تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,542 |
تعداد دریافت فایل اصل مقاله | 97,219,733 |
بررسی موردی عملکرد مدل WRF جهت پیشیابی میدان باد تراز 10 متر و دمای تراز دومتر با استفاده از دادههای ماهوارهای و ایستگاههای همدیدی در منطقه دریای عمان و دریای عرب | ||
فیزیک زمین و فضا | ||
مقاله 13، دوره 45، شماره 2، مرداد 1398، صفحه 441-458 اصل مقاله (1.11 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2019.267709.1007051 | ||
نویسندگان | ||
فاطمه بهمنزاده1؛ سرمد قادر* 2؛ سیدعباس حقشناس3؛ دانیال یازجی4 | ||
1دانشجوی دکتری، گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
2دانشیار، گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
3استادیار، گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
4پسا دکتری، گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
در پژوهش حاضر شبیهسازی پیشیابی و ارزیابی میدان باد تراز 10 متر و همچنین دمای تراز دومتر با مدل میانمقیاس WRF نسخه 1. 7. 3 در منطقه دریای عمان و دریای عرب انجام شده است. تمامی شبیهسازیها برای دو پیکربندی متفاوت از دیدگاه پارامترسازی فیزیکی که به نامهای Phys1 و Phys2 معرفی شدهاند، انجام شده است. ارزیابی نتایج شبیهسازی با استفاده از دادههای ایستگاههای همدیدی در دسترس و همچنین دادههای دو سنجنده ماهوارهای ASCAT و OSCAT انجام شده است. برای بررسی عملکرد مدل عددی از سنجههای آماری مانند ضریب همبستگی پیرسون، ریشه میانگین مربعات خطاها و نمودار آماری تیلور استفاده شده است. نتایج نشان میدهند که در بخش ارزیابی با دادههای ماهوارهای باد تراز 10 متر نتایج عملکرد مدل، قابل قبول و مناسب بوده است. در این بخش شبیهسازیهای برای مناطق دور از ساحل که بهکمک دادههای ماهوارهای ارزیابی شدهاند، نسبت به دادههای ایستگاههای همدیدی ساحلی و نزدیک ساحل، به مقادیر مشاهدات نزدیکترند. نتایج حاصل از ارزیابی دمای تراز دو متر نیز گواه عملکرد مناسب مدل در این بخش است. | ||
کلیدواژهها | ||
مدل WRF؛ داده ماهوارهای؛ سنجنده ASCAT؛ سنجنده OSCAT؛ دریای عمان؛ دریای عرب | ||
عنوان مقاله [English] | ||
A Case study of WRF model performance to hindcast of 10-m wind and 2-m temperature against the satellite and synoptic stations data over the Gulf of Oman and The Arabian Sea | ||
نویسندگان [English] | ||
Fateme Bahmanzade1؛ Sarmad Ghader2؛ Seyed Abbas Haghshenas3؛ Daniel Yazgi4 | ||
1Ph.D. Student, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
2Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
3Assistant Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
4Post-Doc, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
Reliable and sufficient information of 10-m wind and temperature fields over open seas and near coastlines is a necessary and important data that has impact on many marine activities. Assimilation of NWP models can be used to assess an estimation of these fields. This study reports the performance of the weather research and forecasting (WRF) model to hindcast 10-mwind and temperature fields that were evaluated under two different physical options of planetary boundary layer (PBL) and surface layer (SL) for an area over the Gulf of Oman and the Arabian Sea. The case study includes 16 simulations of 8 different days from WRF model version 3.7.1. The WRF model is configured with two nests. Parent nest has 0.3 degree and the inner nest has 0.1 degree horizontal grid resolution. The grid spacing of the inner domain is almost 11-km. The Lat-Lon (latitude-longitude) method is used as the map projection method. For all domains and all runs 39 terrain following vertical levels are set. The validation of the simulated fields is done considering two observational datasets (the weather stations for 10-m wind and 2-m temperature and satellite instruments just for 10-m wind). Near-surface observations of 2-m temperature and 10-m wind speed and direction are collected from 55 weather stations, located within the chosen area. The measurements from satellite instruments have become an important source of data in the regions that in-situ observations are sparse like seas and oceans, hence observations from two different scatterometers (ASCAT and OSCAT) are also used to evaluate 10-m wind simulations. Moreover, in order to better understand the model performance for different choices of the physical schemes, sensitivity of the model has been investigated. There is plenty of choices for the combination of parameterization schemes available for WRF model; for the current study two configurations are taken from other’s previous published research works. The physical parameterization that used in this study are Revised MM5 and Monin-Obukhov for surface layer and MRF and MYJ for planetary boundary layer. These choices are used to create two different configurations called Phys1 and Phys2. Comparison between winds from satellite scatterometer and simulated winds show very little difference and hence good agreement with observations. Acceptable accuracy has been obtained from statistical analyses. These analyses demonstrate that the maximum average RMSE of wind field is 2.39 m/s, based on results of comparing with ASCAT data and it is 2.37 m/s, based on results of comparing with OSCAT data. The analyses also show that simulation of wind fields have better results over offshore regions than coastlines weather stations. The outcome shows that the simulated 10-m wind present acceptable general skills over the sea. The validation of 2-m temperature presents that the model has a proper estimation about temperature field over the coasts and near coastal station within the simulation domain. The maximum average RMSE of temperature field is 2.6 degrees of centigrade. Finally, without any justification to run WRF for longer periods from a quantitative and qualitative assessment of the results, it can be concluded that for the WRF model has an acceptable performance to simulate 10-m wind and 2-m temperature over the Gulf of Oman and the Arabian Sea. It should be noted that to verify these results for longer periods more similar experiments must be tested. | ||
کلیدواژهها [English] | ||
The WRF model, Satellite data, ASCAT, OSCAT, Oman Gulf, Arabian Sea | ||
مراجع | ||
قادر، س.، یازجی، د.، سلطانپور، م. و نعمتی، م. ح.، 1394، بهکارگیری یک سامانه همادی توسعه دادهشده برای مدل WRF جهت پیشبینی میدان باد سطحی در محدوده خلیج فارس، دو فصلنامه هیدروفیزیک، 1، 54-41. Accadia, C., Zecchetto, S., Lavagnini, A. and Speranza, A., 2007, Comparison of 10-m wind forecasts from a regional area model and QuikSCAT Scatterometer wind observations over the Mediterranean Sea, Mon. Wea. Rev., 135, 1945–1960. Atlas, R., Hoffman, R. N., Leidner, S. M., Sienkiewicz, J., Yu, T. W., Bloom, S. C., Brin, E., Ardizzone, J., Terry, J., Bungato, D. and Jusem, J. C., 2001, The effects of marine winds from scatterometer data on weather analysis and forecasting, Bulletin of the American Meteorological Society, 82, 1965-1990. Cavaleri, L. and Bertotti, L., 2004, Accuracy of the modelled wind and wave fields in enclosed seas, Tellus A: Dynamic Meteorology and Oceanography, 56, 167-175. Chang, R., Zhu, R., Badger, M., Hasager, C. B., Xing, X. and Jiang, Y., 2015, Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea, Remote Sensing, 7, 467-487. Ghader, S., Yazgi, D., Haghshenas, S. A., Razavi Arab, A., Jedari Attari, M., Bakhtiari, A. and Zinsazboroujerdi, H., 2016, Hindcasting Tropical Storm Events in the Oman Sea, Journal of Coastal Research, 75(sp1), 1087-1091. Jarraud, M., 2008, Guide to meteorological instruments and methods of observation (WMO-No. 8), World Meteorological Organisation: Geneva, Switzerland. Jiménez, P. A., González-Rouco, J. F., García-Bustamante, E., Navarro, J., Montávez, J. P., De Arellano, J.V.G., Dudhia, J. and Muñoz-Roldan, A., 2010, Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation, Journal of Applied Meteorology and Climatology, 49(2), 268-287. Pattanayak, S. and Mohanty, U. C., 2008, A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas, Current Science, 95, 923–936. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Duda, M., Huang, X.-Y., Wang, W., and Powers,J., 2008, A Description of the Advanced Research WRF Version 3, NCAR Technical Note NCAR/TN-475+STR. Taylor, K. E., 2001, Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. Vishnu, S. and Francis, P. A., 2014, Evaluation of high-resolution WRF model simulations of surface wind over the west coast of India, Atmospheric and Oceanic Science Letters, 7, 458-463. Wang, W., Bruyère, C., Duda, M., Dudhia, J., Gill, D., Lin, H., Michalakes, J., Rizvi, S.Z.X., Beezley, J.D., Coen, J. L. and Mandel, J., 2010, User’s Guide for the Advanced Research WRF (ARW) Version 3.5. NCAR (http://www. mmm. ucar. edu/wrf/). | ||
آمار تعداد مشاهده مقاله: 1,176 تعداد دریافت فایل اصل مقاله: 734 |