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1 Abstract continued

It is shown that a lower bound is always attainable for the optimal objective value. Also,
it is proved that the optimal solution of the problem is always resulted from the unique
maximum solution and a minimal solution of the feasible region. A method is proposed
to generate random feasible max-Dombi fuzzy relational inequalities and an algorithm
is presented to solve the problem. Finally, an example is described to illustrate these
algorithms.

2 Introduction

In this paper, we study the following linear problem in which the constraints are formed
as the intersection of two fuzzy systems of relational inequalities defined by Dombi family
of t-norms:

minZ = cTx

Aϕx <= b1 (1)

Dϕx >= b2

x ∈ [0, 1]n

Where I1 = {1, 2, ., , .m1}, I2 = {m1 + 1,m1 + 2, ...,m1 + m2} and J = {1, 2, ..., n}.
A = (aij)m1∗n and D = (dij)m2∗n are fuzzy matrices such that 0 ≤ aij ≤ 1 (∀i ∈ I1 and
∀j ∈ J) and 0 ≤ dij ≤ 1 (∀i ∈ I2 and ∀j ∈ J). b1 = (b1i )m1∗1 is an m1-dimensional fuzzy
vector in [0, 1]m1 (i.e., 0 ≤ b1i ≤ 1, ∀i ∈ I1), b

2 = (b2i )m2∗1 is an m2-demensional fuzzy
vector in [0, 1]m2 (i.e., 0 ≤ b2i ≤ 1, ∀i ∈ I2), and c is a vector in

en. Moreover, ”ϕ” is
max-Dombi composition, that is,

ϕ(x, y) = T λD(x, y) =


0 , x = 0 or y = 0

1

1+

((
1−x
x

)λ
+

(
1−y
y

)λ) 1
λ

, otherwise

in which λ > 0.
By these notations, problem (1) can be also expressed as follows:

minZ = cTx

max
j∈J
{T λD(aij, xj)} ≤ b1i , i ∈ I1 (2)

max
j∈J
{T λD(dij, xj)} ≤ b2i i ∈ I2

x ∈ [0, 1]n

Especially, by setting A=D and b1 = b2, the above problem is converted to max- Dombi
fuzzy relational equations. As mentioned, the family {T λD} is increasing in λ. On the
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other hand, Dombi t-norm T λD(x, y) converges to the basic fuzzy intersection min{x, y} as
λ goes to infinity and converges to Drastic product t-norm as λ approaches zero. There-
fore, Dombi t-norm covers the whole spectrum of t-norms [7].
The theory of fuzzy relational equations (FRE) and some their applicationswas firstly
introduced by Sanchez [38]. Recently, it has beenshown that many issues associated with
a body knowledge can be formulated as FRE problems [34]. FRE theory has been applied
in many fields, including fuzzy control, fuzzy decision making, fuzzy pattern recognition,
fuzzy clustering, image compression and reconstruction, and so on. Generally, when in-
ference rules and their consequences are known, the problem of determining antecedents
is reduced to solving an FRE [32].
The finding of feasible solutions set is the most fundamental subject concerning with
FRE problems [2, 3, 5, 27, 28, 31]. Over the last decades, the solvability of FRE defined
with different max-t compositions have been investigated by many researchers [33, 35, 36,
39, 41, 42, 44, 47, 50]. Moreover, some researchers introduced and improved theoretical
aspects and applications of fuzzy relational inequalities (FRI) [13, 15, 16, 20, 25, 49].
Ghodousian and Khorram [13] studied a mixed fuzzy system formed by two FRIs defined
by an operator with (closed) convex solutions. Guo et al. [15] investigated a kind of FRI
problems and the relationship between minimal solutions and FRI paths.
The problem of optimization subject to FRE and FRI is one of the most interesting and
on-going research topic among the problems related to FRE and FRI theory [1, 8, 26,
29, 37, 40, 45, 49? ]. Fang and Li [9] used branch and bound method to a linear opti-
mization problem subjected to FRE constraints with max-min operation. The preceding
method was improved by Wu et al. [43], by presenting a simplification process. The
topic of the linear optimization problem was also investigated with max-product opera-
tion [11, 18, 30]. Moreover, some generalizations of the linear optimization with respect to
FRE have been studied with the replacement of max-min and max-product compositions
with different fuzzy compositions such as max-average composition [19, 45], max-star
composition [14, 21] and max-t-norm composition [17, 26, 40].
Recently, many interesting generalizations of the linear programming subject to a system
of fuzzy relations have been introduced and developed [6, 10, 16, 23, 29, 46]. For example,
Wu et al. [46] represented a method to optimize a linear fractional programming problem
under FRE with max-Archimedean t-norm composition. Dempe and Ruziyeva [4] gen-
eralized the fuzzy linear optimization problem by considering fuzzy coefficients. Dubey
et al. studied linear programming problems involving interval uncertainty modeled using
intuitionistic fuzzy set [6]. The linear optimization of bipolar FRE was studied by some
researchers where FRE defined with max-min composition [10] and max-Lukasiewicz com-
position [23, 29].
The optimization problem subjected to various versions of FRI could be found in the
literature as well [12, 13, 15, 16, 20, 48, 49]. Yang [48] applied the pseudo-minimal index
algorithm for solving the minimization of linear objective function subject to FRI with
addition-min composition. Xiao et al. [49] introduced the latticized linear programming
problem subject to max-product fuzzy relation inequalities. Ghodousian and Khorram
[12] introduced a system of fuzzy relational inequalities with fuzzy constraints (FRI-FC)
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in which the constraints were defined with max-min composition.
The remainder of the paper is organized as follows. In section 2, some preliminary no-
tions and definitions and three necessary conditions for the feasibility of problem (1) are
presented. In section 3, the feasible region of problem (1) is determined as a union of the
finite number of closed convex intervals. Two simplification operations are introduced to
accelerate the resolution of the problem. Moreover, a necessary and sufficient condition
based on the simplification operations is presented to realize the feasibility of the prob-
lem. Problem (1) is resolved by optimization of the linear objective function considered
in section 4. In addition, the existence of an optimal solution is proved if problem (1) is
not empty. The preceding results are summarized as an algorithm and, finally in section
5 an example is described to illustrate. Additionally, in section 5, a method is proposed
to generate feasible test problems for problem (1).

3 Basic properties of max-Dombi FRI

This section describes the basic definitions and structural properties concerning problem
(1) that are used throughout the paper. For the sake of simplicity, let STλD(A,D, b1, b2)

and STλD(D, b2) denote the feasible solutions sets of inequalities Aϕx ≤ b1 and Dϕx ≥ b2,

respectively, that is, STλD(A, b1) = {x ∈ [0, 1]n : Aϕx ≤ b1} and STλD(D, b2) = {x ∈
[0, 1]n : Dϕx ≤ b2}. Also, let STλD(A,D, b1, b2) denote the feasible solutions set of problem

(1). Based on the foregoing notations, it is clear that STλD(A,D, b1, b2) = STλD(A, b1) ∩
STλD(D, b2).

Definition 1. For each i ∈ I1 and each j ∈ J , we define STλD(aij, b
1
i ) = {x ∈ [0, 1] :

T λD(aij, x) ≤ b1i }. Similarly, for each i ∈ I2 and each j ∈ J , STλD(dij, b
2
i ) = {x ∈ [0, 1] :

T λD(dij, x) ≥ b2i }. Furthermore, the notations J1
i = {j ∈ J : STλD(aij, b

1
i ) 6= ∅}, ∀i ∈ I1,

and J2
i = {j ∈ J : STλD(dij, b

2
i ) 6= ∅}, ∀i ∈ I2, are used in the text.

Remark 1. From the least-upper-bound property of
e

, it is clear that infx∈[0,1]

{
STλD(aij, b

1
i )

}
and supx∈[0,1]

{
STλD(aij, b

1
i )

}
exist, if STλD(aij, b

1
i ) 6= ∅. Moreover, since T λD is a t-norm,

its monotonicity property implies that STλD(aij, b
1
i ) is actually a connected subset of

[0,1]. Additionally, due to the continuity of T λD, we must have infx∈[0,1]
{
STλD(aij, b

1
i )
}

=

minx∈[0,1]
{
STλD(aij, b

1
i )
}

. Therefore,

STλD(aij, b
1
i ) =

[
minx∈[0,1]

{
STλD(aij, b

1
i )
}
,maxx∈[0,1]

{
STλD(aij, b

1
i )
}]

, i.e., STλD(aij, b
1
i ) is a

closed sub-interval of . By the similar argument, if STλD(dij, b
2
i ) 6= ∅, then we have

STλD(dij, b
2
i ) =

[
minx∈[0,1]

{
STλD(dij, b

2
i )
}
,maxx∈[0,1]

{
STλD(dij, b

2
i )
}]
⊆ [0, 1].

From Definition 1 and Remark 1, the following two corollaries are resulted.
Corollary 1. For each i ∈ I1 and each j ∈ J , STλD(aij, b

1
i ) 6= ∅. Also, STλD(aij, b

1
i ) =[

0,maxx∈[0,1]
{
STλD(aij, b

1
i )
}]

.
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Proof. Since T λD(aij, 0) = 0, we have T λD(aij, 0) ≤ b1i , ∀i ∈ I1 and ∀j ∈ J . Therefore,
0 ∈ STλD(aij, b

1
i ) and then minx∈[0,1]

{
STλD(aij, b

1
i )
}

= 0,∀i ∈ I1 and ∀j ∈ J . Now, by noting

Remark 1 we also have, STλD(aij, b
1
i ) =

[
0,maxx∈[0,1]

{
STλD(aij, b

1
i )
}]

, ∀i ∈ I1 and ∀j ∈ J .

This completes the proof.
e

Corollary 2. If STλD(dij, b
2
i ) 6= ∅ for some i ∈ I2 and j ∈ J , then STλD(dij, b

2
i ) =[

minx∈[0,1]
{
STλD(dij, b

2
i )
}
, 1

]
.

Proof. Noting Remark 1, it is sufficient to show that 1 ∈ STλD(dij, b
2
i ). Suppose that

STλD(dij, b
2
i ) 6= ∅. Therefore, there exists some x ∈ [0, 1] such that T λD(dij, x) ≥ b2i .

Now, the monotonicity property of T λD implies T λD(dij, 1) ≥ T λD(dij, x) ≥ b2i that means
1 ∈ STλD(dij, b

2
i ).

e

Remark 2. Corollary 1 together with Definition 1 implies J1
i = J,∀i ∈ I1.

Definition 2. For each i ∈ I1 and each j ∈ J , we define

Uij =


1 , aij ≤ b1i
0 , b1i = 0, aij b

1
i

1

1+

((
1−b1

i
b1
i

)
λ−
(

1−aij
aij

)
λ

)
1/λ

, b1i 6= 0, aij b
1
i

Also, for each i ∈ I2 and each j ∈ J , we set

Lij =


+∞ , dij < b2i
0 , b2i = 0, dij ≥ b2i

1

1+

((
1−b2

i
b2
i

)
λ−
(

1−dij
dij

)
λ

)
1/λ

, b2i 6= 0, dij ≥ b2i

Remark 3. From Definition 2, we have Lij = 1, if dij = b2i and b2i 6= 0. Lemma 1 below
shows that Uij and Lij stated in Definition 2, determine the maximum and minimum
solutions of sets STλD(aij, b

1
i )(i ∈ I1) and STλD(dij, b

2
i )(i ∈ I2), respectively.

Lemma 1. (a) Uij = maxx∈[0,1]{STλD(aij, b
1
i )},∀i ∈ I1 and ∀j ∈ J . (b) If STλD(dij, b

2
i ) 6= ∅

for some i ∈ I2 and j ∈ J , then Lij = minx∈[0,1]{STλD(dij, b
2
i )}.

Proof. (a) Let i ∈ I1, j ∈ J and x ∈ STλD(aij, b
1
i ). Firstly, suppose that aij ≤ b1i . In

this case, Uij = 1 from Definition 2. Since x ∈ STλD(aij, b
1
i ), then x ∈ [0, 1] and therefore

x ≤ Uij. Hence, it is sufficient to show that Uij ∈ STλD(aij, b
1
i ). But, the identity law

of T λD implies T λD(aij, Uij) = T λD(aij, 1) = aij ≤ b1i . Therefore, Uij ∈ STλD(aij, b
1
i ) and

x ≤ Uij(∀x ∈ STλD(aij, b
1
i )) that mean Uij = maxx∈[0,1]{STλD(aij, b

1
i )}. Otherwise, suppose

that aij > b1i and b1i = 0. Since T λD(aij, 0) = 0 = b1i and the family {T λD} is increasing
in λ, we have T λD(aij, x) > 0 for each x > 0, which proves that Uij is the maximum of

STλD(aij, b
1
i ). Finally, let aij > b1i and b1i 6= 0. In this case, (1 + ((

1−b1i
b1i

)λ − (
1−aij
aij

)λ)1/λ)−1.
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Since T λD(aij, Uij) = b1i , we have Uij ∈ STλD(aij, b
1
i ). Also, as before, T λD(aij, x) > b1i for

each x > Uij. Therefore, Uij must be the maximum of the set STλD(aij, b
1
i ).

(b) Let i ∈ I2, j ∈ J and x ∈ STλD(dij, b
2
i ). Since STλD(dij, b

2
i ) 6= ∅, then we must have

dij ≥ b2i (because, if dij < b2i , then T λD(dij, x) ≤ T λD(dij, 1) = dij < b2i , ∀x ∈ [0, 1]). If
b2i = 0, then Lij = 0 from Definition 2. Therefore, T λD(dij, Lij) = T λD(dij, 0) = 0 = b2i and
obviously Lij = 0 ≤ x, ∀x ∈ STλD(dij, b

2
i ). Consequently, Lij = minx∈[0,1]{STλD(dij, b

2
i )}.

Otherwise, suppose that b2i 6= 0. In this case, we have

Lij = (1 + ((
1− b2i
b2i

)λ − (
1− dij
dij

)λ)1/λ)−1

Again, since T λD(dij, Lij) = b2i and T λD has the monotonicity property, we have Lij ∈
STλD(dij, b

2
i ) and T λD(dij, x) ≤ b2i for each x < Lij. Therefore, Lij must be the minimum of

the set STλD(dij, b
2
i ). This completes the proof.

e

Lemma 1 together with the corollaries 1 and 2 results in the following consequence.
Corollary 3. (a) For each i ∈ I1 and j ∈ J , STλD(aij, b

1
i ) = [0, Uij]. (b) If STλD(dij, b

2
i ) 6= ∅

for some i ∈ I2 and j ∈ J , then STλD(dij, b
2
i ) = [Lij, 1].

Definition 3. For each i ∈ I1, let STλD(ai, b
1
i ) =

{
x ∈ [0, 1]n : maxnj=1{T λD(aij, xj)} ≤ b1i

}
.

Similarly, for each i ∈ I2, let STλD(di, b
2
i ) =

{
x ∈ [0, 1]n : maxnj=1{T λD(dij, xj)} ≥ b2i

}
.

According to Definition 3 and the constraints stated in (2), sets STλD(ai, b
1
i ) and STλD(di, b

2
i )

actually denote the feasible solutions sets of the ith inequality maxj∈J{T λD(aij, xj)} ≤ b1i
(i ∈ I1) and maxj∈J{T λD(dij, xj)} ≤ b2i (i ∈ I2) of problem (1), respectively. Based on (2)
and Definitions 1 and 3, it can be easily concluded that for a fixed i ∈ I1, STλD(ai, b

1
i ) 6= ∅ iff

STλD(aij, b
1
i ) 6= ∅, ∀j ∈ J . On the other hand, by Corollary 1 we know that STλD(aij, b

1
i ) 6=

∅, ∀i ∈ I1 and ∀j ∈ J . As a result, STλD(aij, b
1
i ) 6= ∅ for each i ∈ I1. However, in contrast

to STλD(ai, b
1
i ), set STλD(di, b

2
i ) may be empty. Actually, for a fixed i ∈ I2, STλD(di, b

2
i ) is

nonempty if and only if STλD(dij, b
2
i ) is nonempty for at least some j ∈ J . Additionally,

for each i ∈ I2 and j ∈ J we have STλD(dij, b
2
i ) 6= ∅ if and only if dij ≥ b2i . These results

have been summarized in the following lemma.Part (b) of the lemma gives a necessary
and sufficient condition for the feasibility of set STλD(di, b

2
i ) (∀i ∈ I2). It is to be noted

that the lemma 2 (part (b)) also provides a necessary condition for problem (1).
Lemma 2. (a) STλD(ai, b

1
i ) 6= ∅, ∀i ∈ I1. (b) For a fixed i ∈ I2, STλD(di, b

2
i ) 6= ∅ iff

∪nj=1STλD(dij, b
2
i ) 6= ∅. Additionally, for each i ∈ I2 and j ∈ J , STλD(dij, b

2
i ) 6= ∅ iff

dij ≥ b2i .
Definition 4. For each i ∈ I2 and j ∈ J2

i , we define STλD(di, b
2
i , j) = [0, 1]× ...× [0, 1]×

[Lij, 1]× [0, 1]× ...× [0, 1], where [Lij, 1] is in the jth position.
In the following lemma, the feasible solutions set of the ith fuzzy relational inequality is
characterized.
Lemma 3. (a) STλD(ai, b

1
i ) = [0, Ui1] × [0, Ui2] × ... × [0, Uin], ∀i ∈ I1. (b) STλD(di, b

2
i ) =

∪j∈J2
i
STλD(di, b

2
i , j), ∀i ∈ I2.

Proof. (a) Fix i ∈ I1 and let x ∈ STλD(ai, b
1
i ). By Definition 3, xj ∈ [0, 1] for each
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j ∈ J , and maxnj=1{T λD(aij, xj)} ≤ b1i . The latter inequality implies T λD(aij, xj) ≤ b1i ,
∀j ∈ J . Thus, by Definition 1 and Corollary 3 we have xj ∈ STλD(aij, b

1
i ) = [0, Uij],

∀j ∈ J , which necessitates x ∈ [0, Ui1] × [0, Ui2] × ... × [0, Uin]. Conversely, suppose that
x ∈ [0, Ui1] × [0, Ui2] × ... × [0, Uin]. Then, by Corollary 3, xj ∈ [0, Uij] = STλD(aij, b

1
i ),

∀j ∈ J , which implies xj ∈ [0, 1] and T λD(aij, xj) ≤ b1i , ∀j ∈ J . Thus, x ∈ [0, 1]n and
maxnj=1

{
T λD(aij, xj)

}
≤ b1i . Therefore, by Definition 3, x ∈ SλD(ai, b

1
i ).

(b) Fix i ∈ I2 and let x ∈ STλD(di, b
2
i ). By Definition 3, x ∈ [0, 1]n and

maxnj=1

{
T λD(dij, xj)

}
≥ b2i . Then there exists some j0 ∈ J2

i such that T λD(dij0 , xj0) ≥ b2i .
Therefore, from Definition 1 and Corollary 3, it is concluded that xj0 ∈ STλD(dij0 , b

2
i ) =

[Lij0 , 1]. Now, from Definition 4 we have x ∈ STλD(di, b
2
i , j0). Thus, x ∈ ∪j∈J2

i
STλD(di, b

2
i , j).

Conversely, suppose that x ∈ STλD(di, b
2
i , j). Then there exists some j0 ∈ J2

i such that

x ∈ STλD(di, b
2
i , j0). Therefore, by Definition 4, x ∈ [0, 1]n and xj0 ∈ STλD(dij0 , b

2
i ) = [Lij0 , 1],

which implies T λD(dij0 , xj0) ≥ b2i . Thus, x ∈ [0, 1]n and maxnj=1

{
T λD(dij, xj)

}
≥ b2i , which

requires x ∈ STλD(di, b
2
i ).

e

Definition 5.
Let X(i) = [Ui1, Ui2, ..., Uin], ∀i ∈ I1. Also, let X(i, j) = [X(i, j)1, X(i, j)2, ..., X(i, j)n],
∀i ∈ I2 and ∀j ∈ J2

i , where

X(i, j)k =

{
Lij k = j

0 k 6= j

Lemma 3 together with Definitions 4 and 5, results in Theorem 1, which completely de-
termines the feasible region for the ith relational inequality.
Theorem 1. (a) STλD(ai, b

1
i ) = [0, X(i)], ∀i ∈ I1. (b) STλD(di, b

2
i ) = ∪j∈J2

i
[X(i, j),1],

∀i ∈ I2, where 0 and 1 are ndimensional vectors with each component equal to zero and
one, respectively.
Theorem 1 gives the upper and lower bounds for the feasible solutions set of the ith rela-
tional inequality. Actually, for each i ∈ I2, set STλD(di, b

2
i ) has the unique maximum (i.e.,

vector 1), but the finite number of minimal solutions X(i, j) (∀j ∈ J2
i ). Furthermore,

part (b) of Theorem 1 presents another feasible necessary condition for problem (1) as
stated in the following corollary.
Corollary 4. If STλD(A,D, b1, b2) 6= ∅, then 1 ∈ STλD(di, b

2
i ), ∀i ∈ I2 (i.e.,

1 ∈ ∩i∈I2STλD(di, b
2
i ) = STλD(D, b2)).

Proof. Let STλD(A,D, b1, b2) 6= ∅. Then, STλD(D, b2) 6= ∅, and therefore, STλD(di, b
2
i ) 6= ∅,

∀i ∈ I2. Now, Theorem 1 (part (b)) implies 1 ∈ STλD(di, b
2
i ), ∀i ∈ I2.

e

Lemma 4 describes the shape of the feasible solutions set for the fuzzy relational inequal-
ities Aϕx ≤ b1 and Dϕx ≥ b2, separately.
Lemma 4. (a) STλD(A, b1) = ∩i∈I1 [0, Ui1]×∩i∈I1 [0, Ui2]×...×∩i∈I1 [0, Uin]. (b) STλD(D, b2) =

∩i∈I2 ∪j∈J2
1
STλD(di, b

2
i , j).

Proof. The proof is obtained from Lemma 3 and equations STλD(A, b1) = ∩i∈I1STλD(ai, b
1
i )

and STλD(D, b2) = ∩i∈I2STλD(di, b
2
i ).

e

Definition 6. Let e : I2 → J2
i so that e(i) = j ∈ J2

i , ∀i ∈ I2, and let ED be the set of all
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vectors e. For the sake of convenience, we represent each e ∈ ED as an m2-dimensional
vector e = [j1, j2, ..., jm2 ] in which jk = e(k), k = 1, 2, ...,m2.
Definition 7. Let e = [j1, j2, ..., jm2 ] ∈ ED. We define X = mini∈I1{X(i)}, that is,
Xj = mini∈I1{X(i)j}, ∀j ∈ J . Moreover, let X(e) = [X(e)1, X(e)2, ..., X(e)n], where
X(e)j = maxi∈I2{X(i, e(i))j} = maxi∈I2{X(i, ji)j}, ∀j ∈ J .
Based on Theorem 1 and the above definition, we have the following theorem character-
izing the feasible regions of the general inequalities Aϕx ≤ b1 and Dϕx ≤ b2 in the most
familiar way.
Theorem 2. (a) STλD(A, b1) = [0, X],∀i ∈ I1. (b) STλD(D, b2) = ∪e∈ED [X(e),1].

Proof. (a) By considering Definitions 5 and 7, for each j ∈ J we have ∩i∈I1 [0, Uij] =
[0,mini∈I1{Uij}] = [0,mini∈I1{X(i)j}] = [0, Xj]. Therefore, part (a) of lemma 4 can be
rewritten as STλD(A, b1) = [0, X1] × [0, X2] × ... × [0, Xn] = [0, X], where 0 is the zero

vector. This proves part (a).
(b) From part (b) of lemma 4, STλD(D, b2) = ∩i∈I2 ∪j∈J2

i
[0, 1]× ...× [0, 1]× [Lij, 1]× [0, 1]×

...× [0, 1] = ∩i∈I2 ∪j∈J2
i

[X(i, j),1]. Therefore, from Definitions 6 and 7 we have

STλD(D, b2) = ∩i∈I2∪e∈ED [X(i, e(i)),1] = ∪e∈ED∩i∈I2 [X(i, e(i)),1] = ∪e∈ED [max
i∈I2
{X(i, e(i))},1]

where, the last equality is resulted from Definition 7. This completes the proof.
e

Corollary 5. Assume that STλD(A,D, b1, b2) 6= ∅. Then, there exists some e ∈ ED such

that [0, X] ∩ [X(e),1] 6= ∅.
Corollary 6. Assume that STλD(A,D, b1, b2) 6= ∅. Then, X ∈ STλD(D, b2).

Proof. Let STλD(A,D, b1, b2) 6= ∅. By Corollary 5, [0, X] ∩ [X(e
′
),1] 6= ∅ for some

e
′ ∈ ED. Thus, X ∈ [X(e

′
),1] that means X ∈ ∪e∈ED [X(x),1]. Therefore, from Theorem

2 (part (b)), X ∈ STλD(D, b2).
e

4 Feasible solutions set and simplification operations

In this section, two operations are presented to simplify the matrices A and D, and a nec-
essary and sufficient condition is derived to determine the feasibility of the main problem.
At first, we give a theorem in which the bounds of the feasible solutions set of problem (1)
are attained. As is shown in the following theorem, by using these bounds, the feasible
region is completely found.
Theorem 3. Suppose that STλD(A,D, b1, b2) 6= ∅. Then STλD(A,D, b1, b2) = ∪e∈ED [X(e), X].

Proof. Since STλD(A,D, b1, b2) = STλD(A, b1) ∩ STλD(D, b2), then by Theorem 2,

STλD(A,D, b1, b2) = [0, X] ∩ (∪e∈ED [X(e),1]) and the statement is established.
e

In practice, there are often some components of matrices A and D, which have no effect
on the solutions to problem (1). Therefore, we can simplify the problem by changing the
values of these components to zeros. We refer the interesting reader to [13] where a brief
review of such these processes is given. Here, we present two simplification techniques
based on the Dombi family of t-norms.
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Definition 8. If a value changing in an element, say aij, of a given fuzzy relation ma-
trix A has no effect on the solutions of problem (1), this value changing is said to be an
equivalence operation.
Corollary 7. Suppose that i ∈ I1 and T λD(aij0 , xj0) < bi,∀x ∈ STλD(A, b1). In this case,

it is obvious that maxnj=1{T λD(aij, xj)} ≤ b1i is equivalent to maxnj=1,j 6=j0{T
λ
D(aij, xj)} ≤ b1i ,

that is, resetting aij0 to zero has no effect on the solutions of problem (1) (since compo-
nent aij0 only appears in the ith constraint of problem (1)). Therefore, if T λD(aij0 , xj0) <
b1i , ∀x ∈ STλD(A, b1), then resetting aij0 to zero is an equivalence operation.

Lemma 5 (simplification of matrix A). Suppose that matrix Ã = (ãij)m1×n is resulted
from matrix A as follows:

ãij =

{
0 aij < b1i
aij aij ≥ b1i

for each i ∈ I1 and j ∈ J . Then, STλD(A, b1) = STλD(Ã, b1).

Proof. From corollary 7, it is sufficient to show that T λD(aij0 , xj0) < b1i ,∀x ∈ STλD(A, b1).

But, from the monotonicity and identity laws of T λD, we have T λD(aij0 , xj0) ≤ T λD(aij0 , 1) =
aij0 < b1i ,∀xj0 ∈ [0, 1]. Thus, T λD(aij0 , xj0) < b1i ,∀x ∈ STλD(A, b1).

e

Lemma 5 gives a condition to reduce the matrix A. In this lemma, Ã denote the simplified
matrix resulted from A after applying the simplification process. Based on this notation,
we define J̃1

i = {j ∈ J : STλD(ãij, b
1
i ) 6= ∅}(∀i ∈ I1) where ãij denotes (i, j)th component

of matrix Ã. So, from Corollary 1 and Remark 2, it is clear that J̃1
i = J1

i = J . Moreover,
since STλD(A,D, b1, b2) = STλD(A, b1)∩STλD(D, b2), from Lemma 5 we can also conclude that

STλD(A,D, b1, b2) = STλD(Ã,D, b1, b2). By considering a fixed vector e ∈ ED in Theorem

3, interval [X(e), X] is meaningful iff X(e) � X, the feasible solutions set of problem (1)
stays unchanged. In order to remove such infeasible intervals from the feasible region,
it is sufficient to neglect vectors generating infeasible solutions X(e) (i.e., solutions X(e)
such that X(e) � X). These considerations lead us to introduce a new set E

′
D = {e ∈

ED : X(e) ≤ X} to strengthen Theorem 3. By this new set, Theorem 3 can be written
as STλD(A,D, b1, b2) = ∪e∈E′D [X(e), X], if STλD(A,D, b1, b2) 6= ∅.

Lemma 6. Let Ij(e) = {i ∈ I2 : e(i) = j} and J(e) = {j ∈ J : Ij(e) 6= ∅},∀e ∈ ED.
Then,

X(e)j =

{
maxi∈Ij(e){Lie(i)} j ∈ J(e)

0 j /∈ J(e)

Now, the result follows by combining these two equations.
e

Corollary 8. e ∈ E ′D if and only if Lie(i) ≤ Xe(0),∀i ∈ I2.
Proof. Firstly, from the definition of set E

′
D, we note that e ∈ E ′D if and only if X(e)j ≤

Xj,∀j ∈ J . Now, let e ∈ E
′
D and by contradiction, suppose that Li0e(i0) > Xe(i0) for

some i0 ∈ I2. So, by setting e(i0) = j0, we have j0 ∈ J(e), and therefore lemma 6 implies
X(e)j0 = maxi∈Ij0 (e){Lie(i)} ≥ Li0e(i0) > Xe(i0). Thus, X(e)j0 > Xe(i0) that contradicts

e ∈ E ′D. The converse statement is easily proved by Lemma 6.
e

As mentioned before, to accelerate identification of the meaningful solutions X(e), we
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reduce our search to set E
′
D instead of set ED. As a result from Corollary 8, we can

confine set J2
i by removing each  ∈ J2

i , such that Lij > Xj before selecting the vectors
e to construct solutions X(e). However, lemma 7 below shows that this purpose can
be accomplished by resetting some components of matrix D to zeros. Before formally
presenting the lemma, some useful notations are introduced.
Definition 9 (simplification of matrix D). Let D̃ = (d̃ij)m2×n denote a matrix resulted
from D as follows:

d̃ij =

{
0 j ∈ J2

i and Lij > Xj

dij otherwise

Also, similar to Definition 1, assume that J̃2
i = {j ∈ J : STλD(d̃ij, b

2
i ) 6= ∅}(∀i ∈ I2) where

d̃ij denotes (u, j)th components of matrix D̃.

According to the above definition, it is easy to verify that J̃2
i ⊆ J2

i ,∀i ∈ I2. Furthermore,
the following lemma demonstrates that the infeasible solutions X(e) are not generated, if

we only consider those vectors generated by the components of the matrix D̃, or equiva-
lently vectors generated based on the set J̃2

i instead of J2
i .

Lemma 7. ED̃ = E
′
D, where ED̃ is the set of all functions e : I2 → J̃2

i so that

e(i) = j ∈ J̃2
i ,∀i ∈ I2.

Proof. Let e ∈ E
′
D. Then, by Corollary 8, Lie(i) ≤ Xe(i),∀i ∈ I2. Therefore, we have

d̃ie(i) = die(i),∀i ∈ I2, that necessitates J̃2
i = J2

i ,∀i ∈ I2. Since J̃2
i ⊆ J2

i ,∀i ∈ I2, then,
e(i) ∈ J2

i ,∀i ∈ I2, and therefore e ∈ ED. By contradiction, suppose that e /∈ E
′
D. So,

by Corollary 8, there is some i0 ∈ I2 such that Li0e(i0) > Xe(i0). Hence, d̃i0e(i0) = 0 (since
e(i0) ∈ J2

i0
and Li0e(i0) > Xe(i0)) and Li0e(i0) > 0. The latter inequality together with Def-

inition 2 implies b2i0 > 0. But in this case, T λD(d̃i0e(i0), x) = T λD(0, x) = 0 < b2i0 ,∀x ∈ [0, 1],
that contradicts e(i0) ∈ J2

i0
.

e

By Lemma 7, we always have X(e) ≤ X for each vector e, which is selected based on the

components of matrix D̃. Actually, matrix D̃ as a reduced version of matrix D, removes
all the infeasible intervals from the feasible region by neglecting those vectors generat-
ing the infeasible solutions X(e). Also, similar to Lemma 5 we have STλD(A,D, b1, b2) =

STλD(A, D̃, b1, b2). This result and Lemma 5 can be summarized by STλD(A,D, b1, b2) =

STλD(Ã, D̃, b1, b2).

Definition 10. Let L = (Lij)m2×n be a matrix whose (i, j)th component is equal to Lij.
We define the modified matrix L∗ = (L∗ij)m2×n from the matrix L as follows:

L∗ij =

{
+∞ Lij > X

Lij otherwise

As will be shown in the following theorem, matrix L∗ is useful for deriving a necessary
and sufficient condition for the feasibility of problem (1) and accelerating identification
of the set STλD(A,D, b1, b2).

Theorem 4. STλD(A,D, b1, b2) 6= ∅ iff there exists at least some j ∈ J2
i such that
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L∗ij 6= +∞,∀i ∈ I2.
Proof. Let x ∈ STλD(A,D, b1, b2). Then, from Corollary 5, there exists some e

′ ∈ ED such

that [X(e
′
), X] 6= ∅. Therefore, X(e

′
) ≤ X that implies e

′ ∈ E ′D. Now, by Corollary 8, we
have Lie′ (i) ≤ Xe′ (i), ∀i ∈ I2. Hence, by considering Definition 10, L∗

ie′ (i)
6= +∞,∀i ∈ I2.

Conversely, suppose that L∗ij1 6= +∞ for some ji ∈ J2
i ,∀i ∈ I2. Then, from Definition 10

we have

Lij1 ≤ Xji ,∀i ∈ I2 (3)

Consider vector e
′
= [j1, j2, ..., jm] ∈ ED. So, by noting Lemma 6,

X(e
′
)ji = maxi∈Ij(e′ ){Lie′ (i)},∀i ∈ I2, and X(e

′
)j = 0 for each j ∈ J − {j1, j2, ..., jm}.

These equations together with (3) imply X(e
′
) ≤ X that means [X(e

′
), X] 6= ∅. Now,

the result follows from Corollary 5.
e

5 Optimization of the problem

According to the well-known schemes used for optimization of linear problems such as (1)
[9, 13, 16, 26], problem (1) is converted to the following two sub-problems:

min Z1 =
n∑
j=1

c+j xj (4)

Aϕx ≤ b1

Dϕx ≥ b2

x ∈ [0, 1]n

and
min Z2 =

n∑
j=1

c−j xj (5)

Aϕx ≤ b1

Dϕx ≥ b2

x ∈ [0, 1]n

Where c+j = max{cj, 0} and c−j = min{cj, 0} for j = 1, 2, ..., n. It is easy to prove that X

is the optimal solution of (5), and the optimal solution of (4) is X(e
′
) for some e

′ ∈ E ′D.
Theorem 5. Suppose that STλD(A,D, b1, b2) 6= ∅, and X and X(e∗) are the optimal

solutions of sub-problems (5) and (4), respectively. Then cTx∗ is the lower bound of the
optimal objective function in (1), where x∗ = [x∗1, x

∗
2, ..., x

∗
n] is defined as follows:

x∗j =

{
Xj cj < 0

X(e∗)j cj ≥ 0
(6)

for j = 1, 2, ..., n.
Proof. Let x ∈ STλD(A,D, b1, b2). Then, from Theorem 3 we have x ∈ ∪

e∈ED
[X(e), X].

Therefore, for each j ∈ J such that cj ≥ 0, inequality x∗j ≤ xj implies c+j x
∗
j ≤ c−j xj. In

addition, for each j ∈ J such that cj < 0, inequality x∗j ≥ xj implies c−j x
∗
j ≤ c−j xj. Hence,

n∑
j=1

cjx
∗
j ≤

n∑
j=1

cjxj.
e
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Corollary 9. Suppose that STλD(A,D, b1, b2) 6= ∅. Then, x∗ = [x∗1, x
∗
2, ..., x

∗
n] as defined

in (6),is the optimal solution of problem (1).
Proof. As in the poof of Theorem 5, cTx∗ is the lower bound of the optimal objective
function. According to the definition of vector x∗, we have X(e∗)j ≤ x∗j ≤ Xj,∀j ∈ J ,

which implies x∗ ∈ ∪
e∈ED

[X(e), X] = STλD(A,D, b1, b2).
e

We now summarize the preceding discussion as an algorithm.
Algorithm 1 (solution of problem (1))
Given problem (1):

1. Compute Uij (∀i ∈ I1 and ∀j ∈ J) and Lij (∀i ∈ I2 and ∀j ∈ J) by Definition 2.

2. If 1 ∈ STλD(D, b2), then continue; otherwise, stop, the problem is infeasible (Corollary

4).

3. Compute vectorsX(i) (∀i ∈ I1) from Definition 5, and then vectorX from Definition
7.

4. If X ∈ STλD(D, b2), then continue; otherwise, stop, the problem is infeasible (Corol-

lary 6).

5. Compute simplified matrices Ã and D̃ from Lemma 5 and Definition 9, respectively.

6. Compute modified matrix L∗ from Definition 10.

7. For each i ∈ I2, if there exists at least some j ∈ J2
i such that L∗ij 6= +∞, then

continue; otherwise, stop, the problem is infeasible (Theorem 4).

8. Find the optimal solution X(e∗) for the sub-problem (4) by considering vectors

e ∈ ED̃ and set J̃2
i ,∀i ∈ I2 ( Lemma 7).

9. Find the optimal solution x∗ = [x∗1, x
∗
2, ..., x

∗
n] for the problem (1) by (6) (Corollary

9).

It should be noted that there is no polynomial time algorithm for complete solution of
FRIs with the expectation N 6= NP . Hence, the problem of solving FRIs is an NP-hard
problem in terms of computational complexity [2].

6 Construction of test problems and numerical ex-

ample

In this section, we present a method to generate random feasible regions formed as the
intersection of two fuzzy inequalities with Dombi family of t-norms. In section 5.1, we
prove that the max-Dombi fuzzy relational inequalities constructed by the introduced
method are actually feasible. In section 5.2, the method is used to generate a random test
problem for problem (1), and then the test problem is solved by Algorithm 1 presented
in section 4.
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6.1 Construction of test problems

There are several ways to generate a feasible FRI defined with max-Dombi composition.
In what follows, we present a procedure to generate random feasible max-Dombi fuzzy
relational inequalities:
Algorithm2 (construction of feasible Max-Dombi FRI)

1. Generate random scalars aij ∈ [0, 1], i = 1, 2, ...,m1 and j = 1, 2, ..., n, and b1i ∈
[0, 1], i = 1, 2, ...,m1.

2. Compute X by Definition 7.

Randomly select m2 columns {j1, j2, ..., jm1} from J = {1, 2, ..., n}.
For i ∈ {1, 2, ...,m2}, assign a random number from [0, Xji ] to b2i .

3. For i ∈ {1, 2, ...,m2}, if b2i 6= 0, then

Assign a random number from the following interval to diji :

[max{b2i , (1 + ((
1− b2i
b2i

)λ − (
1−Xji

Xji

)λ)1/λ)−1}, 1]

End

4. For i ∈ {1, 2, ...,m2}
For each k ∈ {1, 2, ...,m2} − {i}

Assign a random number from [0,1] to dkji .

End

End

5. For each i ∈ {1, 2, ...,m2} and each j /∈ {j1, j2, ..., jm2}
Assign a random number from [0,1] to dij∗ .

End

By the following theorem, it is proved that Algorithm 2 always generates random feasible
max-Dombi fuzzy relational inequalities.
Theorem 6. Problem (1) with feasible region constructed by Algorithm (2) has the
nonempty feasible solutions set (i.e., STλD(A,D, b1, b2) 6= ∅).

Proof. By considering the columns {j1, j2, ..., jm2} selected by Algorithm 2, let e
′

=
[j1, j2, ..., jm2 ]. We show that e

′ ∈ ED and X(e
′
) ≤ X. Then, the result follows from

Corollary 5. From Algorithm 2, the following inequalities are resulted for each i ∈ I2 :

(I) b2i ≤ Xji ; (II) b2i ≤ diji ; (III) (1 + ((
1−b2i
b2i

)λ − (
1−Xji

Xji

)λ)1/λ)−1 ≤ diji . By (I), we have

(1 + ((
1−b2i
b2i

)λ − (
1−Xji

Xji

)λ)1/λ)−1 ≤ 1. This inequality together with b2i ∈ [0, 1],∀i ∈ I2,

implies that the interval bmax{b2i , (1 + ((
1−b2i
b2i

)λ− (
1−Xji

Xji

)λ)1/λ)−1}, 1c is meaningful. Also,
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by (II), e
′
(i) = ji ∈ J2

i ,∀i ∈ I2. Therefore, e
′ ∈ ED. Moreover, since the columns

{j1, j2, ..., jm2} are distinct, sets Iji(e
′
)(i ∈ I2) are all singleton, i.e.,

Iji(e
′
) = {i},∀i ∈ I2 (7)

As a result, we also have J(e
′
) = {j1, j2, ..., jm2} and Ij(e

′
) = ∅ for each j /∈ {j1, j2, ..., jm2}.

On the other hand, from Definition 5, we have X(i, e
′
(i))e′ (i) = X(i, ji)ji = Liji and

X(i, e
′
(i))j = 0 for each j /∈ J − {ji}. This fact together with (7) and Lemma 6 implies

X(e
′
)ji = Liji ,∀i ∈ I2, and X(e

′
)j = 0 for j /∈ {j1, j2, ..., jm2}. So, in order to prove

X(e
′
) ≤ X, it is sufficient to show that X(e

′
)ji ≤ Xji ,∀i ∈ I2. But, from Definition 2,

X(e
′
)ji = Liji =

{
0 b2i = 0

(1 + ((
1−b2i
b2i

)λ − (
1−Xji

Xji

)λ)1/λ)−1 b2i 6= 0
(8)

Now, inequality (III) implies

(1 + ((
1− b2i
b2i

)λ − (
1−Xji

Xji

)λ)1/λ)−1 ≤ Xji (9)

Therefore, by relations (8) and (9), we have X(e
′
)ji ≤ Xji ,∀i ∈ I2. This completes the

proof.
e

6.2 Numerical example

Consider the following linear optimization problem (1) in which the feasible region has
been randomly generated by Algorithm 2 presented in section 5.1.

minZ = −8.9710x1 − 3.9130x2 + 1.6038x3 + 0.6193x4 + 8.0242x5 + 0.8110x6
0.4320 0.4785 0.1982 0.1792 0.8772 0.3343
0.5427 0.2568 0.1951 0.9689 0.7849 0.5966
0.7124 0.3691 0.3268 0.4075 0.4650 0.9020
0.0167 0.6618 0.8803 0.8445 0.8140 0.7021
0.8009 0.1696 0.4711 0.6153 0.8984 0.3775
0.1425 0.2788 0.4040 0.3766 0.4292 0.7350

ϕx ≤


0.9541
0.5428
0.5401
0.3111
0.0712
0.1820




0.5481 0.9790 0.4186 0.8882 0.6109 0.1240
0.2037 0.2833 0.1557 0.0236 0.9000 0.4708
0.3690 0.1338 0.8190 0.6074 0.1934 0.6454
0.2083 0.8082 0.6249 0.1108 0.7544 0.8569
0.4409 0.6853 0.7386 0.4075 0.9942 0.0434
0.9562 0.9095 0.2393 0.8841 0.3463 0.6916

ϕx ≥


0.309
0.0280
0.4555
0.0251
0.0712
0.0091


where |I1| = |I2| = |J | = 6 and ϕ(x, y) = T λD(x, y) = 1

1+

√
( 1−x

x )
2
+( 1−y

y )
2

(i.e., λ = 2).

Moreover, Z1 = 1.6038x3 + 0.6193x4 + 8.0242x5 + 0.8110x6 is the objective function of
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sub-problem (4) and Z2 = −8.9710x1−3.9130x2 is that of sub-problem (5). By Definition
2, matrices U = (Uij)6×6 and L = (Lij)6×6 are as follows:

U =


1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 0.5430 0.5567 0.6656
0.5715 1.0000 1.0000 1.0000 1.0000 0.5421
1.0000 0.3170 0.3115 0.3119 0.3123 0.3151
0.0712 0.0764 0.0715 0.0713 0.0712 0.0718
1.0000 0.2139 0.1906 0.1931 0.1889 0.1825

L =


0.0309 0.0309 0.0309 0.0309 0.0309 0.0317
0.0282 0.0281 0.0283 ∞ 0.0280 0.0280
0.0456 0.0477 0.0455 0.0455 0.0463 0.0455
0.0252 0.0251 0.0251 0.0256 0.0251 0.0251
0.0715 0.0712 0.0712 0.0716 0.0712 ∞
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091


Therefore, by Corollary 3 we have, for example: STλD(a31, b

1
3) = [0, U31] = [0, 0.5715] and

STλD(a55, b
1
5) = [0, U55] = [0, 0.0712]. STλD(d26, b

2
2) = [L26, 1] = [0.0280, 1] and STλD(d66, b

2
6) =

[L66, 1] = [0.0091, 1]. Also, from Definition 1, J2
1 = J2

3 = j24 = J2
6 = J = {1, 2, ..., 6}, J2

2 =
J − {4} and J2

5 = J − {6}. Moreover, the only components of matrix D such that
dij < b2i are as follows: d24 in the second row and d56 in the fifth row. Therefore, by
Lemma 2 (part (b)), STλD(di, b

2
i ) =

⋃6
j=1 STλD(dij, b

2
i ) 6= ∅, ∀i ∈ I2. By Definition 5,

we have X(1) =
[
1 1 1 1 1 1

]
, X(2) =

[
1 1 1 0.5430 0.5567 0.6656

]
, X(3) =[

0.5715 1 1 1 1 0.5421
]
, X(4) =

[
1 0.3170 0.3115 0.3119 0.3123 0.3151

]
,

X(5) =
[
0.0712 0.0764 0.0715 0.0713 0.0712 0.0718

]
,

X(6) =
[
1 0.2139 0.1906 0.1931 0.1889 0.1825

]
. Also, for example

X(5, 1) =
[
0.0715 0 0 0 0 0

]
, X(5, 2) =

[
0 0.0712 0 0 0 0

]
,

X(5, 3) =
[
0 0 0.0712 0 0 0

]
, X(5, 4) =

[
0 0 0 0.0716 0 0

]
,

X(5, 5) =
[
0 0 0 0 0.0712 0

]
. Therefore, by Theorem 1, STλD(ai, b

1
i ) = [0, X(i)],

∀i ∈ I1, and for example STλD(d5, b
2
5) =

⋃5
j=1[X(5, j),1], for the fifth row of matrix D (i.e.,

i = 5 ∈ I2). From Corollary 4, the necessary condition holds for the feasibility of the
problem. More precisely, we have

Dϕ1 =
[
0.9790 0.9000 0.8190 0.8569 0.9942 0.9562

]
≥[

0.0309 0.0280 0.0455 0.0251 0.0712 0.0091
]

= b2

that means 1 ∈ STλD(D, b2). From Definition 7,

X =
[
0.071247 0.076429 0.071481 0.071311 0.071237 0.07177

]
which determines the

feasible region of the first inequalities, i.e., STλD(A, b1) = [0, X] (Theorem 2, part (a)).Also,

DϕX =
[
0.0764 0.0749 0.0717 0.0764 0.0764 0.0764

]
≥[

0.0309 0.0280 0.0455 0.0251 0.0712 0.0091
]

= b2

Therefore, we have X ∈ STλD(D, b2), which satisfies the necessary feasibility condition

stated in Corollary 6. On the other hand, from Definition 6, we have |ED| = 32400.
Therefore, the number of all vectors e ∈ ED is equal to 32400. However, each solu-
tion X(e) generated by vectors e ∈ ED is not necessary a feasible solution. For exam-
ple, for e

′
= [2, 5, 3, 6, 4, 1] we attain from Definition 7, X(e

′
) = maxj∈I2{X(i, e

′
(i))} =

max{X(1, 2), X(2, 5), X(3, 3), X(4, 6), X(5, 4), X(6, 1)} where
X(1, 2) =

[
0 0.0309 0 0 0 0

]
, X(2, 5) =

[
0 0 0 0 0.0280 0

]
,
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X(3, 3) =
[
0 0 0.0455 0 0 0

]
, X(5, 4) =

[
0 0 0 0.0716 0 0

]
,

X(6, 1) =
[
0.0091 0 0 0 0 0

]
. Therefore,

X(e
′
) =

[
0.0091 0.0309 0.0455 0.0716 0.0280 0.0251

]
It is obvious that X(e

′
) � X

(actually, X(e
′
)4 > X4) which means X(e

′
) /∈ STλD(A,D, b1, b2) from Theorem 3.

From the first simplification (Lemma 5), resetting the following components aij to zeros
are equivalence operations: a1j(j = 1, 2, ..., 6); a21, a22, a23; a32, a33, a34, a35; a41; a61. So,

matrix Ã is resulted as follows:

Ã =


0 0 0 0 0 0
0 0 0 0.9689 0.7849 0.5966

0.7124 0 0 0 0 0.9020
0 0.6618 0.8803 0.8445 0.8140 0.7021

0.8009 0.1696 0.4711 0.6153 0.8984 0.3775
0 0.2788 0.4040 0.3766 0.4292 0.7350


Also, by Definition 9, we can change the value of components d51 and d54 to zeros. For
example, since 1 ∈ J2

5 and L51 = 0.0715 > 0.071237 = X5, then d̃51 = 0. Simplified

matrix D̃ is obtained as follows:

D̃ =


0.5481 0.9790 0.4186 0.8882 0.6109 0.1240
0.2037 0.2833 0.1557 0.0236 0.9000 0.4708
0.3690 0.1338 0.8190 0.6074 0.1934 0.6454
0.2083 0.8082 0.6249 0.1108 0.7544 0.8569

0 0.6853 0.7386 0 0.9942 0.0434
0.9562 0.9095 0.2393 0.8841 0.3463 0.6916


Additionally, J̃2

1 = J̃2
3 = J̃2

4 = J̃2
6 = J , J̃2

2 = J−{4}, and J̃2
5 = J−{1, 4, 6}. Based on these

results and Lemma 7, we have |ED| = |E ′D| = 19440. Therefore, the simplification pro-
cesses reduced the number of the minimal candidate solutions from 32400 to 19440, by re-
moving 12960 infeasible points X(e). Consequently, the feasible region has 19440 minimal
candidate solutions, which are feasible. In other words, for each e ∈ ED, we have X(e) ∈
STλD(A,D, b1, b2). However, each feasible solution X(e) (e ∈ ED) may not be a minimal

solution for the problem. For example, by selecting e
′
= [1, 1, 3, 2, 3, 6], the corresponding

solution is obtained as X(e
′
) =

[
0.0309 0.0251 0.0712 0 0 0.0091

]
. Although X(e

′
)

is feasible (because of the inequality X(e
′
) ≤ X) but it is not actually a minimal solution.

To see this, let e
′′

=
[
3 3 3 3 3 3

]
. Then, X(e

′′
) =

[
0 0 0.0712 0 0 0

]
. Obvi-

ously, X(e
′′
) ≤ X(e

′
) which shows that X(e

′
) is not a minimal solution. Now, we obtain

the modified matrix L∗ according to Definition 10:

L∗ =


0.0309 0.0309 0.0309 0.0309 0.0309 0.0317
0.0282 0.0281 0.0283 ∞ 0.0280 0.0280
0.0456 0.0477 0.0455 0.0455 0.0463 0.0455
0.0252 0.0251 0.0251 0.0256 0.0251 0.0251
∞ 0.0712 0.0712 ∞ 0.0712 ∞

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091


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As is shown in matrix L∗, for each i ∈ I2 there exists at least some j ∈ J2
i such that L∗ij 6=

+∞. Thus, by Theorem 4 we have STλD(A,D, b1, b2) 6= ∅. Finally, vector X is optimal

solution of subproblem (5). For this solution, Z2 = −8.9710X1 − 3.9130X2 = −0.93823.
Also, Z = cTX = −0.1496. In order to find the optimal solution X(e∗) of sub-problems
(4), we firstly compute all minimal solutions by making pairwise comparisons between all
solutions X(e) (∀e ∈ ED), and then we find X(e∗) among the resulted minimal solutions.
Actually, the feasible region has three minimal solutions as follows:

e1 = [2, 2, 2, 2, 2, 2]→ X(e1) =
[
0 0.0712 0 0 0 0

]
e2 = [3, 3, 3, 3, 3, 3]→ X(e2) =

[
0 0 0.0712 0 0 0

]
e3 = [5, 5, 5, 5, 5, 5]→ X(e3) =

[
0 0 0 0 0.0712 0

]
By comparison of the values of the objective function for the minimal solutions, X(e1)

is optimal in (4) (i.e., e∗ = e1). For this solution, Z1 =
n∑
j=1

c+j X(e1)j = 1.6038X(e1)3 +

0.6193X(e1)4 + 8.0242X(e1)5 + 0.8110X(e1)6 = 0
Also, Z = cTX(e1) = −0.27877. Thus, from Corollary 9, x∗ =

[
0.0712 0.0764 0 0 0 0

]
and then Z∗ = CTx∗ = −0.93823.

7 Conclusion

In this paper, we proposed an algorithm for finding the optimal solution of linear problems
subjected to two fuzzy relational inequalities with Dombi family of t-norms. The feasible
solutions set of the problem is completely resolved and a necessary and sufficient condition
and three necessary conditions were presented to determine the feasibility of the problem.
Moreover, depending on the max-Dombi composition, two simplification operations were
proposed to accelerate the solution of the problem. Finally, a method was introduced for
generating feasible random max- Dombi inequalities. This method was used to generate
a test problem for our algorithm. The resulted test problem was then solved by the
proposed algorithm. As future works, we aim at testing our algorithm in other type of
linear optimization problems whose constraints are defined as FRI with other well-known
t-norms.
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