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ABSTRACT

ARTICLE INFO

In general, computation of graph vulnerability parame-
ters is NP-complete. In past, some algorithms were in-
troduced to prove that computation of toughness, scat-
tering number, integrity and weighted integrity param-
eters of interval graphs are polynomial.

In this paper, two different vulnerability parameters of
graphs, tenacity and rupture degree are defined.

In general, computing the tenacity of a graph is NP-hard
and the rupture degree of a graph is NP-complete, but
in this paper, we will show that these parameters can be
computed in polynomial time for interval graphs.
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1 Introduction

Study of the reliability of the networks is very critical to obtain efficiency goals. Potential
vulnerabilities mean that in an unfriendly external environment, how a system can be
sustained in the face of destruction. Graph theoretic approaches are used in this paper.
Different models of graph theory, under various assumptions, are presented for the study
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and assessment of network vulnerabilities.

The concept of tenacity of a graph G was introduced in [2], [3], as a useful measure
of the ”vulnerability” of G. In [3], Cozzens et al. calculated tenacity of the first and
second case of the Harary Graphs but they didn’t show the complete proof of the third
case. In [13] we showed a new and complete proof for case three of the Harary Graphs.
In [7], we compared integrity, connectivity, binding number, toughness, and tenacity for
several classes of graphs. The results suggest that tenacity is the most suitable measure
of stability or vulnerability in that for many graphs it is best able to distinguish between
graphs that intuitively should have different levels of vulnerability.

In [[7] - [14]] Moazzami studied more about this parameter. Conceptually graph vulner-
ability relates to the study of graph intactness when some of its elements are removed.
The motivation for studying vulnerability measures is derived from design and analysis of
networks under hostile environment. Graph tenacity has been an active area of research
since the concept was introduced in 1992. Cozzens et al. in [2], introduced measure of
network vulnerability termed the tenacity, T'(G).

The tenacity T(G) of a graph G is defined as:

T(G) = min{|S|+m(G — 8)/c(G(V —8)} SCV (1)

where ¢(G — S) and m(G — 5), respectively, denote the number of components and the
order of a largest component in G — S.

In [14], Dadvand and Moazzami proved that computing the tenacity of a graph is NP-hard
in general. So, it is an interesting problem to determine tenacity for some special graphs.

In [5], the rupture degree of a noncomplete connected graph G is defined as:

r(G) = max{c(G(V —S)) = S| —m(G - S)} SCV,e(GV—-S8)=2 (2

where ¢(G — S) and m(G — S), respectively, denote the number of components and the or-
der of a largest component in G — S and for a complete graph K,,, we have r(K,) = 1—n.
This parameter can be used to measure the vulnerability of a graph. To some extent, it
represents a trade-off between the amount of work done to damage the network and how
badly the network is damaged. The rupture degree of a graph is NP-complete.

In [4], [15], some algorithms were introduced that proved toughness, scattering number,
integrity and weighted integrity parameters of interval graphs are polynomial. In this
paper, it is shown that for these graphs, tenacity and rupture degree parameters can also
be computed in polynomial time.
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Preliminaries:

At first we present several notes about undirected graph[4]:

For a graph G, with n vertices, G[WW] is a subgraph of G induced by the vertex set W C V.
The number of connected component of G is denoted by ¢(G), and maximum order of a
component of G by n(G). A set S C V is a separator of graph G if we have at least two
components:

c(G(V—=9)>1
We denote vertex connectivity of G by x(G) and an independent set of G by a(G).

Information about the fields of struct:

nes(G — S) is the largest component for minimum cut S and component number c.
n.s(G — S) is the number of components for minimum cut S and largest component n.

Tenacity parameter defined in equation 1 can easily be derived from finding the minimum
of whole T_Cell fields of our structs:

—|—nc75(G — S)
Cnys(G — S)

Rupture degree parameter defined in equation 2 can easily be derived from finding the
maximum of whole R_Cell fields of our structs:

T(G) = min{ 151

} = min{T _Cell} (3)

r(G) = max{c,s(G —5) —|S| —n.s(G—S5)} = max{R_Cell} (4)

Interval graphs

Given intervals [a;, b;] for i = 1,...,n. An intersection graph G = (V, E) is constructed
with vertices v = 1,...,n and edges E = {(7,7)|[a:, b;] N [a;, b;] # 0}, it means that if the
intervals have intersection with each other, the corresponding vertices will have edges.

a; is called the left end point and b; called right end point. We can assume that neither
of these two intervals, don‘t have the same end points. For example, a; # a; and b; # b;
for i # j and a; # b; for all ¢ and j.

Definition 1.1. A scanline in the interval diagram is any straight vertical line segment
with an end point on horizontal line (Real numbers axis) such that this end point doesnt
coincide with any end points of intervals.

Each scanline s generates a set S(s) of vertices of the graph, such that for each vertex v;
in this set, interval [a;, b;] has nonempty intersection with scanline s (for i =1,...,n).
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S(s1) = {v1, va, vs}
S(s2) = {vs, v}

We say that two scanlines s; and sy are equivalent together, if we have

5(81) = S(Sg)

Definition 1.2.

Let s1 and sy be non-equivalent scanlines such that sy is in left of so, piece p(s1,$2) con-
sists of all vertices v; such that intervals [a;,b;] are between sy and sy. The end points of
these intervals |a;, b;] are completely between the end points of s1 and se on horizontal line.

Algorithms for interval graphs:

Observation 1.3.
According to (tablel of [4]), a maximal set of pairwise non-equivalent scanlines of any
interval diagram of an interval graph with n vertices, consists of O(n) scanlines.

Finding the toughness, Scattering Number and Integrity param-
eters of interval graphs:

According to (tablel of [4]), the auxiliary directed graphs D¢(G) and D}(G) have both
O(n) vertices and O(n?) edges for any interval graph G of order n.

Therefore the running time of algorithms computing (¢;)", and (n;)7, is O(n?) and so
the graph parameters like: toughness, Scattering Number and Integrity can simply com-
puted in O(n?).

Finding the Tenacity and rupture degree parameters of interval
graphs

Given an interval diagram of an interval graph G(V, E), the algorithms computing n. s(G—
S) and ¢, s(G — S) solve suitable shortest path problem on auxiliary directed acyclic
graphs whose vertex set is a maximal set of pairwise nonequivalent scanlines in the di-
agram. Among these scanlines we denote by s; and si the scanline totally to the left
and totally to the right, respectively, of all intervals [a;, b;] of the interval diagram (for
i=1,...,n).
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Construction of the auxiliary graphs D}, (G):

Construct the following auxiliary graphs D¢, (G), to € {1,...,n}. The vertex set of
Dy, (G) is a maximal set of pairwise nonequivalent scanlines in the diagram. There is
an edge directed from s; to s in D}, (G) if 1 <= p(s1, s2) <= t2. The weight of an edge
(s1,82) of Dy, (G) is W (s1,s2) = [S(s1)\S(s2)]-

Considering [4], we can conclude the following lemma:

Lemma 1.4. Let wi‘(t1), for ¢(G) + 1 <= t; <= a(Q) , be the minimum weight of
Z; Lw(sj_1,8;) of a path py, = (S0, S1,...,8,) andr >=1, , s = s, , 5, = Sg among all
paths in the graph Di¢, (G) from sy to sp on at least t; edges, then wiS(t;) = min{|S| :
ns(G) >=t; && n.s(G) <=to} forc(G)+1 <=1t <=a(G) and ty € {1,2,...,n}.

Proof:
With considering the definition of constructing the auxiliary graphs D¢, (G), we have
that the largest component conditions of graphs are satisfied:

nes(G) <=ty forta e {1,2,...,n}
Now the paths from sz, to sg in the auxiliary graphs D¢, (G) have at most a(G) edges.

By [4], there is a collection of pairwise nonequivalent scanlines (sg, s1,...,s,), r > t; such
that each of p(sg,s1), p(s;,s;41) for all j € {1,2,...,7 — 2} and p(s,_1, Sg) is between
1 and t5, induces a connected subgraph of G and S = Ujo 1 S(s;) is a set of minimum
cardinality with ¢(G[V\S]) > t;.

Hence, a shortest (minimum weight) path p;, = (so, s1,...,s,) and r >= t; from s, to
S in D{Lftz(G) determines such a set as S = U;;i S(sj). Moreover wpt(ty) = mm{\S|
cns(G) >=t && n.s(G) <=ty} for ¢(G)+1 <=1t <= a(G) and t2 e{1,2,...,n}.
Remark 1.5.

There are algorithms for given interval graph G that compute tenacity parameter T(Q)
and rupture degree parameter r(G) in polynomial time O(n*).

Proof:

It is not very hard to show that for given interval diagram each of the two auxiliary di-
rected graphs D°(G) and Dj (G) and the corresponding edge weights can be computed in
time O(n?) as it shown in [4 ] Similarly, the auxiliary graphs D¢, (G) and the correspond-
ing edge weights can be computed in polynomial time O(n?), for c(G)+1 <=t <= a(q)
and ty € {1,2,...,n}.

Given D}, (G), according to [4] the minimum weight of a path from s; to s on at
least t; edges for all ¢(G) +1 <= t; <= a(G) can be determined in polynomial time
OV (Die,(G)) + n x E(Di¢,,(G))) = O(n ) for each ty € {1 2,...,n}, So total time
complexity computed as follow: O(ty) x O(n?) = O(n) x O(n?) = O(n4).
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Therefore the minimum weight of a path from s, to s (or minimum cut S) can be com-
puted in polynomial time for all cases. So for all polynomial cases, we fill the fields of our
struct like: min cut S, n.g, ¢, 5, T-cell and R_cell.

According to equations 1, 3, Tenacity parameter of an interval graph T'(G) can be com-
puted by finding the minimum of T _cell fields of all polynomial cases.

According to equations 2, 4, rupture degree parameter of a trapezoid graph r(G) can be
computed by finding the maximum of R_cell fields of all polynomial cases.

Conclusion:

Computing the tenacity of a graph is NP-hard and The rupture degree of a graph is
NP-complete, in general. As discussed in above algorithms, the graph vulnerability pa-
rameters like: Tenacity and rupture degree are polynomial for interval graphs.
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