تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,119,354 |
تعداد دریافت فایل اصل مقاله | 97,225,724 |
بهینهسازی مدل دراستیک و سینتکس در ارزیابی آسیبپذیری آبخوان دشت شبستر | ||
اکوهیدرولوژی | ||
مقاله 7، دوره 6، شماره 1، فروردین 1398، صفحه 77-88 اصل مقاله (1.03 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2018.264421.940 | ||
نویسندگان | ||
فاطمه کدخدایی ایلخچی1؛ اصغر اصغری مقدم* 2؛ رحیم برزگر3؛ مریم قرهخانی3 | ||
1دانشجوی کارشناسی ارشد هیدروژئولوژی، دانشکدۀ علوم طبیعی، دانشگاه تبریز | ||
2استاد، دانشکدۀ علوم طبیعی، دانشگاه تبریز | ||
3دانشجوی دکتری هیدروژئولوژی، دانشکدۀ علوم طبیعی، دانشگاه تبریز | ||
چکیده | ||
دشت شبستر منطقۀ فعالی از نظر کشاورزی است و استفاده از منابع آب زیرزمینی در آن بهعلت کمبود آب سطحی اهمیت بسیار زیادی دارد. رشد روزافزون جمعیت و فعالیتهای صنعتی و کشاورزی و به تبع پسماندهای ناشی از آنها، احتمال آلودگی این آبخوان را افزایش میدهد. بنابراین، ارزیابی آسیبپذیری آبخوان این دشت برای توسعه، مدیریت و تصمیمهای کاربری اراضی، چگونگی پایش کیفی منابع آب زیرزمینی و جلوگیری از آلودگی این منابع، بسیار مفید است. در مطالعۀ حاضر بهمنظور ارزیابی آسیبپذیری آبخوان دشت شبستر از روش دراستیک و سینتکس استفاده شده است. با توجه به اینکه رتبهها و وزنهای مدلهای آسیبپذیری تا حدودی به نظر کارشناسی مربوط است، برای بهبود رتبهها در هر دو مدل دراستیک و سینتکس از روش ویلکوکسن و بهمنظور بهینهسازی وزنها، از روش آماری ساده و الگوریتم ژنتیک استفاده شد. در نهایت، مدلهای بهینهشدۀ ویلکوکسن-آماری- دراستیک-، ویلکوکسن-الگوریتم ژنتیک- دراستیک-، ویلکوکسن-آماری- سینتکس و ویلکوکسن- الگوریتم ژنتیک- سینتکس ساخته شد. در تمام مدلهای بهینهسازی ضریب تعیین بین غلظت نیترات و شاخص آسیبپذیری مربوط به آن نسبت به مدل اولیه افزایش یافت. ضریب تعیین بالاتر مدل سینتکس-ویلکوکسن-الگوریتم ژنتیک (46/0=) نسبت به دیگر مدلهای بهینهشده نشاندهندۀ کارایی بهتر آن در منطقۀ مطالعهشده است. | ||
کلیدواژهها | ||
آسیبپذیری؛ بهینهسازی؛ دراستیک؛ سینتکس؛ شبستر | ||
عنوان مقاله [English] | ||
Optimization of the DRASTIC and SINTACS Models in Assessing the Vulnerability of the Shabestar Plain Aquifer | ||
نویسندگان [English] | ||
Fatemeh Kadkhodaie1؛ Asghar Asghari Moghaddam2؛ Rahim Barzegar3؛ Maryam Gharekhani3 | ||
1MSc. Student in Hydrogeology, Faculty of Natural Sciences, University of Tabriz | ||
2Professor in Hydrogeology, Faculty of Natural Sciences, University of Tabriz | ||
3Ph.D. Student in Hydrogeology, Faculty of Natural Sciences, University of Tabriz | ||
چکیده [English] | ||
Shabestar plain is an active agricultural area and the utilization of groundwater resources is extremely important due to the shortage of surfaces water resources. Increasing of population and technological and agricultural activities possibly causes the aquifer contamination in this area. Therefore, assessing the groundwater vulnerability of this aquifer will be very useful for development, management and land use decisions, to monitoring of the groundwater resources quality and preventing the contaminations of groundwater resources. In this study DRASTIC and SINTACS methods were used to assess the vulnerability of the Shabestan plain aquifer. Considering that the ratings and weights of the DRASTIC and SINTACS models are somewhat expertly Wilcoxon rank-sum test (WRST) method was used to improve the ratings in both the models and in order to optimize weights, simple statistical (SS) and genetic algorithm(GA) methods were used. Finally, the optimized WRST-SS-DRASTIC, WRST-GA-DRASTIC, WRST-SS-SINTACS, WRST-GA-SINTACS models were made. In all optimization models, the determination coefficient between the nitrate concentration and the vulnerability index was increased relative to the original model. The higher determination coefficient of the WRST-GA-SINTACS model than other optimized models represents the better performance of this optimized model in the study area. | ||
کلیدواژهها [English] | ||
Vulnerability, Shabestar, DRASTIC, SINTACS, Optimization | ||
مراجع | ||
[1]. Kazakis N, Konstantions SV. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the Drastic method using quantitative parameters. Journal of Hydrology. 2015;525:13-25. [2]. Patrikaki O, Kazakis N, Voudouris K. Vulnerability map: a useful tool for groundwater protection: an example from Mouriki Basin, North Greece. Fresenius Environ. Bull. 2012; 21(8c): 2516-2521. [3]. Vrba J, Zoporotec A. Guidebook on mapping groundwater vulnerability. International Contributions to Hydrogeology.Verlag Heinz Heise GmbH and Co. KG.1994. [4]. Stigter T, Riberio L, Carvalho Dill A. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinization and nitrate contamination level in two agriculture regions in the south of Portugal. Hydrogeol J. 2006; 14:79-99. [5]. Almasri M.N. Assessment of intrinsic vulnerability to contamination for Gaza costal aquifer. Jornal of Environmental Management. 2008; 88(4): 577–593. [6]. Babiker I S, Mohamed M M A, Hiyama T, Kato K. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara, Heights, Gifu Prefecture, central Japan. Science of the Total Environment. 2005; 345:127–140. [7]. Hamza M. H, Added A, Rodriguez R, Abdeljaoued S, Ben Mammou A. GIS-based DRASTIC vulnerability and net recharge reassessment inan aquifer of a semi-arid region (Metline-Ras Jebel-RafRaf aquifer, Northern Tunisia). Journal of Environmental Management. 2007; 84: 12-19. [8]. Gogu R.C, Dassargues A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental geology. 2000; 39(6): 549–559. [9]. HarterT, Walker L. Assessing vulnerability of groundwater. US Natural Resources Conservation Service. 2001. [10]. Asghari Moghaddam A, Fijani E, Nadiri A. Optimization of DRASTIC model by artificial intelligence for groundwater vulnerability assessment in Maragheh- Bonab plain. Journal of Geoscience. 2015; 94:169-176 (In Persian). [11]. Panagopoulos G, Antonakos A, Lambrakis N. Optimization of DRASTIC model for groundwater vulnerability assessment, by the use of simple statistical methods and GIS. Hydrogeology Journal. 2006; 14:894-911. [12]. Secunda S, Collin ML, Melloul AJ. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management. 1998; 54:39-57. [13]. McLay CDA, Dragten R, Sparling G, Selvarajah N. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollutants. 2001; 115:191-204. [14]. Fijani E, Nadiri A, Asghari Moghaddam A, Tsai F & Dixon B. Optimization of DRASTIC Method by Supervised Committee Machine Artificial Intelligence to Assess Groundwater Vulnerability for Maragheh-Bonab Plain Aquifer, Iran. Journal of hrdrology. 2013, 530, 89-100. [15]. Nadiri A.A, Sedghi Z, Khatibi R, Sadeghfam S,. Mapping Specific Vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks. Journal of Environmental Management, 2018. 415-428. [16]. Nadiri A.A, Gharekhani M, Khatibi R. Mapping Aquifer vulnerability Indices using Artificial Intelligence-running Multiple Frame works (AIMF) With Supervised and unsupervised Learning, Water resource Management, 2018. 3023-3040. [17]. Barzegar R, Asghari Moghaddam A, Nadiri A, Fijani E. Using different fuzzy logic methods to optimize DRASTIC model, case study: Tabriz plain aquifer. Journal of Geoscience. 2015; 95:211-222 (In Persian). [18]. Hamamin D.F & Nadiri A.A. Supervised Committee Fuzzy logic model to assess groundwater intrinsic vulnerability in multiple aquifer systems. Arabian Journal of Geoscineces, 2018. 1-14. [19]. Aller L, Bennett T, Lehr J.H, Petty R.J, Hackett G. DRASTIC: A Standardized System For Evaluating Ground Water Pollution [20]. Civita M..Legenda unificata per le Carte della vulnerabilita dei corpi idrici sotterranei/ Unified legend for the aquifer pollution vulnerability Maps, Studi sulla Vulnerabilita degli Acquiferi. Pitagora Edit, Bologna. 1990. [21]. Wilcoxon, Frank (1945) Individual comparisons by ranking methods. Biometrics Bulletin. 1 (6): 80–83. doi:10.2307/3001968. [22]. Ahmadi J, Akhondi L, Abbasi H, Khashei-Siuki A, Alimadadi M. Determination of aquifer vulnerability using DRASTIC model and a single parameter sensitivity analysis and acts and omissions (Case Study: Salafchegan-Neyzar Plain). J of Water and Soil Conservation. 2013; 20(3): 1-25. [23]. Samey A. A and C.Gang. A GIS Based DRASTIC Model for the Assessment of Groundwater Vulnerability to Pollution in West Mitidja: Blida City, Algeria. Research Journal of Applied Sciences. 2008; 3(7): 500-507 [24]. Jafari SM, Nikoo MR. Groundwater risk assessment based on optimization framework using DRASTIC method.Arab J Geosci. 2016; 9:742, 7-14. [25]. Piscopo G. Groundwater vulnerability map, explanatory notes, Castlereagh Catchment, NSW, Department of Land and Water Conservation, Australia. 2001. [26]. Huan H, Wang J, Teng Y. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: Acase study in Jilin City of northeast china, Sci Total Environ. 2012. 440:14-23. | ||
آمار تعداد مشاهده مقاله: 653 تعداد دریافت فایل اصل مقاله: 477 |