تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,097,952 |
تعداد دریافت فایل اصل مقاله | 97,205,549 |
استفاده از صفحات خورشیدی شناور به عنوان بادشکن به منظور کاهش تبخیر و تولید انرژی با استفاده از مدلسازی ANSYS FLUENT (مطالعۀ موردی: چاه نیمۀ شمارۀ 4 سیستان) | ||
اکوهیدرولوژی | ||
مقاله 19، دوره 5، شماره 4، دی 1397، صفحه 1297-1307 اصل مقاله (861.8 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2018.262425.929 | ||
نویسندگان | ||
سید آرمان هاشمی منفرد* 1؛ مهدی رضاپور2؛ حجت رضاپور3؛ مهدی اژدری مقدم1 | ||
1دانشیار دانشکدۀ مهندسی عمران، دانشگاه سیستان و بلوچستان، زاهدان | ||
2استادیار دانشکدۀ مهندسی دریا، دانشگاه دریانوردی و علوم دریایی، چابهار | ||
3دانشجوی مهندسی مدیریت منابع آب، دانشکدۀ مهندسی عمران، دانشگاه سیستان و بلوچستان، زاهدان | ||
چکیده | ||
تبخیر فرایندی است که به تغییر سیال از حالت مایع به گاز میانجامد. میزان تبخیر از سطوح آزاد به عواملی همچون دما، سرعت باد، عمق آب و فشار بخار بستگی دارد. بررسی دقیق اطلاعات دریافتی از ادارۀ هواشناسی زهک (واقع در جنوب شرقی شهرستان زابل) نشان داد که دما و سرعت باد در این منطقه تأثیرگذارترین عوامل پدیدۀ تبخیر هستند و جالب اینکه اصلیترین عامل آن، سرعت زیاد باد تشخیص داده شد. روشهای متعددی برای مقابله با پدیدۀ تبخیر وجود دارد که استفاده از پوششهای فیزیکی و بادشکن از آن جمله است. بر اساس تحقیقات پیشین، بهترین جذب نور خورشید برای تولید بیشترین توان در نیمکرۀ شمالی به سمت جنوب است. استفاده از صفحات خورشیدی، همزمان به عنوان پوشش فیزیکی برای کاهش تبخیر و تولید انرژی بسیار بررسی شده است. به منظور مدلسازی میزان جریان عبوری از روی صفحات خورشیدی و زاویۀ قرارگیری افقی و عمودی برای بهدستآوردن بهترین کاهش تبخیر، از نرمافزار مدلسازی ANSYS FLUENT16 و از طریق تعیین بهترین زاویۀ افقی و عمودی برای بهدستآوردن بهترین بازده خروجی استفاده شد. نتایج نشان میدهد در صورت طراحی صفحات خورشیدی با ابعاد 5/2×5/2 متر تحت زاویه، زاویۀ افقی صفر درجه (جهت شمال غرب، روبهروی مسیر وزش باد) و زاویۀ شیب 60 درجه به میزان کاهش تبخیری معادل 25/90 درصد به دست خواهد آمد. همچنین، بیشترین راندمان تولید انرژی تحت زاویۀ افقی 30 درجه (جهت شمال غرب، روبهروی مسیر وزش باد) و زاویۀ شیب 30 درجه به میزان 45/99 درصد است. با توجه به دادههای موجود، بهینهترین حالت ممکن، زاویۀ افقی 30 درجه (جهت شمال غرب، روبهروی مسیر وزش باد) و زاویۀ شیب 30 درجه به میزان کاهش تبخیری معادل 36/71 درصد و بازده تولید انرژی به میزان 45/99 درصد نسبت به حالت ایدهآل است. | ||
کلیدواژهها | ||
تولید انرژی؛ زاویۀ شیب و افقی؛ صفحات خورشیدی؛ کاهش تبخیر؛ مدل FLUENTANSYS | ||
عنوان مقاله [English] | ||
Determination of the Optimum Angle of the Floating Solar Panels to Reduce Evaporation and Energy Production by the Ansys Fluent Model (Case Study: Chahnimeh No. 4 Sistan) | ||
نویسندگان [English] | ||
Seyyed Arman Hashemi Monfared1؛ Mahdi Rezapour2؛ Hojjat Rezapour3؛ Mahdi Azhdary Moghaddam1 | ||
1Associate Professor, Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran | ||
2Assistant Professor, Sea Engineering Department, Chabahar Maritime University, Chabahar, Iran | ||
3MSc. Student of Water Resources, Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran | ||
چکیده [English] | ||
Evaporation is a process that changes fluid from liquid to gas. Evaporation rates from free surfaces depend on factors such as temperature, wind speed, water depth and vapor pressure. A detailed study of the information received from the Meteorological Office of Zahak concluded that the factors of temperature and wind speed in this region were the most influential factors, and interestingly, the main factor was the high wind speed. There are several methods to deal with the phenomenon of evaporation, which include the use of physical covering and wind speed. According to previous research, the best attraction of sunlight is to produce the highest Efficiency power in the northern hemisphere to the south. The use of solar panels is considered simultaneously as a physical covering to reducing evaporation and high-energy production. In this paper, priority is given to reducing evaporation and energy production equally. The use of modeling the flow rate effected by horizontal and vertical positioning angles of solar panels was used to obtain the best evaporation reduction using the ANSYS FLUENT 16 model and determining the best horizontal and vertical angle for obtaining the best output efficiency power. The results shows that in this case of designing solar panels measuring 2.5 × 2.5 meters by the angles of, the horizontal angle of 0° (Northwest towards the wind direction) and the angle of inclination of 60° with the evaporative reduction of 90.25 Percentage will be achieved. Also, the highest energy efficiency is achieved under the horizontal angle of 30 degrees (northwest towards the wind direction) and the angle of inclination is 30 degrees to 99.45 percent. Therefore, according to the available data, the optimal possible condition is the horizontal angle of 30 degrees (northwest direction, wind direction) and the angle of inclination of 30 degrees, with a reduction of evaporation of 71.36 percent and energy efficiency of 99.45 percent, Relative to the ideal state. | ||
کلیدواژهها [English] | ||
Evaporation Reduction, Energy Production, solar panel, Tilt and Horizontal Angle, ANSYS FLUENT Model | ||
مراجع | ||
[1]. Gozálvez JJF, Pablo S, Gisbert F, Carlos M, Santafé MR, Romero FJS, Soler JBT, Puig EP. Covering reserviors with a system of floating solarpanels: technical and financial analysis. The 16th International Congress on Project Engineering. Valencia, 11 - 13 July 2012. [2]. Helfer F, Zhang H, Lemckert C. Evaporation reduction by windbreaks: Overview, modelling and efficiency. Urban Water Security Research Alliance, 2009. [3]. Skidmore EL, Hagen LJ. Evaporation in sheltered areas as influenced by windbreak porosity. Agricultural Meteorology. 1970 Jan 1; 7; 363-74. [4]. Giannoulis A, Mistriotis A, Briassoulis D. Design and analysis of the response of elastically supported wind-break panels of two different permeabilities under wind load. Biosystems Engineering 129 (2015)57 e69. [5]. Aly M A. On the evaluation of wind loads on solar panels: The scale issue. Solar Energy 135 (2016) 423–434. [6]. Hartner M, Ortner A, Hiesl A, Haas R. East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Energy 160 (2015) 94–107. [7]. Mondol JD, Yigzaw G. Yohanis, Norton B. The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system. Renewable Energy 32 (2007) 118-140. [8]. shademan M, hangan H. Wind loading on solar panels at different inclination angels. 11th Americans Conference on Wind Engineering. San Juan, Puerto Pico, Jun 22-26, 2009. [9]. Schwingshackla C, Petittaa M, Wagner LE, Belluardo G, Moser D, Castelli M, Zebischa M, Tetzlaff A. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation, Energy Procedia 40 (2013) 77 – 86. [10]. Geokmen N, Hu W, Hou P, Chen Z, Sera D, Spataru S. Investigation of wind speed cooling effect on PV panels in windy locations. Renewable Energy. 90 (2016) 283e290. [11]. Xu R, Ni K, Hu Y, Si J, Wen H, Yu D. Analysis of the optimum tilt angle for a soiled PV panel. Energy Conversion and Management. 148 (2017) 100–109 [12]. Sahu A, Yadav N, Sudhakar L. Floating photovoltaic power plant: review. Renewable and Sustainable Energy Reviews. 66(2016)815–824. [13]. Kwan TH, Wu XF. Power and mass optimization of the hybrid solar panel and thermoelectric generators. Energy 165 (2016) 297–307. [14]. Zaihidee FM, Mekhile fS, Mahmoudian MS, Horan B. Dust as an unalterable deteriorative factor affecting PV panel's efficiency: Why and how. Renewable and Sustainable Energy Reviews. 65(2016)1267–1278. [15]. Peng Z, Mohammad R. Manesh H, Liu Y. Cooled solar PV panels for output energy efficiency optimization. Energy Conversion and Management (2017). [16]. Taboada ME, Aceres LC, Graber TA, Galleguillos HR, Cabeza LF, Rojas R. Solar water heating system and photovoltaic floating cover to reduce evaporation: Experimental results and modeling. Renewable Energy 105 (2017) 601e615 [17]. http://seminars.usb.ac.ir/cbcs/fa-ir/Page890/ [18]. Piri H, Ansari H. Drought study of Sistan plain and its impact on Hamoon international wetland. Journal of Wetland Ecobiology. Spring 2013, P63 [Persian]. [19]. Lakzaianpour GH R, Tabatabai M, Khandanbarani MA, Nakhaie R. Quantitative and qualitative assessment of Chah nimeh water resources. Conference and Exhibition Water Engineering. 2013 [Persian]. [20]. Hashemi Monfared SA, Rezapour M, Zhian T. Investigation of the effect of wind breaks in decreasing reservoir evaporation using Fluent (Case Study: Chahnimeh No.4 of Sistan). Iranian Journal of Ecohydrology. Spring 2018, P 265 [Persian]. [21]. Hafez AZ, Soliman A, El-Metwally KL, Ismail IM. Tilt and azimuth angles in solar energy applications – A review. Renewable and Sustainable Energy Reviews 77 (2017) 147–168. [22]. Jubayer CH M, Hangan H. A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels. Journal of Wind Engineering and Industrial Aerodynamics. 153(2016)60–70 [23]. Yao X, Zhang H, Lemckert CH. Evaporation reduction by suspended and floating covers: overview, modelling and efficiency. Urban Water Security research Alliance Technical Report No. 28, 2010. [24]. Bitog JP, Lee IB, Hwang HS, Shin MH, Hong SW, Seo IH, Kwon KS, Mostafa E, Pang Z. Numerical simulation study of a tree windbreak. Biosystems Engineering. 2012 Jan 31;111(1):40-8. | ||
آمار تعداد مشاهده مقاله: 780 تعداد دریافت فایل اصل مقاله: 418 |