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Abstract 
n this paper, we have examined the effect of climate variables on the yield 

average and variability of major grain crops (rice, maize, and wheat) in Iran 

from 1983 to 2014. For this purpose, we made use of the Just and Pope 

Production Function crop yields panel data. The results revealed that the 

influences of climate variables were different in the crops. The time trend 

positively influenced the average crop yield and yield variability, but 

increasing in the maximum temperature had a negative impact on the grain 

yields. While the maximum temperature increased the risk of wheat 

production, this variable reduced the risk of maize and rice production. 

Minimum temperature and rainfall had positive influences on the average 

yields of the crops. Furthermore, minimum temperature decreased the 

production risk of maize and wheat. Finally, the influences of rainfall on the 

yield variability were positive for whole crops. Regional dummies were 

statistically significant for certain climate zones. It is expected that future 

climate changes reduce the mean yield of the crops, all the more showing the 

significance of crop insurance schemes and policies that mitigate insecurity of 

food in the light of expected climate variations in the coming years. 

Keywords: Climate Change, Grain Yields, Iran, Just and Pope 

Production Function. 

JEL Classification: O13, Q51, Q54. 
 

1. Introduction 

According to the synthesis report (SYR) of climate change in 2014, as 

the final part of the Intergovernmental Panel on Climate Change 
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(IPCC)’s Fifth Assessment Report (AR5), warming of the climate 

system is incontrovertible and since the 1950s, many of the observed 

changes are unexampled comparisons with the preceding decades and 

centuries (IPCC, 2014). The Middle East is a highly vulnerable region 

to climate change impacts due to its water scarcity that is the greatest 

in the globe (Elasha, 2010). The predicted climate changes in this area 

are more severe compared to other parts of the world. Whenever 21st 

century ends, this region may experience 3°C to 5°C rise in mean 

temperatures and a 20% decline in precipitation (IPCC, 2007). 

Because of the low precipitation, water run-off may drop by 20% to 

30% in most Middle East regions by 2050 (Elasha, 2010). Iran, as a 

Middle Eastern country, is highly susceptible to the negative 

influences of climate variation. Based on the national climate change 

project, Iran is expected to undergo an augmentation of nearly 2.6°C 

in mean temperatures and a 35% decline in precipitation (NCCOI, 

2014). Simulations of future climate change in Iran imply that the 

changes in the rainfall amount and its distribution, and temporal and 

spatial changes of temperature of the air, will increase the odds of 

flooding and drought events (Mansouri Daneshvar, 2016). Cereals, 

particularly wheat, are crucial annual crops generated in the country. 

In arid and semiarid areas, if crop water requirement increases due to 

change of climate under inadequate water supplies, the generation of 

irrigated crops, especially cereals, will suffer (Mansouri Daneshvar, 

2016). Accordingly, cereals’ vulnerability to climate change is of 

particular interest to both researchers and policymakers.  

 

1.1 A Brief Overview of the Literature 

Many researchers have measured the effects of climate variables on 

crop fertility via simulation models for example CERES-rice, CERES-

maize, and EPIC models (Phillips et al., 1996; Rosenzweig et al., 2002; 

Tan and Shibasaki, 2003) or regression models (Mendelsohn et al., 

1994; Chang, 2002; Haim et al., 2008). Previous studies have generally 

employed two major approaches to evaluating the effect of climate on 

agriculture: the approach of production function, agronomic model or 

crop modeling (Mearns et al., 1997), and the Ricardian approach 

(Mendelsohn et al., 1994). Employing controlled researches, the first 

approach simulates data on crop yields and climate variables in a 
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laboratory. Employing a precise control and randomized usage of 

environmental circumstances, this method can anticipate the climatic 

influences on agriculture yields. However, it does not consider farmers’ 

attitudes towards climate change adaptation, hence the fact that negative 

effects are overestimated while positive impacts are underestimated 

(Adams et al., 1990, 1999; Haim et al., 2008; Mendelsohn et al., 1994). 

On the contrary, the Ricardian model estimates the association among 

values of land and agro-climatic variables through cross-sectional 

information (Kumar and Parikh, 1998; Mendelsohn et al., 1994). The 

major power of the Ricardian model is that it considers farmers’ 

adaptations which influence land values as measured by farm earnings 

or net revenue. The model has been used in different countries, namely 

the USA (Mendelsohn and Dinar, 2003; Mendelsohn et al., 1994), 

England and Wales (Maddison, 2000); Kenya (Mariara and Karanja, 

2007), Taiwan (Chang, 2002), South Africa (Gbetibouo and Hassan, 

2005), Cameroon (Moula, 2009), China (Wang et al., 2009), and India 

and Brazil (Sanghi and Mendelsohn, 2008). Nevertheless, the approach, 

in its main form, may not be used for most developing countries since 

there are no influential land markets and reasonable land expenses in 

these countries. The main shortcoming of the Ricardian approach is its 

potential omitted-variable bias pertaining to variables correlated with 

climate (Deschênes and Greenstone, 2007). In some researches, the 

yield variability was influenced because of climate variables (Chen et 

al., 2004; Chen and Chang, 2005; Kim and Pang, 2009); a Ricardian 

model, however, cannot examine the influence of climatic variation on 

variability of yield (Mearns et al., 1997), which has made certain 

economy experts apply a panel data method to consider the eliminated 

variables via inclusion of regional or district dummies in the model 

(Chen et al., 2004; Schlenker and Roberts, 2008; Deschenes and 

Greenstone, 2007; Guiteras, 2007; McCarl et al., 2008; Kim and Pang, 

2009; Barnwal and Kotani, 2010; Cabas et al., 2010). Its weakness is 

that it only allows for a short-term conformity to fluctuations of climate 

by farmers and ignoring the long-term one (Deschênes and Greenstone, 

2007), hence underestimating adaptation while overestimating the 

negative impacts of climate change. 

Analyses of the global influences of climate change on fertility of crop 

have basically focused on average crop yields. The preponderance of 
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these studies has employed either a crop simulation model or regression 

methods. Only a few studies have analyzed the impact of climate 

variation on fertility of yield (Chen et al., 2004; Isik and Devadoss, 2006; 

Finger and Schmid, 2007, Baubacar, 2010). Following a comprehensive 

literature search, a low number of researches have applied the panel data 

method in Iran: Vaseghi & Esmaeili (2008a), Vaseghi & Esmaeili 

(2008b), Ashktorab et al. (2015), Alijani et al. (2011), Salehnia & Falahi 

(2010), Shahraki et al. (2017), Norouzian et al. (2013).  The present is 

probably the first study in Iran which has used maximum and minimum 

temperatures as temperature-based climate variables in a framework of 

panel data. This inquiry set to evaluate the influences of climate variation 

on the productions of major grain crops of Iran (wheat, maize, and rice) 

using panel data. Accordingly, we aimed at eliciting the reaction of crop 

variability and yield to climate variation in Iran. In this regard, a 

stochastic production function along with multiplicative 

heteroscedasticity was employed.  

 

2. Materials and Methods 

2.1 Data Sources 

This research used cross-sectional time-series data for major grain 

crops (wheat, maize, and rice) from selected provinces in Iran. Five 

provinces were selected to study the rice, 15 for wheat and 9 for 

maize. Based on Gangi (2003), the provinces were categorized into 

four different climate regions (Table 1).  

 

Table 1: Climate Zones in Iran 

Name of Zone Province 

Cold 

East Azarbaijan, West Azarbaijan, Ardebil, Alborz, Ilam, 

Tehran, Chaharmahal and Bakhtiari, Khorasan Razavi, 

North Khorasan, Zanjan, Qazvin, Kurdistan, Kermanshah, 

Kohgiluyeh and Boyer Ahmad, Lorestan, Hamedan 

Warm and Dry 
Isfahan, South Khorasan, Semnan, Sistan and 

Baluchestan, Fars, Qom, Kerman, Markazi, Yazd 

Warm and Wet Bushehr, Khuzestan, Hormozgan 

Moderate and Humid Golestan, Gilan, Mazandaran 

Source: Based on Gangi (2003). 
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The data on crop yield, measured in kilograms per hectare (kg/ha), 

were gathered from the Ministry of Agricultural Jihad. Province-level 

climate data for monthly maximum temperature, monthly minimum 

temperature, and monthly total rainfall were gathered from the Iran 

meteorological department from 1983 to 2014. The monthly data were 

subsequently used to group the climate variables into annual averages 

for temperature and annual totals for rainfall concerning the crops. 

Crop yields are more often than reported based on their production 

year which is not on the basis of the calendar year; therefore, for 

simplicity in our analysis, the years were merged; for instance, the 

data of rice yield from 1982 to 1983 was taken into consideration as 

the yield for the year 1983. Accordingly, climate variables were in 

line with the yield data. Although yields are affected by numerous 

factors, only climate variables were taken into account, specifically 

temperature and precipitation. Other input factors such as fertilizer, 

seed, and herbicides may have been considered, but they were not 

accessible on a crop by crop basis. Table 2 shows the data description. 

 

Table 2: Statistics Summary of Crop Yields and Climate Variables 

Crops Variables Unit N Mean S.D. Min. Max. 

Wheat 

Yield (Kg/ha) 480 2919.52 888.55 902.4 5732.81 

Tmax (ºC) 480 28.21 3.67 21.3 39.42 

Tmin (ºC) 480 2.46 4.72 -6.69 15.7 

R (mm) 480 316.66 130.11 40.8 771.1 

Rice 

Yield (Kg/ha) 160 3826.19 763.82 2001 5699.97 

Tmax (ºC) 160 31.18 3.91 24.83 39.42 

Tmin (ºC) 160 8.75 3.06 4.01 15.7 

R (mm) 160 661.02 439.66 76.8 1895.3 

Maize 

Yield (Kg/ha) 288 5175.57 2251.49 259.81 11250 

Tmax (ºC) 288 30.88 3.06 24.5 39.42 

Tmin (ºC) 288 4.42 4.31 -5.13 15.7 

R (mm) 288 298.97 178.22 18.3 771.1 

Source: Research findings. 
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2.2 Empirical Model 

The stochastic production function method was developed by Just and 

Pope (1978; 1979). The basic idea underlying this method is that the 

production function can be divided into two parts, the first one 

connected to the average yield level and the second one to the yield 

variability (Cabas et al., 2010; Kim & Pang, 2009). The common 

format of the Just and Pope Production Function is (Just & Pope, 

1978):  

 

𝑦 = 𝑓(𝑋) + ℎ(𝑋)𝜖,                                                                                      (1) 

y is yield, and X involves explanatory variables. Estimating (X) gives 

the mean influence of the descriptive variables on yield; ℎ(X) 

specifies their impact on the yield variability (Chen & Chang, 2005). 

Based on Saha et al. (1997) and Chen et al. (2004) a production 

function of the form below is obtained: 

𝑦 = 𝑓(𝑋) + 𝑢 = 𝑓(𝑋, 𝛽) + ℎ(𝑋, 𝛼)𝜖,                                                     (2) 

 

y is crop yield (wheat, maize, and rice); X is descriptive variables 

(location, rainfall, temperature, and time period), and 𝜖 is the 

exogenous production shock with (𝜖)=0 and 𝑉𝑎𝑟(𝜖) = 𝛿𝜖
2. Using this 

formula, descriptive variables influence the variability and mean of 

crop yield because 𝐸(𝑦)  = 𝑓(𝑋)  𝑉𝑎𝑟(𝑦) = 𝑉𝑎𝑟(𝑢) = ℎ(. ). The 

parameter estimation of 𝑓(. ) provides the mean impacts of the 

descriptive variables on yield, but ℎ(.) reveals the impacts of the 

covariates on the variability of yield. A positive sign on any ℎ(.) 

parameter implies a rise in the variable, indicating a rise in the yield 

variability. Also, a negative signal on the same function shows that 

climate variables are risk-decreasing. Three functional forms, namely 

quadratic, Cobb-Douglas, and translog forms, were employed for the 

Just and Pope Production Function (Tveteras, 1999; Chen et al., 2004; 

Isik & Devadoss, 2006; Kim & Pang, 2009). Since a translog would 

violate the Just and Pope assumptions (Koundouri & Nauges, 2005; 

Tveteras, 1999; Tveteras & Wan, 2000), the Cobb-Douglas and linear-

quadratic forms, both compatible with the Just and Pope assumptions 
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(Kim & Pang, 2009), were chosen for the estimation of average crop 

yield function.  

 

2.3 Mean Function  

The mean function is defined as:  

Cobb-Douglas form: 

 

 𝑦 =  𝛼0 + 𝛼𝑡𝑇 + ∏ 𝑥𝑗
𝛼𝑗

𝑗                                                                           (3) 

 

Linear- Quadratic Form: 

 𝑦 =  𝛼0 + 𝛼𝑡𝑇 + ∑ 𝛼1𝑗𝑥𝑗𝑗 + ∑ 𝛼2𝑗𝑥𝑗
2

𝑗 + ∑ ∑ 𝛼𝑗𝑘𝑥𝑗𝑥𝑘𝑘(𝑘≠𝑗)  𝑗         (4)  

where 𝑥𝑗 𝑎𝑛𝑑 𝑥𝑘 are descriptive variables that involve weather 

variables, T represents trend of time and 𝛼′𝑠 implies coefficients. The 

justification for including time trend is the fact that it considers 

technological progress in agriculture across the assumed time period. 

2.4 Variance Function 

The variability function’s linear functional (Cobb–Douglas) form was 

the only one considered since the variance function is non-linear, and 

including quadratic terms for descriptive variables renders the analysis 

troublesome, resulting in more insights. Based on Just and Pope 

(1978, 1979), Kumbhakar and Tveteras (2003) and Koundouri and 

Nauges (2005), the variability function ℎ(.) was modeled in a Cobb–

Douglas form as follows:  

 

ℎ (𝑥) = 𝛽0𝑇 ∏ 𝑥
𝑗

𝛽𝑗

𝑗

                                                                                (5) 

 

The maximum likelihood estimation (MLE) and the three-step 

feasible generalized least squares (FGLS) were proposed in Just and 

Pope (1978, 1979) so as to estimate functional forms. Nevertheless, 

estimation of FGLS has been used in many empirical researches 

though MLE is more effective and impartial compared with FGLS for 

small size samples (Saha et al., 1997). Assuming the great sample 
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size, FGLS was utilized as proposed in Judge et al. (1988), so as to 

estimate a fixed effects panel. Additionally, MLE and FGLS were 

employed in the initial analyses with the former producing better 

results, which is yet another cause for the selection of FGLS as an 

estimation technique. Also, panel model estimation including time 

series and cross-section data can face heteroscedasticity and auto-

correlation problems (Gujarati, 2004; Cameroon & Trivedi, 2009). 

Because FGLS assumes that panels are homoscedastic, and no auto-

correlation exists, these problems are better dealt with (Wooldridge, 

2002). Panel data models take two alternative forms: Random effects 

and fixed effects (Baltagi, 1995). The correct panel data model is 

defined by examining the random effects model against the fixed 

effects model employing the Hausman test statistics. The Hausman 

test statistics rejects the null hypothesis that the random effects 

estimator is fixed and effective for crop estimations.  Accordingly, the 

fixed effects approach is better relevant than the random effects model 

regarding the two estimated yield equations.  
 

2.5. Panel Unit Roots and Stationary 

It is essential to examine the presence of unit roots for each potential 

variable estimating the model by either the FGLS method or MLE 

method. A crucial presumption of the Just and Pope Production Function 

is that the variables under investigation are static (Chen et al., 2004). 

Thus, variables having the features of I(1) have to be differenced prior to 

panel estimation (McCarl et al., 2008). Otherwise, the use of non-

stationary data may directly lead to spurious results (Chen & Chang, 

2005; Granger & Newbold, 1974). Several types of the panel unit root 

assessment exist in the literature. The present research employed the 

Fisher-type test used in Maddala and Wu (1999). The Fisher test entails 

more accurate findings in comparison with tests like LLC (Levin, Lin, 

Chu) (Barnwal & Kotani, 2010). To indicate the influences of climate 

variables on the crop variability and yield, the stochastic production 

function method by Just and Pope was applied. 
 

3. Results 

3.1 Results of the Panel Unit Root Test 

The Fisher-type test studies the stationary attributes of the variables in 

a panel data model. Two types of the Fisher-type test exist: ADF and 
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PP (Philips and Perron) tests. This study obtained similar findings 

from these two types and reproduced the results via ADF only in 

Table 3. The obtained test data shows that cereal grain yields and 

climatic variables show identical outcomes with and without time 

trend, indicating that the unit roots’ null hypothesis (non-stationary) is 

not accepted at the significance level of 1% for all variables, hence the 

fact that all the model variables are stationary. These findings are 

consistent with McCarl et al. (2008) and Kim and Pang (2009) results. 

Therefore, the three-stage FGLS can be used to data analysis without 

differencing.  

 

Table 3: Results of Panel Unit Root Tests 

Crops Variables 
ADF Test Statistics (P-value) 

Without trend With trend 

Wheat 

Yield 228.96(0.0000) 196.05 (0.0000) 

𝑇𝑚𝑎𝑥 177.20 (0.0000) 290.14(0.0000) 

𝑇𝑚𝑖𝑛  173.84 (0.0000) 212.94 (0.0000) 

R 347.17(0.0000) 308.34 (0.0000) 

Rice 

Yield 45.06(0.0000) 91.47(0.0000) 

𝑇𝑚𝑎𝑥 69.25(0.0000) 67.20(0.0000) 

𝑇𝑚𝑖𝑛  48.42(0.0000) 63.63(0.0000) 

R 115.00(0.0000) 98.21(0.0000) 

Maize 

Yield 59.66(0.0000) 85.81(0.0000) 

𝑇𝑚𝑎𝑥 111.91(0.0000) 169.68(0.0000) 

𝑇𝑚𝑖𝑛  95.51(0.0000) 116.09(0.0000) 

R 178.67(0.0000) 173.51(0.0000) 

Notes: Hypothesis in ADF Test: Ho: All panels contain unit roots; Ha: At least one 

panel is stationary.  

 

3.2 Results of the Empirical Model 

The Cobb-Douglas and quadratic functional forms of the average crop 

yield and linear functional forms pertaining to crop yield variability 

were estimated through the use of FGLS model. Regional dummies 

were considered in the average crop yield function not in the 

variability function, considering the fact that mean yields are different 

across zones but variances are almost identical. Three regional 

dummies were considered for climate zones to prevent dummy 

variable trap (Gujarati, 2004). Estimated outcomes are given in Table 

4. Three crop models have, therefore, an overall utility as overall 
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significance is concerned. The independent variables of the wheat 

model are jointly statistically significant because the Wald statistic of 

the Cobb–Douglas linear form is 267.91 and has a p-value of 0.000 

and that of 283.01 under the quadratic functional form also has a p-

value of 0.000. Since the Wald statistic of 486.04 has a p-value of 

0.000 regarding the rice linear functional form, the p-value of Wald 

statistic for the quadratic functional form of rice is also 0.000; the 

regressors under both functional forms are statistically significant as a 

whole. Furthermore, the p-values of maize functional forms 

corroborate the fact that both are meaningful. Nevertheless, the BIC 

and AIC values cause the linear form become slightly more 

significant. The estimated coefficients of the quadratic and linear 

functional forms in the mean yield function have different signs and 

significance among the three crop models. Both rainfall and minimum 

temperature have a positive relationship with mean wheat yield in the 

linear form, while the former has a negative and the latter has a 

positive impact on yield under linear–quadratic form. These two 

factors are meaningful only in a linear functional form. The highest 

amount of temperature is negatively related to average yield in the 

linear form, whereas it has a positive impact on yield under linear–

quadratic form and it is meaningful only in the linear form. The 

quadratic or interaction expressions of the climatic variables in the 

quadratic function are statistically insignificant. Regional dummies are 

meaningful in both functional forms. Moreover, the time trend has a 

notable positive association with the mean yield in the linear form. 

Regarding the yield variability function of wheat, the coefficients 

reveal that the rise in the least temperature reduces the wheat yield 

variability, meaning the minimum temperature, in contrast to 

maximum temperature and rainfall, is risk-reducing. The trend of time 

is correlated to the variability function and is meaningful in the 

quadratic approach; consistent with the results of Anderson and Hazell 

(1989), Isik and Devadoss (2006), and Kim and Pang (2009), 

revealing that yields of crop rises with time as a result of improvement 

in irrigation equipment, development of high yielding varieties 

(HYVs) and augmented usage of fertilizers.  
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Table 4: Estimation Results Associated with Wheat, Rice and Maize Yields 

Variables 
Wheat Rice Maize 

LCD LQ LCD LQ LCD LQ 

Mean yield 

Trend 

Tmax 

Tmin 

R 

Tmax
2  

Tmin
2  

R2 

Tmax*Tmin 

Tmax*R 

Tmin*R 

Cold 

Warm and dry 

Warm and humid 

Moderate and humid 

(omitted to avoid dummy 

variable trap) 

Constant 

Yield variability 

Trend 

Tmax 

Tmin 

R 

Constant 

Model  summary 

Log Likelihood 

Wald Chi-square 

Prob. > Chi-square 

AIC 

BIC 

 

9.90*** 

-37.52** 

15.99*** 

1.42** 

 

 

 

 

 

 

-1167.02*** 

-1187.13*** 

-974.87*** 

 

 

 

-0.58 

 

0.0099 

0.10* 

-0.01 

0.0042*** 

6.054*** 

 

-919.65 

267.91 

0.0000 

1857.304 

1894.868 

 

-5.36 

23.11 

-87.25 

2.74 

-510.82* 

-7.85 

-0. 85 

447.47 

-31.38* 

24.06 

-1253.97*** 

-1257.93*** 

-855.94*** 

 

 

 

-5.88 

 

0.02** 

0.139** 

-0.1** 

0.00096 

5. 69*** 

 

-914.856 

283.01 

0.0000 

1859.712 

1922.319 

 

92.36*** 

-233.68*** 

142.06*** 

0.46 

 

 

 

 

 

 

(omitted) 

470.91*** 

-110.99 

 

 

 

-7.90*** 

 

0.041** 

-0.08 

0.046 

0.00065 

12.16*** 

 

-306.7179 

486.04 

0.0000 

629.4358 

654.0372 

 

218.6*** 

-289.05*** 

39.74*** 

2.35** 

667.13** 

2968.80** 

0.04 

-2293.24** 

-21.85*** 

58.14*** 

(omitted) 

363.91*** 

-439.47 

 

 

 

-27.15*** 

 

0.047*** 

-0.037 

-0.0050 

0.00051 

11.17*** 

 

-306.07 

419.52 

0.0000 

640.15 

683.21 

 

202.63*** 

-581.49*** 

286.47*** 

3.42 

 

 

 

 

 

 

996.87** 

1824.38*** 

2842.51*** 

 

 

 

-2.85 

 

0.03** 

-0.047 

-0.0063 

0.0011 

14.16*** 

 

-573.43 

235.83 

0.0000 

1164.87 

1197.84 

 

721.97*** 

-5869.13*** 

3565.5*** 

20.02*** 

11680.4*** 

11935.31 

-8.83*** 

-18323.82*** 

46.38 

393.59** 

1385.46*** 

1978.67*** 

2276.88*** 

 

 

 

-33.87*** 

 

0.028*** 

-0.23*** 

0.146*** 

0.00075 

19.29*** 

 

-569.96 

283.95 

0.0000 

1169.92 

1224.86 

LCD = Linear Cobb–Douglas; LQ = Linear–Quadratic 

*, **, and *** denote significance at 10%, 5%, and 1% levels, respectively.  

Source: Research findings  

 

The maximum temperature imposes a negative impact on average 

rice and maize yields both in quadratic and linear functional forms, 

while minimum temperature and rainfall exert positive influences on 

the two yields in both functions. Both temperatures are meaningful in 

the two functional forms, yet the rainfall is meaningful only in the 

quadratic form where the quadratic aspects for minimum and 

maximum temperature are notable with positive impacts on rice 

production. In the case of maize, the quadratic terms related to 

maximum temperature and rainfall rates are considerable with positive 

and negative influences on yield, respectively. The three interaction 
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aspects are meaningful. The rainfall and minimum temperature 

interaction term exerts a positive impact on the yield of rice, while the 

other two interaction aspects have a negative influence. Additionally, 

the rainfall and minimum temperature interaction exerts a positive 

influence on maize production; however, the minimum and maximum 

temperature association has a negative influence. Both interaction 

terms are statistically significant. The regional dummy for the warm 

and dry zone is meaningful in both functional forms with a positive 

influence on rice production. As far as maize is concerned, all regional 

dummies are meaningful in both functional forms. The trend of time is 

associated positively with the average yield and meaningful in both 

functional forms. From the viewpoint of the yield variability function, 

the trend is meaningful for rice and maize. Moreover, the impact of 

rainfall on rice and variability of maize yield is insignificantly 

positive. On the contrary, in both functional forms, the influence of 

maximum temperature on the variability of rice and maize yield is 

negative, indicating that the maximum temperature is risk-decreasing 

while the overall rainfall is risk-increasing regarding the production of 

maize and rice. The minimum and maximum temperatures are 

meaningful only in the linear-quadratic functional form of the maize. 

The BIC and AIC values specified the superior functional form which 

was the linear Cobb–Douglas since it has the smallest positive value. 

 

3.3. Climate Elasticities of Wheat and Rice Yields 

Because the quadratic approaches have interaction and quadratic 

terms, the extent and signs of the obtained coefficients in the quadratic 

function cannot be compared to those in the linear function. The 

elasticity’s estimation, giving a common denominator, was assessed 

and compared the influence of climatic variables in the linear Cobb-

Douglas and linear-quadratic functional approaches (Isik & Devadoss, 

2006). The elasticities can be calculated through multiplying the 

coefficients of weather variables, like minimum temperature, 

maximum temperature, and rainfall, by the mean climate variable and 

breaking up the result into the average yield (Chen et al., 2004). Table 

5 shows these elasticities. Concerning the average yield and the 

function of variance, the obtained elasticities of quadratic and linear 

approaches are a little different.  
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Table 5: Elasticities of Climate Variables 

Yield 

function 

Climate  

Variables 
Crops 

Linear Cobb-

Douglas 

Quadratic 

Model 

Mean Yield 

 

Tmax 

 

 

Tmin 

 

 

 R 

 
 

wheat 

rice 

maize 

wheat 

rice 

maize 

wheat 

rice 

maize 

-1.33 

-1.48 

-4.03 

0.04 

0.21 

0.26 

0.52 

0.20 

0.22 

-5.56 

-2.30 

-39.33 

0.05 

0.26 

3.40 

-1.48 

0.32 

1.23 

Yield 

Variability 

 

Tmax 

 

 

Tmin 
 

 

 R 
 

wheat 

rice 

maize 

wheat 

rice 

maize 

wheat 

rice 

maize 

0.27 

-0.22 

-0.1 

-0.002 

0.036 

-0.002 

0.12 

0.038 

0.024 

0.38 

-0.1 

-0.54 

-0.02 

-0.0039 

0.048 

0.03 

0.03 

0.016 

Source: Research findings 

 

As is observed, the maximum temperature elasticities differ from -

39.33 to -1.33 in the average yield function of the three crops. As far 

as these amounts are more than unity, the reaction of crops mean 

yields to the alterations in the maximum temperature is elastic, 

showing that the maximum temperature is yield-decreasing for wheat 

and rice in quadratic and linear forms. Nevertheless, the obtained 

elasticities range from 0.27 to 0.38, -0.22 to -0.1, and -0.54 to -0.1 in 

the variance functions of wheat, rice, and maize, respectively. Hence, 

the reaction of three crops variance to the alterations in maximum 

temperature is not elastic. The rise in the maximum temperature 

reduces the rice and maize yields’ variance while augmenting the 

wheat variability. The minimum temperature elasticities vary from 

0.04 to 0.05 regarding the mean yield function of wheat, from 0.21 to 

0.26 concerning the mean rice function and from 0.26 to 3.4 for the 

mean maize function, hence inelastic for the three crops. Increasing 

the minimum temperature decreases the wheat yield variability in both 

functional forms. The variance response to the alterations in minimum 

temperature is not elastic.  
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The rainfall elasticities varied from -1.48 to 0.52 in the mean wheat 

function, 0.2 to 0.32 in the mean rice function and from 0.22 to 1.23 in 

the average maize function. Therefore, the response of the average 

yields of the crops is mixed to the variations in rainfall. That is, the 

average yield of wheat is not elastic in the linear function, but elastic 

in the quadratic function. Nevertheless, the average yields of maize 

and rice are not elastic in quadratic and linear functional forms. Also, 

the obtained elasticities are lower than one in the variance function, 

showing that the crop yields variance is inelastic to variations in 

rainfall. The elasticities’ signs show that rainfall is risk-increasing for 

the three crop yields. 

In general, the obtained elasticities of the maximum temperature were 

much larger than the rainfall and minimum temperature. These results 

indicated that the influence of climate variations on Iranian agriculture 

is largely driven by the utmost temperature change. 

 

3.4.  Effects of Future Climate Change 

Via the obtained elasticities, the influences of future scenarios of 

climate variation on crop variability and yield can be estimated (IPCC, 

2013). The IPCC predicted the variations in climate for three time-

slices viz. 2035, 2065 and 2100 (Table 5). Accordingly, by 2100, the 

annual temperature may rise by 1.3 °C  to 3.5 °C and changes in 

precipitation by this year are expected to be within the range of -3% to 

27%. By 2065, the increase in the annual temperature is expected to 

vary from 0.8 °C  to 2.5 °C and the yearly rainfall is predicted to range 

from -2% to 26%. The variations in rainfall and temperature towards 

2035 are not so significant. The annual temperature is predicted to 

augment by 0.2°C to 1.3°C and the annual rainfall range is expected to 

be between -2% and 7%. The crop yields at the maximum and 

minimum temperature changes were projected using Equation (6). 

 

ΔY = [(
∂Y

∂R
) ∗ ΔR + (

∂Y

∂T
) ∗ ΔT] ∗ 100                                                   (6) 

 

where Y is the yield, R is the rainfall, and T is the temperature; (∂Y/∂R) 

and (∂Y/∂T) were identified by the equations of the model. The predicted 

impacts of climate change on crop yields are given in Table 6. 
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Table 6: Predicted Changes in Temperature and Rainfall  

by 2035, 2065 and 2100 

Time slice 
Temperature (ºC) Rainfall (%) 

Minimum ∆ Maximum ∆ Minimum ∆ Maximum ∆ 

2035 

2065 

2100 

0.2 

0.8 

1.3 

1.3 

2.5 

3.5 

-2 

-2 

-3 

7 

26 

27 

 

The climate variation will affect the production of maize more than 

any other crop. By the year 2100, with a significant change in climate, 

the yield of maize and rice will be about 40% and 11% which is lower 

in comparison with the current yield. By the year 2065, the rice and 

maize yield will also decrease, but the wheat gain would show a 

marginal value. If no considerable alteration is detected in the climate, 

yield losses will be less. The influences of weather will not be so 

notable in the short-run, that is, towards 2035. Owing to the 

continuous adaptation by farmers, the climate impacts cannot also be 

so severe in a long period of time. One caveat to these findings is that 

they differ depending on climate change scenarios, which might vary 

from model to model. Accordingly, the future climate variations may 

also change and any adaptation strategy should take this into account. 

 

Table 7: Projected Change in Mean Yield and Yield Variability  

by 2100 (in percent) 

Crop 2035 2065 2100 

 
Minimum 

∆T and ∆R 

Maximum 

∆T and ∆R 

Minimum 

∆T and ∆R 

Maximum 

∆T and ∆R 

Minimum 

∆T and ∆R 

Maximum 

∆T and ∆R 

Wheat       

Mean -0.715 -2.489 0.26 1.74 0.55 -2.46 

Variance -0.256 2.08 0.3 5.51 -0.465 6.588 

Rice       

Mean 0.08 -4.77 1.52 -6.66 2.52 -11.21 

Variance 0.004 -0.65 0.253 -0.775 0.42 -0.442 

Maize       

Mean 0.73 -15.4 4.26 -26.9 6.987 -39.73 

Variance -0.057 -0.253 -0.08 -0.185 -0.13 -0.485 

Source: Research findings 
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3. Discussion 

The main aim of this study was to examine the influences of climate 

variations on the variability and yield of three main grain crops 

(wheat, rice, and maize) employing disaggregated data. The Just–Pope 

Production Function was applied as the hypothetical framework. A 

balanced panel data approach accomplished the objective. The results 

showed that the influences of climatic variables differ in different 

crops. In contrast to the rainfall and minimum temperature, the 

maximum temperature was associated negatively to the wheat, rice, 

and maize average yield. The values of elasticity under the variance 

function indicated that the maximum temperature was risk-increasing 

for wheat while risk-decreasing for rice and maize production. 

However, the minimum temperature influences over the variability of 

yield were different. The rise in the minimum temperature probably 

reduced the maize and wheat yields’ variability. Therefore, the 

minimum temperature was risk-reducing as concerns these two crops. 

For all crops, the influences of rainfall on the variability of yield were 

positive, confirming that rainfall was risk-increasing. The obtained 

elasticities were further employed to measure the influences of future 

scenarios of climate variation on crop production and variability for 

three time-slices viz. 2035, 2065 and 2100. The variations in crop 

production for every scenario were calculated applying the percentage 

alterations in minimum temperature, maximum temperature, and 

rainfall in an aggregate form. Climate change scenarios forecasted that 

by 2100, crop yield levels will drop from their 1960-2005 average. 

Moreover, the results revealed that future variation of climate may 

decrease the maize yield variability. However, the variability would 

be different for rice and wheat at maximum and minimum changes in 

rainfall and temperature. It will be positive for rice at minimum 

variations in rainfall and temperature and negative at maximum 

changes in temperature and rainfall. Moreover, most regional dummy 

variables were meaningful with different impacts on crop production 

proving that various climate regions are influenced differently by the 

climate change. Accordingly, the impacts of climate variation on crop 

yields will be different in the climate regions. Adaptation strategies 

which are region-specific or climate zone specific should be 

implemented which further highlights the necessity of further 
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location-specific studies regarding climate variation and agricultural 

productivity. This will develop micro-level adaptation practices to 

reduce yield variability, improve food security, and reduce rural 

poverty in climate variation. 
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