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1. Introduction 

Carbon nanotubes (CNTs) are a significant class of nanoscale 

structures since they exhibit excellent physical and mechanical 

properties. CNTs have many promising applications in health and 

medical sciences [1]. CNTs can be applied in conjunction with 

traditional drugs in order to improve available treatments. For 

instance, single-walled CNTs conjugated to antibodies have 

shown the potential to be used for targeting intestinal cancer cells 

[2, 3]. Furthermore, CNTs have been employed as nanoscale 

carriers to deliver different kinds of therapeutic molecules [4]. 

Moreover, Bardhan et al. [5] utilised CNTs as bacterial probes by 

using fluorescence imaging in order to screen pathogenic 

infections. In another study [6], a CNT-based biosensor was 

fabricated to detect a very important prostate cancer biomarker 

(i.e. osteopontin). García-Hevia et al. [7] have observed that 

CNTs could penetrate into cell membrane and then cause 

interruption in cell division; they concluded that CNTs have the 

potential to be used as anticancer drugs. In other words, when 

CNTs penetrate into the cell, they interact with protein 

microtubules (MTs), resulting in mitotic arrest and then cell 

death [8]. 

There are three kinds of filaments in the cytoskeleton of a 

typical eukaryotic cell: 1) microtubules, 2) microfilaments and 3) 

intermediate filaments. MTs have an important role in 

maintaining the cell shape since their mechanical strength is 

much higher than microfilaments and intermediate filaments [9]. 

Furthermore, they provide a platform for protein transport inside 

the cell [10]. Protein MTs also form mitotic spindles, which are 

essential fundamental structures in chromosome segregation 

during the cell division [11]. MTs are made of parallel 

protofilaments, which are placed in the form of a hollow 

cylinder. In each protofilament, α- and β-tubulin heterodimers are 

arranged in a head-to-tail configuration to form the structure [12].  

Improving the of knowledge of the mechanics of protein MTs 

would be useful for better simulating the mechanical behavior of 

the entire cell since MTs are the most rigid filaments and bear the 

majority of external loads [9]. Cell mechanics [13] holds a 

substantial promise to be used in medical science for enhancing 

diagnosis techniques and screening the efficiency of medicines. 

For instance, it has been reported that the mechanical properties 

of cancer cells are noticeably different from those of healthy 

ones; this difference can be used for early cancer diagnosis 

purposes [14]. There are several experimental techniques such as 

the thermal fluctuation [15] and optical tweezers [16] for 

obtaining the mechanical properties of MTs. In addition, 

theoretical approaches have recently been introduced for 

analysing the mechanics of protein MTs. Especially, size-

dependent models for these ultrasmall biological structure have 

been developed [17] along with the development of size-

dependent models for CNTs [18, 19], nanorods [20, 21], 

nanobeams [22-26] and nanoplates [27-31]. A classical shell 

model [32], a constitutive relation [33] and a classical beam 

model [34] have been developed for determining the mechanical 

behavior of MTs; size effects are neglected in these research 
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studies. Size effects on the mechanics of MTs are important as 

the average diameter of these structures is about several 

nanometers. A number of size-dependent models have been 

introduced in the literature for MTs using the strain gradient 

elasticity [35], Pasternak model [36], surface elasticity theory 

[37] and modified couple stress theory [38] as well as nonlocal 

finite element method [39]. 

Since MTs have a significant role in the mitosis, they can be 

applied as targets for antineoplastic drugs [40]. There are two 

kinds of anticancer drugs that target MTs: 1) microtubule-

stabilizing drugs and 2) microtubule-destabilizing drugs. The 

stabilizing agents such as taxol and epothylone lead to the 

polymerisation of tubulin dimers into microtubules, while 

destabilizing drugs such as colchicine and vinblastine 

depolymerise MTs. Both kinds of drugs prevent chromosomes 

from normal arrangement at metaphase and interfere with 

forming the mitotic spindle, arresting cells in metaphase. This 

leads to the activation of a mechanism that monitors the correct 

chromosome segregation termed spindle assembly checkpoint 

(SAC) [40]. Protracted activation of the SAC prevents anaphase 

onset and finally causes cell death. Recent groundbreaking 

studies have shown that CNTs behave as MT-stabilizing agents 

and could be used in future cancer therapies in combination with 

traditional chemotherapeutic agents [7]. Thus, understanding the 

interaction between CNTs and MTs is an important problem. 

In this study, a size-dependent shell model is developed for 

the static stability analysis of protein MTs stabilised with taxol 

and CNT. Size effects are considered via a continuum model 

incorporating two scale parameters. The influences of nonlocal 

mechanical stress, strain gradients and orthotropic elastic 

properties are captured. Furthermore, van der Waals (vdW) 

interactions between MTs and CNTs are also incorporated. The 

hybrid nanostructure is subjected to both radial pressure and axial 

force. For comparison purposes, the experimental results from 

the literature on MTs are used, and the proposed model is 

verified. Numerical results are determined for three types of 

stabilising factors: 1) microtubule-associated proteins (MAPs), 

and 2) CNTs 3) taxol. Finally, size effects on the stability of MTs 

stabilized with MAPs, taxol and CNTs are studied. To suitably 

design future generations of chemotherapeutic agents using 

carbon nanotubes, the presented model could be useful. 

2. Methods 

2.1. A nonlocal strain gradient model 

The application of the classical nonlocal models is restricted 

because they can only capture stiffness softening in the 

mechanical behavior at nanoscales. Nonetheless, lastly, a 

powerful size-dependent theory, which is able to capture both 

stiffness softening and hardening, has been introduced [41-43]. 

The influences of the nonlocality in stress and strain components 

are incorporated in this theory by employing two distinct scale 

parameters [41]. The basic equation of the theory (i.e. nonlocal 

strain gradient) is written as [41] 

 0 0 , : ,
V

dV      σ x x C ε   

 (1) 2

1 1, : ,s

V

dV       σ x x C ε

   

(1 , )a b  

in which “:” indicates the double-dot product; σ  and (1)
σ  

represent the lower-order and first-order nonlocal stresses, 

respectively; C , ε  and V  indicate elasticity tensor, strain and 

microtubule volume, respectively; also,   is the gradient 

operator; 
s
, 

0  and 
1  stand for the strain gradient parameter, 

nonlocal lower-order and first-order attenuation functions, 

respectively;  x x  is the distance from x  to x [44-47]; the 

lower-order and first-order scale coefficients associated with 

stress nonlocality are denoted by 
0  and 

1 , respectively [48-

51]. The definition of these coefficients are, respectively, as 

0 0e a L   and 
1 1e a L   in which a, L and ( 0,1)ie i   are an 

internal characteristic length of the MT (as an illustration the 

length of the tubulin dimer) [52-55], the length of the MT and 

calibration constants, respectively. The stress components are 

related as  

(1)t  σ σ σ      (2)
 On the other hand, for the nonlocal attenuation functions, we 

have 

 
0

0 0
0

lim , ,


  


  
 

' '
x - x x - x  

 
1

1 1
0

lim , .


  


  
 

' '
x - x x - x    (3 , )a b  

Here   is the Dirac delta function. Since the implementation of 

Eq. (1) in the size-dependent modelling of protein MTs is 

difficult, the following differential equation is recommended [41, 

56] 

 
2 2 2 2

0 .t t

ij ij ijkl kl ijkl s kle a C C       
  

(4)
  

It should be noticed that the two calibration parameters are 

assumed to be the same (e0=e1) for the sake of simplification. In 

Eq. (4), 2  is the Laplacian operator. Lately, a nonlocal strain 

gradient model of beams has successfully been used by Li et al. 

[43] to explore the size-dependent mechanics of CNTs; it has 

been proven that nonlocal strain gradient models are more 

reliable compared to their classical nonlocal counterparts.     

 

 

2.2. A shell model for CNT-stabilized MTs 

Carbon nanotubes and protein microtubules are both hollow 

nanotubes and are of similar dimensions (Figs.1 and 2). Recently, 

it has been demonstrated that interaction between CNTs and MTs 

inside human cancer cells (HeLa) blocks mitosis and causes cell 

death by apoptosis [7] (Fig. 3). Therefore, CNTs have similar 

effects as spindle poisons such as taxol, vinca alkaloids or 

epothilones. Carbon nanotubes can be used as a promising 

synthetic MT-stabilizing agent for future chemotherapeutic trials. 

There are two models for CNT-MT interaction: 1) carbon 

nanotube-microtubule mixed bundles and 2) biomimetic 

microtubules [8]. In the CNT-MT mixed bundle, CNTs 

longitudinally interact with MTs and limit their dynamic 

behaviour. In the biomimetic MT model, at least one 

protofilament of the MT is replaced by nanotubes. The 

biomimetic microtubule model occurs in the case in which the 

nanotube diameter is close to that of protofilaments 

(approximately 5 nm).  
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Fig. 1. The schematic representation of a protein microtubule. 

 
Fig. 2. The schematic representation of a single-walled carbon 

nanotube. 

 

Fig. 3. The cytoplasm of HeLa cells with multi-walled carbon 

nanotubes (MWCNTs); white arrows indicate protein MTs while red 

ones indicate MWCNTs [8]; reproduced with permission from ACS 

Publications.  

For simplification and without losing generality, it is assumed 

that the interaction between microtubules and carbon nanotubes 

is of model 1. The internal and external radii of the MT, and the 

radius of the CNT are denoted by Ri, Ro and Rc, respectively. In 

general, it is assumed that the carbon nanotube-microtubule 

system with length L is subjected to axial compression and 

external pressure. Let us denote the prestresses in axial and 

circumferential directions by ˆ
xxN  and N̂ 

, respectively. In 

addition, the external tractions that act on the MT and CNT are 

denoted by m

if  and c

if ( , , )i x r , respectively. Using the 

general constitutive equation (4), the governing equations of the 

MT are obtained as follows:  
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Similarly, for the CNT, we have 
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  (6 )a c  

in which  
2

0 0e a   and 2

s s  ; the indices “m” and “c” denote 

the microtubule and carbon nanotube, respectively; ui, vi and wi 

(i=m,c) are the components of the displacement along the axial, 

circumferential and radial directions, respectively. In the above 

equations, the Laplacian operator is given by 
2 2 2( ) ( )i x       2 2 2(1 ) ( )iR     for i=m,c. m

xA , mA
 and 

m

xA 
 are the in-plane longitudinal, circumferential and shear 

stiffnesses of the MT, respectively. Also, m

xD  and mD
 are, 

respectively, the effective flexural rigidities of the MT in axial 

and circumferential axes, and m

xD 
 is the flexural rigidity in 

shear. Ac and Dc are the in-plane stiffness and flexural rigidity of 

the CNT, respectively. It should be noted that the governing 

differential equations (5) and (6) reduce to those of the classical 

(local) shell theory when both nonlocal and strain gradient 

parameters are set to zero. The in-plane and bending stiffnesses 

of the components of the system are defined as 
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where m

xE , mE
 and m

xG 
 are, respectively, the MT 

longitudinal, circumferential and shear moduli; ( , )m

iv i x  , 
mh  

and 
0mh  are Poisson’s ratios, equivalent and effective 

thicknesses, respectively; also, Ec, vc and hc, respectively, 

represent elasticity modulus, Poisson’s ratio and thickness of 

CNTs. According to the experimental data on single-walled 

carbon nanotubes [18], their bending rigidity is considerably 

lower than that of Eq. (7). Therefore, the bending rigidity of 

CNTs should be regarded as an independent material property. A 

similar behavior has been found for microtubules and thus their 

bending stiffness is calculated using h0m whereas their in-plane 

stiffness is determined via hm [36, 57]. The axial and 

circumferential tractions are set to zero. The radial load due to 

the vdW interaction is expressed as 
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where ( , )j

vdWc j m c  represents the vdW interaction coefficient. 

All ends are simply supported. In order to satisfy these boundary 

conditions, the displacement components of the hybrid 

nanostructure can be written as  
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in which 
x xn L  ; 

xn  and n
 stand for  the half axial wave 

number and circumferential wave number, respectively. In 

addition, ,jU  
jV  and 

jW ( , )j m c  are constants related to the 

buckling mode shape of the system. For convenience and without 

losing generality, the following non-dimensional parameters are 

introduced  
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                   (10)  

Let us first consider the axial instability of the hybrid 

nanostructure. In this case, the external pressure exerted on the 

CNT-stabilized microtubule is zero, and thus the circumferential 

prestress is set to zero ( 0)N   . Substituting Eq. (9) into Eqs. 

(5) and (6) and using the definitions of dimensionless parameters 

given by Eq. (10), one can obtain 

  (1) (2) 0,ij xx ijK N K U       
    (11)   

Similarly, for the radial instability of CNT-stabilized 

microtubules ( 0)xxN  , we have 

  (1) (3) 0,ij ijK N K U
       

   (12)  

where ( )k

ijK  is the stiffness matrix. It should be noted that in the 

case of radial instability, only the outer tube (microtubule) is 

subjected to external pressure. In this case, the critical pressure is 

obtained as 
cr mP N R   and the circumferential wave 

number is greater than or equal to two ( 2)n   [32].   

3. Results and discussion  

To evaluate the precision of this modelling, the critical 

instability force of protein MTs subject to longitudinal 

compression is compared to that determined using optical 

trapping method [16]. Table 1 indicates the critical instability 

load of MTs stabilized with MAPs and taxol for different lengths. 

The calibrated values of size coefficients are also presented in 
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this table. It is assumed that the MT has 13 protofilaments and its 

geometric properties are considered as 13 nm, 2.7 nmm mR h   and 

0 1.6 nmmh   [32]. Since microtubules show strong anisotropic 

behavior, they are assumed to be orthotropic with four 

independent material constants. The longitudinal Young's moduli 

of MTs stabilized with MAPs and taxol are 1 xE GPa  and 

0.3 xE GPa , respectively [16, 57]. For shear and circumferential 

moduli, we have 0.001xE E   and 0.001x xG E   [36]. A value 

of 0.3x   is used for Poisson’s ratio along longitudinal axes. 

From Table 1, it is observed that the presented modeling can be 

used to accurately describe the static instability of protein MTs. 

The calibrated values of 
0e a  for MTs stabilised with MAPs and 

taxol are determined as 
0 10 nme a   and

0 25 nme a  , respectively. 

This implies that the nonlocal effects are more pronounced for 

taxol-stabilized MTs than MAP-stabilized MTs. In addition, the 

calibrated value of the strain gradient coefficient increases with 

increasing the length of the MT. It means that the strain gradient 

effects become more significant in the stability behavior of MTs 

as their length increases.  

Table 1. Verification study for the static stability of MTs [16]. 

Samples 
Length 

( m ) 

Axial instability force (pN) 

s  (nm) Present Experiment 

MAP-

stabilized 

MTs (10)a 

10.5 18 3.0187 3.0 

19.9 27 1.5474 1.5 

27.9 39 1.4846 1.5 

Taxol-

stabilized 

MTs (25)a 

4.4 7 0.7221 0.7 

11.8 25 0.3925 0.4 

a The number in parentheses denotes the value of e0a (nm). 

The influence of taxol on the longitudinal instability load of 

the MT for different strain gradient parameters is demonstrated in 

Fig. 4. The material and geometric properties of the MAP-

stabilized and taxol-stabilized microtubules are as stated above. 

The nonlocal parameter is taken as e0a = 10 nm. The axial 

instability load reduces with increasing the length of the 

microtubule. The critical load of protein microtubules is greatly 

affected by taxol. The axial instability load of taxol-stabilized 

MTs is lower than that of MTs stabilised with MAPs. It implies 

that the stiffness of the MT decreases in the presence of taxol. 

Further, the critical axial force corresponding to static instability 

is higher for higher strain gradient coefficients for both types of 

microtubules. The effects of carbon nanotubes on the axial 

instability behavior of MTs for different values of size 

coefficients are indicated in Fig. 5. For CNTs, we have Echc = 

360 J/m2, vc = 0.2 and Dc = 2 eV [18]. The thickness of the CNT 

is 0.34 nm. It is assumed that before instability, the hybrid 

nanostructure is at the equilibrium state. The vdW coefficients 

related to the load exerting on the protein MT and CNT are 

29.246m

vdWc   GPa/nm and 40.011c

vdWc   GPa/nm, respectively 

[33, 58]. It is observed that CNTs have a prominent role in the 

instability response of microtubules. Unlike taxol, adding carbon 

nanotubes to cells increases the axial instability force of MTs. 

Further, the critical load decreases with the increase of nonlocal 

parameter. However, the strain gradient parameter has an 

increasing effect on the instability force. 

 
Fig. 4. Axial instability loads of protein MTs stabilised with MAPs 

and taxol versus length for different strain gradient coefficients. 

 
Fig. 5. Axial instability loads of protein MTs stabilised with MAPs 

and taxol versus length for different strain gradient and nonlocal 

coefficients. 

To investigate the small scale effect on the radial instability of 

MTs stabilised with taxol and MAPs, the radial instability 

pressure versus the nonlocal coefficient is shown in Fig. 6 for 

various strain gradient coefficients. The length of the hybrid 

nanostructure is considered as L = 10 m . The half axial wave 

number and the circumferential wave number are taken as 1xn   

and 2,n   respectively. The CNT is assumed to be at the 

equilibrium distance from the MT prior to instability. The radial 

instability pressure gradually decreases as the nonlocal 

coefficient increases. Nonetheless, the instability pressure 

increases when strain gradient effects become stronger. The 

radial instability pressure of microtubules stabilized with taxol is 

smaller than those of MAP-stabilized microtubules. In addition, 

the role of strain gradients in the radial instability of MTs is 



Journal of Computational Applied Mechanics, Vol. 50,No. 1, June 2019 

 

145 

 

reduced by exposure of cells to taxol. Another interesting 

observation is that the effect of taxol becomes less significant for 

higher values of e0a due to the strong nonlocality. Fig. 7 

illustrates the change of radial instability pressure of protein MTs 

stabilized with both taxol and CNTs versus the nonlocal 

coefficient for different strain gradient coefficients. Comparing 

this figure to the previous one indicates that adding CNTs to cells 

leads to a substantial increase in the radial stability capacity of 

MTs. Furthermore, the strain gradient effect is less pronounced 

as the nonlocal coefficient increases.  

 
Fig. 6. Radial instability pressure of protein MTs stabilised with 

MAPs and taxol versus the nonlocal coefficient for various strain 

gradient coefficients. 

 

 
Fig. 7. Radial instability pressure of MTs stabilized with both taxol 

and CNTs versus the nonlocal coefficient for various strain gradient 

coefficients. 

4. Conclusions  

The static instability behavior of protein MTs stabilised with 

CNTs and taxol subject to radial and axial loads has been studied. 

Size-dependent modeling was performed applying a shell theory 

incorporating strain gradient and nonlocal influences. Exact 

solutions were presented for both radial instability pressure and 

axial instability loads of the hybrid nanostructure. Comparison of 

the results of the model for MAP- and taxol-stabilized MTs with 

the results of experiments reported in the literature indicated that 

the present model with proper values of small scale parameters 

gives more precise results than the classical shell theory. It was 

found that stabilizing MTs with taxol reduces both the radial 

instability pressure and axial instability load of MTs. In addition, 

the nonlocal parameter has a decreasing effect on the stability 

capacity of CNT-stabilized MTs. However, the critical instability 

loads of the hybrid nanostructure increase with increasing the 

strain gradient effects. Unlike taxol, stabilizing MTs with CNTs 

leads to an increase in both axial instability force and radial 

instability pressure of MTs. Furthermore, for higher nonlocal 

coefficients, the influence of taxol becomes less pronounced. 
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