تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,119,078 |
تعداد دریافت فایل اصل مقاله | 97,225,343 |
تعیین مهمترین عوامل مؤثر بر تخلیۀ آب زیرزمینی زیردریایی به سواحل خلیج فارس با استفاده از رگرسیون چندمتغیره | ||
اکوهیدرولوژی | ||
مقاله 14، دوره 6، شماره 1، فروردین 1398، صفحه 165-176 اصل مقاله (1.12 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2018.269991.989 | ||
نویسندگان | ||
محسن فرزین* 1؛ علیاکبر نظری سامانی2؛ محمدرضا میرزایی قرهلر1؛ محسن آرمین1 | ||
1استادیار دانشکدۀ منابع طبیعی، دانشگاه یاسوج | ||
2دانشیار، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج | ||
چکیده | ||
هدف از پژوهش حاضر، تعیین مهمترین شاخصهای ژئومورفومتری و ویژگیهای ساختاری مؤثر بر تخلیۀ جریان آب زیرزمینی زیردریایی در سواحل خلیج فارس است. به این منظور، ابتدا نقشۀ 23 عامل احتمالی مؤثر در سه شعاع 10 (بافر 1)، 20 (بافر 2) و 30 (بافر 3) کیلومتری از ساحل به سمت خشکی شامل نقشههای سنگشناسی، تراکم خطواره و گسل، پهنهبندی بارندگی و دما، پوشش گیاهی، تراکم آبراهه، شیب، طبقات ارتفاع، فراوانی و پراکنش چشمهها و همچنین انحناهای پروفیل، طول، مقطع عرضی، عمومی، صفحهای، مماسی، کل و نسبت سطح، زبری توپوگرافی، اندازۀ قدرت بردار، موقعیت توپوگرافی، رطوبت توپوگرافی در محیط نرمافزارهای ENVI 5.3، Arc GIS10.3.1 و SAGA GIS 2.1.0 تهیه شدند. سپس، با استفاده از روش تحلیل رگرسیون چندمتغیره، مهمترین عوامل مؤثر و سهم هر یک از آنها در حضور نواحی تخلیۀ جریان آب زیرزمینی زیردریایی تعیین شد. نتایج نشان داد انحنای صفحهای و پروفیل مهمترین انحناهایی هستند که نتایج و مقادیری متضاد با هم دارند. شاخصهای مؤثر بر حضور نواحی تخلیۀ جریان آب زیرزمینی زیردریایی در فصل سرد عبارتاند از: تعداد چشمۀ بافر 2 و 3، خیسی توپوگرافی بافر 3، تراکم آبراهۀ بافر 1 و 3، تراکم گسل بافر 2 و سطح آبخوان بافر 1 و در فصل گرم عبارتاند از: تعداد چشمۀ بافر 2 و 3، خیسی توپوگرافی بافر 1، انحنای مقطع عرضی بافر 2، انحنای کل بافر 2، شاخص دما در بافر 3، تراکم گسل بافر 3 و سطح آبخوان بافر 1. بهطور کلی، میتوان نقشۀ شاخصهای تعداد چشمه، خیسی توپوگرافی، انحنای مقطع عرضی، انحنای کل، شاخص دما، تراکم گسل و سطح آبخوان برای کل سواحل خلیج فارس را مبنا قرار داد و نقشۀ نواحی دارای پتانسیل حضور چشمۀ زیردریایی را ترسیم کرد. | ||
کلیدواژهها | ||
تخلیۀ آب زیرزمینی زیردریایی؛ خلیج فارس؛ ژئومورفومتری؛ ویژگیهای ساختاری | ||
عنوان مقاله [English] | ||
Determination of the Most Important Factors Affecting Submarine Groundwater Discharge to the Persian Gulf Coastlines using Multivariate Regression | ||
نویسندگان [English] | ||
Mohsen Farzin1؛ Aliakbar Nazari Samani2؛ Mohamadreza Mirzaei Gharah Lar1؛ Mohsen Armin1 | ||
1Assistant Professor College of Natural Resources, Yasouj University, Yasouj | ||
2Associate Professor College of Natural Resources, University of Tehran, Karaj | ||
چکیده [English] | ||
The aim of this study is to determine the most important geomorphometric indices and structural features affecting Submarine Groundwater Discharge (SGD) into the Persian Gulf coastlines. For this purpose, firstly, the maps of lithology, density of lineament, zoning rainfall and temperature, vegetation cover index (NDVI), drainage density, slope, elevation classes, abundance and distribution of springs, profile, length, cross section, general, plate, tangent, total curvatures, and surface ratio, topographic roughness, Vector Ruggedness Measure, Topographic Position, and Topographic Wetness, were prepared on three radii of 10 (buffer 1), 20 (buffer 2) and 30 (buffer 3) km from the coast to the land, using ENVI 5.3, Arc GIS10.3.1, and SAGA GIS 2.1.0 software. Then, the most important factors and the contribution of them in presence the SGD areas were determined using multivariate regression analysis. The results showed that the plate and profile curvatures are the most important curvatures with opposite scores and values. Indicators affecting the presence of SGD areas for the cold season are: springs abundance on buffers 2 and 3, topographic wetness on buffer 3, drainage density on buffer 1 and 3, fault density on buffer 2 and aquifer surface on buffer 1, and for the warm season are: springs abundance on buffer 2 and 3, topographic wetness on buffer 1, cross section curve on buffer 2, total curvature on buffer 2, temperature index on Buffer 3, fault density on Buffer 3, and aquifer surface on buffer 1. In overall, the SGD mapping can be created by integration of several maps including springs abundance, topographic wetness, cross section curve, total curvature, temperature index, fault density, and aquifer surface. | ||
کلیدواژهها [English] | ||
Submarine Groundwater Discharge (SGD), geomorphometry, Structural Features, Persian Gulf | ||
مراجع | ||
[1]. Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Tanighchi M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry. 2003;66: 3–33. [2]. Lee E, Hyun Y, Lee K-K. Sea level periodic change and its impact on submarine groundwater discharge rate in coastal aquifer. Estuarine, Coastal and Shelf Science. 2013;121-122: 51-60. [3]. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment. 2006;367: 498–543. [4]. Oehler T, Mogollon JM, Moosdorf N, Winkler A, Kopf A, Pichler T. Submarine groundwater discharge within a landslide scar at the French Mediterranean coast. Estuarine, Coastal and Shelf Science. 2017; 198(A):128-137. [5]. Swarzenski, PW, Reich CD, Spechler RM, Kindinger JL, Moore WS. Using multiple geochemical tracers to characterize the hydrogeology of the submarine spring off Crescent Beach, Florida. Chemical Geology. 2001;179: 187–202 [6]. Hennig H, Mallast U, Merz R. Multi-temporal thermal analyses for submarine groundwater discharge (SGD) detection over large spatial scales in the Mediterranean. Geophysical Research Abstracts. 2015;17: 4929. [7]. Farzin M, Nazari Samani AK, Feiznia S, Kazemi GA. Determination of Submarine Groundwater Discharge Probable Areas into the Persian Gulf on Coastlines of Bushehr Province Using Standard Thermal Anomaly Map. Ecohydrology. 2017;4(2): 477-488. [Persian] [8]. Kalantari N, Keshavarzi MR, Charchi A. Assessment of Factors Influencing Occurrence of Izeh Plain Watershed Springs. Journal of Geotechnical Geology. 2010;5(2): 135-147. [Persian] [9]. Khedri A, Rezaei M, Ashjari J. Assessing Karst Development Potential in Pion Poyon Anticline using GIS,RS and Analytical Hierarchy Process (AHP). Journal of Iran-Water Resources Research. 2014;9(3): 37-46. [Persian] [10]. Ghahrodi M, Jalilian T, Alijani F. Detection of Karstic Groundwater Flow System: A Case Study of Prao-Bisetoun Limestone Mass, Kermanshah Province, Iran. International Bulletin of Water Resources & Development. 2014;2(4): 27-39. [Persian] [11]. Zarvash N, Vaezi A, Karimi H. Evaluation of Karst Development potential in Kebirkouh Tomb of Ilam province using Fuzzy Combination and Analysis of Helicopter Analysis (AHP) and Remote Sensing and GIS. Quantitative Geomorphological Research. 2015;3(3): 144-157. [Persian] [12]. Ballukraya PN, Kalimuthu R. Quantitative hydrogeological geomorphological analyses for groundwater potential assessment in hard rock terrains. Current Science. 2010;98(2): 253-259. [13]. Oikonomidis D, Dimogianni S, Kazakis N and Voudouris K. A GIS/Remote Sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology. 2015;525: 197–208. [14]. Ibrahim-Bathis K, Ahmed SA. Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Sciences. 2016;19(2): 223-234. [15]. Murasingh S, Jha R, Adamala S. Geospatial technique for delineation of groundwater potential zones in mine and dense forest area using weighted index overlay technique. Groundwater for Sustainable Development. 2018;7: 387-399 [16]. Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, et al. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Science of the Total Environment. 2018;634: 853-867. [17]. Moore WS. The Effect of Submarine Groundwater Discharge on the Ocean. Annual Review of Marine Science. 2010;2(1): 59-88. [18]. Garcia-Orellana J, Rodellas V, Casacuberta N, Lopez-Castillo E, Vilarrasa M, Moreno V, Garcia-Solsona E, Masque P. Submarine groundwater discharge: Natural radioactivity accumulation in a wetland ecosystem. Marine Chemistry. 2013;156: 61–72.
[19]. Hwang DW, Lee IS, Choi M, Kim TH. Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using 222Rn-Si mass balance model. Marine Pollution Bulletin. 2016;110: 119–126.
[20]. Lecher AL, Fisher AT, Paytan A. Submarine groundwater discharge in Northern Monterey Bay, California: Evaluation by mixing and mass balance models. Marine Chemistry. 2016;179: 44–55.
[21]. Russoniello CJ, Konikow LF, Kroeger KD, Fernandez C, Andres AS, Michael HA. Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed. Journal of Hydrology. 2016;538: 783–793.
[22]. Shaw GD, White ES, Gammons CH. Characterizing groundwater-lake interactions and its impact on lake water quality. Journal of Hydrology. 2013;492: 69–78.
[23]. Szymczycha B, D Kroeger K, Pempkowiak J. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea. Marine Pollution Bulletin. 2016;109: 151–162.
[24]. Naghibi SA, Pourghasemi HR, Dixon B.. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment. 2016;188 (1): 1–27.
[25]. Naghibi SA, Moghaddam DD, Kalantar B, Pradhan B, Kisi O. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. Journal of Hydrology. 2017: 548: 471–483. | ||
آمار تعداد مشاهده مقاله: 436 تعداد دریافت فایل اصل مقاله: 332 |