration obtained with Eq. (37) for line sources along the distance x  

and y -axes respectively at the end of 5  years 

Figure 12 reveals the behavior of 

contaminant concentration in xz  plane 

which is drawn for fixed y  coordinate at

5382.1y . Contaminant concentration 

0/ cc  on the point )2.0,5382.1,2.0(  at left 

boundary lying on plane is evaluated 9084.0  

and reduces continuously moving along x  

and z  axis. The contaminant concentration 

values decreases fast along z axis in 

comparison to x axis. It is also observed that 

on moving away from the plane the 

concentration reduces to its minimum level. 

Subcase 2.1. Two dimensional line and 
surface graphs for varying input line 
source: 
The contaminant concentration profile with 

x  and y  are portrayed and shown in 

Figure 13. The pattern of contaminant 

concentrations are decreasing pattern with 

distance for obtained analytical solutions. 

Rehabilitations of contaminant 

concentration are similar along both the 

axis.  
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Fig. 14. Calculated contaminant concentration obtained with Eq. (37) for plane sources at the end of 5  

years 

The change of contaminant concentration 

profiles depicted for line-source is shown in 

Figure 14. The contaminant concentration 

value along both directions decreases with 

position. It may observe that the contaminant 

near x  axis attenuates faster in comparison 

to y  axis.  

Subcase 2.2. One dimensional point 
graph for varying input point source: 
Figure 15 illustrates the solute transport 

from the point source of increasing nature 

along the longitudinal direction of the 

medium, described by the solution in Eq. 

(38). The input concentrations, 0/ cc
 
at the 

origin are different at each time. It 

attenuates with position and time but near 

the boundary, concentration level is lower 

for lower time and higher for higher time. 

Contaminant concentration attenuates 

and rehabilitate up to distance 5.2  km 

from source boundary.  

 

Fig. 15. Calculated contaminant concentration obtained with Eq. (38) for point sources at the end of 3, 7, 

11 years 
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CONCLUSION 
Analytical solutions to three dimensional 

advection-dispersion equation with variable 

coefficients along with initial and boundary 

conditions in a semi-infinite domain have 

been obtained. Laplace transformation 

technique has been used in getting the 

analytical solutions. With the help of new 

transformation the variable coefficients of 

the advection-dispersion equation are 

converted into constant coefficients. Effect 

of non-point source concentration for 

example plane and line source are discussed. 

In both cases (uniform and varying input 

source) the later components of velocity are 

taken into account. The effects of adsorption 

and other parameters on the solute transport 

are shows with graphs. Dispersion 

coefficient and the flow velocity are 

considered temporally dependent. The flow 

velocity is considered directly proportional to 

diffusion parameter and adsorption 

parameter is inversely proportional to 

diffusion parameter.  
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