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Abstract 
In managerial and economic applications, there appear problems in which the goal is to 

simultaneously optimize several criteria functions (CFs). However, since the CFs are in 

conflict with each other in such cases, there is not a feasible point available at which all CFs 

could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-

dominate' points (NDPs), will be encountered that are ineffective in relation to each other. In 

order to find such NDPs, many methods including the scalarization techniques have been 

proposed, each with their advantages and disadvantages. A comprehensive approach with 

scalarization perspective is the PS method of Pascoletti and Serafini. The PS method uses the 

two parameters of , 2pa R p   as the starting point and , 0p

p
r R r   as the direction of 

motion to find the NDPs on the 'non-dominate' frontier (NDF). In bi-objective cases, the point 
2a R  is selected on a special line, and changing point on this line leads to finding all the 

NDPs. Generalization of this approach is very difficult to three- or more-criteria optimization 

problems because any closed pointed cone in a three- or more-dimensional space is not like a 

two-dimensional space of a polygonal cone. Moreover, even for multifaceted cones, the 

method cannot be generalized, and inevitably weaker constraints must be used in the 

assumptions of the method. In order to overcome such problems of the PS method, instead of 

a hyperplane (two-dimensional line), a hypersphere is applied in the current paper, and the 

parameter 
pa R  is changed over its boundary. The generalization of the new method for 

more than two criteria problems is simply carried out, and the examples, provided along with 

their comparisons with methods such as mNBI and NC, ensure the efficiency of the method. 

A case study in the realm of health care management (HCM) including two conflicting CFs 

with special constraints is also presented as an exemplar application of the proposed method.  
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Introduction 

Finding NDPs in multi-criteria optimization problems (MCOPs) has 

been one of the interesting topics in optimization issues, which has also 

been one of the earliest problems referred to in domains such as 

engineering design, resources optimization, and management science, 

etc. whose main objective is finding a collection of preferred answers 

of which a decision maker (DM)  chooses an answer in order to reach 

the utmost benefits from the available resources. However, MCOP is 

the process of optimizing more than two CFs that are subject to certain 

constraints. Moreover, complicated communication in the feasible 

objective space (FOS) is involved. In the realm of MCOP there exist 

multiple contradictory objectives for which there is a collection of 

NDPs, which represent the interaction between the CFs. However, due 

to the plethora of function evaluations, it is neither wise nor economical 

to produce the entire NDF in experimental cases. Thus, in applied 

problems, we seek to reach a simple representation of NDPs. 

Looking into the literature of research reveals that many studies have 

tried to detect NDPs. In this way, Uilhoorn (2017) presented an 

approach for constructing the NDPs of noise statistics for Kalman 

filtering, applied to the state estimation of gas dynamics. Moreover, 

Kasimbeyli, et al., (2017) performed a comparison of some approaches 

in MCOPs. Also, Lopeza, et al., (2013) presented a new MCO 

algorithm for non-convex non-dominance surfaces of CFs. Works by 

Abo-Sinna, et al., (2014), Audet, et al., (2008), Siddiqui, et al., (2011), 

Valipour, et al., (2014) and Pardalos, et al., (2017) are a number of other 

studies done to develop methods to approximate the NDF. 

This paper focuses on Pascoletti and Serafini scalarization (PS) 

method (Eichfelder, 2008), and based on it, a numerical method to 

approximate the NDF of general MCOPs is presented. PS scalarization 

offers a number of advantages, the paramount one being the fact that it 

is general and many other scalarization methods are special cases from 

it (Eichfelder, 2008).  

However, the PS method has two major problems. One problem is 

the generalization of the method to solve three- or more-objective 

optimization problems, and the other is that this method does not 

provide any solution for finding proper NDPs. The current paper 

examines the first problem and uses a hypersphere instead of a 

hyperplane to overcome it. The frequent selection of the starting point 
pa R  from the boundary of the hypersphere and moving in the 
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direction  0p

pr R   leads to the production of all NDPs on the NDF. 

Then in the numerical examples section, the advantages of the 

introduced approach is shown in two numerical examples along with an 

application in the realm of the health care management (HCM) to treat 

prostate cancer (PC), and the validity of the results is measured by three 

qualitative criteria. The article is organized as follows. 

In the second Part, the basic topics governing MCP and a brief 

explanation of the PS method are presented. The third part examines 

the qualitative criteria used in the paper, and then in section 4, the 

proposed method is examined in detail. An algorithm for implementing 

the proposed method and the theorems for validating the method are 

also presented in section 4. Examples and numerical simulations and 

study of HCM are provided in part 5, and finally, in the last part 

conclusions are presented.  

Basic concepts 
An MCOP with more than one conflicting criteria is given by 

 
MCOP : min ( ) , 2

s.t.

f x p

x X




  (1) 

Where  ( ) 0 , ( ) 0 , , ,n n

i s j lX x R g x h x x x x i j R         and

 1( ) ( ), , ( )
T

pf x f x f x  are nonempty feasible set (FS) and CF, 

respectively. Also ( )f x  represents the vector of objectives and 

, 1, ,kf k p  ( 2p  ) is a scalar function which is the image of the 

designer variable x   into the FOS : ,n

kf R R 1, ,k p . Because 

the criteria conflict with each other, no unique answer can 

simultaneously minimize all single objective functions (SOFs)

( ), 1, ,kf x k p . Therefore, it needs to introduce an efficiency notion, 

considered as an important evaluating criterion in economic and 

management sciences. 

For two vectors ˆ, py y R , 

ˆy y  is equivalent to ˆ
k ky y where in 1, , ,k p  

ˆy y≦  is equivalent to ˆ
k ky y where in 1, , ,k p  

ˆy y  is equivalent to ˆy y≦  and ˆy y . 

In this article, the component arrangement above is used to order the 
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FOS and define the cone  0n n

nR x R x  ≧
. 

Definition 2.1. For a p -objective problem, the point 

 1( ), , ( )
T

i

i p if f x f x   in which arg min ( )i x X ix f x

 with 

1, , ,i p  is called the i -th anchor point.  

Definition 2.2. In the FOS the point  1 , ,
T

N N N

py y y  in which 

max ( )
E

N

i x X iy f x with 1, , ,i p is called the i -th component of 

nadir point.  

It is notable that another useful way to define N

iy is 

  * *

1max ( ), , ( ) , 1, , .N

i i i py f x f x i p    (2) 

The other definition related to the Pareto solutions is given below: 

Definition 2.3. A feasible point x̂ X is called 

A weakly efficient solution (WES) of MCOP (1) if there is no other 

x X in which ˆ( ) ( )f x f x . If x̂ X is WES, then ˆ( )f x  is called a 

weakly non-dominated point (WNDP). 

An efficient solution (ES) of MCOP (1), if there is no other x X in 

which ˆ( ) ( )f x f x . If x X is ES, then ( )f x
 is called a non-

dominated point (NDP). 

The collection of all ES and WES of MCOP (1) is represented by 

EX and wEX , respectively. This image is called by titles such as NDP 

and WNDP sets, which are denoted by NY and wNY , respectively.  

Definition 2.4. The point  1 , ,I I I

py y y  is called the MCOP ideal 

point (1) where min ( ),I

i x X iy f x  1, ,i p . 

Now let's take a look at the PS approach in brief.  

Notations r and a  are the parameters of the PS scalarization which 

are selected from  0p

pR   and pR , respectively. The following model 

based on the ordering cone
pR≧  can be solved in order to determine the 

ES of MCOP (1): 

 

min ,

. . ( ),

,

t

s t a t r f x

t R x X



 

≧   (3) 

To solve the model (3), the cone 
pR ≧  is moved in the path of r  or 
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r  on the beam a t r  which starts at the initial point a  until the 

intersection of ( ) ( )pa t r R f X  ≧  decreases to an empty collection. 

The smallest t  which causes the above set not to be empty is the 

minimal value of the scalarization optimization problem (3); see 

Figure.1 for a bi-criteria problem. 

Theorem 2.1. (Eichfelder, 2009) Consider the closed pointed 

convex cone pR≧  . 

a. Assume x be an ES of MCOP (1), then (0, )x  is an optimal 

solution (OS) of (3) with ( )a f x  and arbitrary 0 pr  . 

b. Assume ( , )t x be an OS of (3), then x is a WES of MCOP (1) and

( )a t r f x ≧  . 

Theorem 2.2. (Eichfelder, 2009) Consider the closed pointed 

convex cone pR≧ . Let the set ( ) pf X R ≧ be closed and convex, and let

NY   , then there exists a minimal solution of (3) for all parameters

 ( , ) 0p p

pa r R R  ≧
. 

2
f

1
f

r

a

0
t 

Y

( )f x

 ) ( ) ( )( p f X f xa t r R  
≧  

Figure 1. Visualization of the PS problem. Here, Y is the FOS. 

As a consequence, if the problem (3) is solved for any choice of 

parameters  ( , ) 0p p

pa r R R  ≧
with ( ) pf X R ≧ closed and convex, 

and if there exists no minimal solution of (3), then NY   .  

In Eichfelder (2008), an approach is proposed to reduce the choice 

of a into pR , which still obtains all the NDP for MCOPs with an ideal 

point.  
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For more than bi-criteria problems, the above approach has not any 

desirable result (see Example 2.19 in Eichfelder (2008),  for further 

discussion).  

The set  : ( ), ,H y H y t r f x x X t R H       is defined as 

one which has an irregular boundary and because of this, is not 

appropriate to be considered in a systematic procedure. The approach 

of constructing 0H is given in Eichfelder (2008), which is complex in 

practice to implement. As a result of the above explanation, this 

approach might be difficult to be verified in practice.  

Contrary to the bi-criteria optimization problems, in the case of more 

than two objective functions, one cannot generalize such a hyperplane 

to problems with more than two CFs in the same way as the H -

hyperplane on bi-objective problems. This problem originates from the 

fact that for finding any NDP on the NDF, it might not be possible to 

perceive a solution on the hyperplane H , assuming that the right 

direction of r  leads to finding that NDP. To solve this problem, 

Pascoletti and Serafini had to use a weaker constraint to construct the 

H -hyperplane and choose the a  point on it. The proposed method, 

which is discussed in Section 4, overcomes this problem with a clever 

technique, namely, using a hypersphere instead of the hyperplane. 

The indicator of inclusion and distance 

Now, to continue the previous discussion, important criteria are 

introduced for determining the measure of the modality of the allotment 

of approximation points. 

Extension (EX) (Meng, et al., 2005) 

An indicator of inclusion checks whether all areas of the efficient 

surface are displayed or not. One such measure of coverage, called 

“extension” (Meng, et al., 2005), is used in this paper. Suppose that

 1 , ,
t

I I I

py y y  in which I

iy  for 1, ,i p  is the ideal point. The 

distance between each and every element of the ideal point from NY  is 

denoted by ( , )I

i Nd y Y , assuming that there exists a discrete 

representation of  NY  

  ( , ) min ( , )I I

i N i Nd y Y d y y y Y    (4) 

Finally, the extension is as follows: 
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 
2

1

( , )

( )

p
I

i N

i

N

d y Y

EX Y
p





  (5) 

For the above equation, smaller values are more suitable; this is because 

large values might prompt the idea that the demonstration is located in 

the middle of the efficient curve, which neglects the surrounding points. 

Evenness ( ) (Messac and Mattson, 2004) 

A collection of points is uniformly distributed over a region. If 

compared to other parts, no part of that region is flank represented in 

that set of points. An indicator of distribution evenness is described 

below. 

The spacing value determines the distance between the represented 

points. It should be noted that reaching a uniform-spacing 

representation is desirable. However, the existence of a representation 

of points with the same distance does not provide acceptable inclusion 

necessarily. In the current article, the spacing scale which is called 

“evenness” (Messac and Mattson, 2004) is applied. Two hyper-spheres 

are produced for one and all point 
iy  in the separate demonstration, 

namely the smaller hyper-sphere that can be made between point  
iy  

and each different point in the collection whose diameter is displayed 

by i

ld , and a larger hyper-sphere  which is constructed by diameter, i

ud

, which has the highest amount of  distance between point 
iy  and each 

points in the set which leads to the fact that  no point in the set is within 

the larger hyper-sphere. This way, the evenness measure is represented 

by the expression d

d


  , where d  and d denote the mean and 

standard deviation of d , respectively, and where  ,i i i

l ud d d and

 2
, , pnid d d . A collection of points is uniformly distributed when 

0   because i

ld  and i

ud  are equal (i.e. 0d  ). In this paper and in the 

proposed QND approach, it is assumed that the criteria region is 

normalized, namely  0 1, 1, ,if i p    . Note that the normalized 

value of the criteria region can be computed using the ideal and nadir 

points.  For this, suppose that there are ideal and nadir points. This issue 
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is given in the equation below: 

 
nrl :

I

i i
i i N I

i i

f y
f f

y y


 


  (6) 

where 
Iy  and 

Ny are the ideal and nadir points, respectively. Here, 

the i-th component nrl

if is the normalized form of the single objective 

if  for 1, ,i p . In the next part, the proposed approach for solving 

the problem of the generalization of the PS method in more-than-one-

objective optimization problems that provides an effective solution is 

discussed in detail.  

Description of the quasi-normal direction method (QND) 

As noted above, the proposed method by Pascoletti and Serafini 

(Eichfelder, 2008) has some limitations in practice. Construction of a 

hyperplane in which initial points are selected is simply not possible. 

So a weaker restriction is proposed for the parameter   of the set H , 

which is done through the projection of ( )f X  towards r  onto set H

(Eichfelder, 2008). Here, another method is proposed, namely the QND 

approach, which does not have the foregoing limitation. The QND 

method uses a posteriori approach in which parameters which have an 

equidistance spread lead to the NDPs with an equidistance spread on 

the NDF. In Practice, this method acts in a similar way to the NBI and 

NC methods. Accessing a more even dispensation of the NDPs to 

improve the measures of coverage and spacing and improving the time 

of complexity compared with other methods is the foremost incentive 

behind the suggested approach in this article. It is worth noting that, the 

performance of most approaches in MCOPs is more or less dependent 

on the NDF geometry. 

Consider the MCOP (1). It is assumed that the model (1) has an 

individual ideal solution. To determine this ideal solution as a reference 

point, the problem minimize ( )f x  subject to x X for 1, ,i p  is 

solved. Assume that I

iy  be an optimal quantity of minimizing ( )f x  

subject to x X for 1, ,i p . The ideal solution is marked by the 

notation  1 , ,I I I

py y y . Then the objective functions should be 

normalized in order for all criteria functions to have a minimum and 

maximum at zero and one, respectively (see Equation 4). 

In the remainder of this section, the ideal solution is considered to be 
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the origin; moreover, the CFs are considered non-negative. Then the 

collection  

 
12

, 1, 0, 1, ,
p

p

i i

i

v
v R v v i p

v 

  
      

  
≧

  (7) 

is defined (
2

. is the Euclidian norm). It is clear that this set is used as 

a starting point for achieving the NDF. The geometry of the   is shown 

in Figure. 2. 

 
 

Figure 2. The set   with 
1

30
  for bi-objective (Figure. 2.a) and three-objective 

problems.Figure. 2.b: respectively. 

Assume that the (quasi) normal direction is equal to n e .  

 Now, consider the following set  

  ˆu u where , , ev t n v t R n         (8) 

In which   is the p p  pay-off matrix. Choose an arbitrary point,

ku  into the set   (utopia circle). Figure.3 illustrated the description of 

the QND method for bi-objective problems. Finding NDP on the NDF 

underlies the QND approach.  

Thus, to produce the NDF, the following optimization problem must 

be solved 

 

min ,

. . ( ) ,

, .

p

t

s t u f x R

u x X

 

 

≧   (9) 

Problems such as (9) are solved thorough ordering cone 
pR ≧  towards 

n  or n  on the line u  that starts at  v̂  to reduce the set  
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( ) ( )pu R f X ≧  to a blank collection for allu . The smallest value of 

t  satisfied in (9) above is considered as an optimal value of such problems. 

2
f

1
f

Y

Normalized objective1

N
o
rm

al
iz

ed
o
b
je

ct
iv

e
2

(1,1)n 

0t 

( )
k

t n f xp  

k
p

( )f x

 
Figure 3. Graphical description of QND method for a bi-criteria optimization model. 

Here kp is a generic point on the utopia circle and (1,1)n   e is the quasi-normal 

direction. 

Eichfelder (2008) proposed an approach to produce p , which is 

considered to be an even distribution of combination vectors in which  

0, ,2 , ,1   are the values of different components for which 
1

1
n

    

is a fixed step size and n  is a non-negative integer.  

The set   is considered as the first quarter of the unit circle in bi-

objective problems (see Figure.2a); however, in problems with three 

objectives,   is considered as the first octant of the unit sphere (see 

Figure. 2b). As an iterative method, QND generates a set of points 

which are considered as approximations of the NDF, NY  in which in 

each iteration the NDP is denoted by AY  which presents an estimation 

of the real NDF, NY . 

At first, the ideal point is found and normalized according to 

Equation 6. Also, set AY   . The iterations in the QND algorithm 

include two stages which are as follows. Firstly, the direction n e

and the k-th point kp  on the hypersphere is used. Secondly, 

problem 9 is used by direction n and the k-th point kp  . In the second 

stage, therefore, the set of NDPs, AY   will be updated at each iteration. 
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The general overview of the QND approach is presented below. 

 

The QND Algorithm 

Input: MCOP. 

Output: Determine the approximate set of NDF denoted by AY . 

The initial steps 
 Determine the ideal point according to Definition 2.4. 

 Normalize all objective functions according to Equation 6. 

 Let A
Y   . 

 Determine m  as the desired number of NDPs; set 
1

m
  and define 

 
0

m

i
L i


 as the set of points on the CHIM. 

 Define the set of initial points according to (7) and let the fixed 

(pseudo) normal direction be n e . Let kp be denoted as the k-th element 

of , and  be a cardinal number of the set of points   on the hypersphere. 

Set 1k  and restate the procedure below to establish k   . 

The main steps 

 Determine the initial point kp  , and according to set  solve the 

single optimization problem (SOP), 9. 

 Update AY : Actually, AY  contains all NDPs in the current repetition. 

Set : 1k k   and repeat the procedure until the stop criterion is established. 

In this step, the obtained NDP collection AY  is an approximate of the true 

NDP set NY . 

 

Justification of this two-step approach is shown thorough WES of 

(9).  

Theorem 4.1. Consider x  as a WES of the model (1). Now prove 

that for arbitrary  int pn R ≧ , (0, )x  can be an OS of the parameter 

: ( )p f x   of the problem (9).  

Proof. Set : ( )p f x  and choose  int pn R ≧  as arbitrary. Then the 

point (0, )x  is feasible for problem (9) because 

( ) 0 ( ).t n f x n f x   p ≧  
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The above solution is possible for problem (1) since based on 

considering theorem x as a WES of model (1), therefore, x X . 

Moreover the solution (0, )x  is considered an OS of (9); differently, 

there will be a possible solution ( , )t x   with 0t  and a 
pk R ≧ with 

( ) pp t n f x k R      ≧ . 

Therefore, this conduces to ( ) ( )f x f x k t n      which is 

int( )pk t n R   ≧  that leads to ( ) ( )f x f x  which is incongruent with 

the WSE of the MOP (1), namely x . 

Theorem 4.2. Let x be an ES of the model (1), then (0, )x  is an 

optimal answer of (9) for the : ( )p f x  and  \ 0p

pn R ≧ . 

Proof. From the previous theorem, it is clear that the solution (0, )x  

is a possible solution for the model (9). Even, it is an OS; otherwise, 

there is another point ( , )t x   and a scalar 0t  and 
pk R ≧ with 

( ) pp t n f x k R      ≧ . 

For this reason, ( ) ( )f x f x k t n     . It is
pk t n R   ≧ , and 

( ) ( ) pf x f x R  ≧ . 

Since x is an ES to the model (9), then it is concluded that 

( ) ( )f x f x  , and thus k t n  . 

Since 
pR≧ is a pointed-cone, 

pk R ≧ and
pt n R  ≧ ; this implies

0t n k   . Thus, it is incongruity with 0t   and 0n  . 

Theorem 4.3. Assume ( , )t x  is an OS of (9). Then x is a WES of 

the model (1). 

Proof. Let x be not WES. Then there is another point x X and a 

int( )pk R ≧  with ( ) ( )f x f x k   . 

As ( , )t x  is an OS of (9) and hence feasible for (9) there is a 
pk R ≧

with ( )p t n f x k   . 

Because int( )pk R ≧ and 
pk R ≧ implies int( )pk k R  ≧ , there is a 

0   with int( )pk k n R   ≧ . 

Then it is concluded that from ( )p t n f x k k     , 

( ) ( ) int( ).pp t n f x R     ≧  
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Then the point ( , )t x  is possible for (9) too, with t t   

incongruity to ( , )t x being the OS of (9). 

Theorem 4.4. A solution ( , )t x  is an OS of the problem (9), with 

n e and p̂ , if and only if ( , )t x  is an OS of  problem PS( , )a r .  

In the next section, the effectiveness of the suggested method is 

examined in a number of examples, and the quality of the responses is 

measured using the qualitative criteria examined in Section 3.  

Numerical examples 

In this section, two examples from Deb (2001) and Zhang, et al. (2008) 

and one example from the HCM of PC treatment (Craft, et al., 2007) 

are used to display the accuracy and performance of the QND approach. 

For all test problems, the results obtained by QND are compared with 

the results from the mNBI approach (Shukla, 2007) and the NC 

approach (Messac, et al., 2003). Through applying the Global Solve 

solver of the Global Optimization package in Maple 2018, all single-

objective optimization problems (SOPs) of the current paper are solved. 

The algorithm in the Global Optimization Toolbox is known as a global 

search method (Pintér, et al. 2006) .  

Bi-objective problems 

In this subsection, the test problem F5 is considered from Zhang, et al., 

(2008). 

Unconstraint problem (F5 in Zhang, et al., 2008) 

The bi-objective to be minimized: 

 

1

2

2

1 1

1

2

2 1

2

1

2
min ( ) ,

2
min ( ) 1 ,

. . 0 1, 1 1, 2, , .

jj J

jj J

j

f x x y
J

f x x y
J

s t x x j n





 

  

     



   (10) 

where 

 1 =2 1, 2 ,J j j k j n k N     ,  2 =2 , 2 ,J j j k j n k N      

and 
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42
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0.3 cos(24 ) 0.6 cos(6 ) ,
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x x x x x j J
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x x x x x j J
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 

        
 

         

The FS is   
1

0,1 1,1
n

  . 

Its NDF is 
2 1 11 , 0 1f f f     and its ES set is 

42

1 1 1 1 1

42

1 1 1 1 2

0.3 cos(24 ) 0.6 cos(6 ) ,

0.3 cos(24 ) 0.6 cos(6 ) ,

j j

n n

j j j

n n

x x x x j J
x

x x x x j J

 

 

 

 

     
 

       

Assume 4n  . The problem is solved by QND, the mNBI and NC 

methods with 1
100

  . The real NDF and the efficient frontier (EF) in the 

3D feasible region are demonstrated in Figure.4. 

The comparative results of the QND, mNBI, and NC methods for 

finding 101 Pareto optimal points after 96226264, 39992166845 and 

10567553 total function evaluations (TFE) for the current problem are 

illustrated in Figures.5-7, respectively. Details are given in Table 1. 

2f

1f
1x

2x

3x

Pareto front (PF)
Pareto set (PS)

 
Figure 4. Representation of the NDF and the EEF in FS of instance F5 test problem. 

Table 1. Run time (s), TFE rate, coverage measure (EX) and Density ( ), and the 

dominance between solutions of the QND, mNBI, and NC methods for F5 problem 

(Zhang et al., 2008). 
 

Method 
                                            F5 test problem 

  Run time (s)                     TFE                                          EX                     

       QND 

mNBI 
NC 

3332.150 

15253.542 
585.784 

96226264 

399216845 
10567553 

0.0038039 

0.0038039 
0.0038039 

0.0036968 

0.0063251 
0.0046713 

 

Solutions of the QND dominate 171 solutions of the mNBI. 

Solutions of the mNBI dominate 94 solutions of the QND. 

Solutions of the QND dominate 210 solutions of the NC. 

Solutions of the NC dominate 183 solutions of the QND. 

Solutions of the mNBI dominate 144 solutions of the NC. 

Solutions of the NC dominate 125 solutions of the mNBI. 



 The Quasi-Normal Direction (QND) Method: An Efficient Method for… 393 

Responses achieved by QND approach dominated 171 and 210 answers 

achieved by mNBI and NC approaches of 10201 comparisons, 

respectively. Also, from this number of comparisons, answers achieved 

by mNBI and NC approaches dominated 94 and 183 solutions obtained 

by the QND method. Comparing EX and   in the three above-

mentioned methods yields the fact that the approximation points’ 

distribution quality of the QND method is more desirable than that of 

mNBI and NC approaches.  

A comparison of Figure.5-7 and Table 1 display that the 

approximation points’ distribution quality of the QND method is more 

suitable than those of the mNBI and NC methods. 

Three-objective problems 

The three-objectives to be minimized: 

  
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1 1
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s t x i
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





   


 

 





  (11) 

The efficient set is separated into four non-connected sections. The set 

of ES is a subset of the set 

 22 0, 3, ,22ix R x i  
 

and therefore the non-dominated set is a subset of the set 

 
2

3

1 2 3

1

, 0,1 , 2(3 (1 sin(3 )))
2

i
i

i

y
Y y R y y y y



 
      
 


 

which is plotted in Figure.8. The problem is solved by the QND, the 

mNBI, and NC methods with 1
15

  for producing 256 NDPs on the real 

NDF. 

The convergence to the NDF and also the distribution of solutions of 

the QND, mNBI, and NC methods for finding 256, NDP after 

103109965, 121624414 and 87449325 TFE for the current problem are 

illustrated in Figures.9-11, respectively. Results of the proposed 

method are listed in Table 2. 
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2f

1x
2x

3x

Pareto front (PF) Pareto set (PS) by QND method

1f

Pareto points obtained by QND method

 
Figure 5. The QND method with 96226264 TFEs, fo instance, F5 test problem (Zhang, et al., 2008). 

2f
3x

Pareto front (PF) Pareto set (PS) by mNBI method

1f

Pareto points obtained by mNBI method

2x
1x

 

Figure 6. The mNBI method with 399216845 TFEs, for instance, F5 test problem 

(Zhang, et al., 2008). 

2f 3x

Pareto front (PF) Pareto set (PS) by NC method

1f

Pareto points obtained by NC method

2x
1x

 
Figure 7. The NC method with 10567553 TFEs, for instance, F5 test problem (Zhang, et 

al., 2008). 

Answers achieved by QND approach dominated 152 and 183 answers 

obtained by the mNBI and NC. Also, from this number of comparisons, 

answers achieved by the mNBI and NC approaches dominated 94 and 

138 solutions obtained by the QND method.  

Table 2 demonstrates that the solution distributions of the QND method 

are better than those of the mNBI and NC methods. 
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1f2f

3f

 
Figure 8: Illustration of the set Y . 

3f

2f
1f

2f3f

1f

 

Figure 9. The QND method with 103109965 TFEs. 

Table 2. Run time (s), TFE rate, coverage measure (EX) and Density ( ), and the 

dominance between solutions of the QND, mNBI, and NC methods. 

Method 
Three-objective test problem 

Run time (s)    TFE                    EX                         

QND 

mNBI 

NC 

4759.544 

4303.678 

9438.544 

103109965 

121624414 

87449325 

0.0016829 

0.0018468 

0.0019468 

0.0096630 

0.0172651 

0.0144486 

Solutions of the QND dominate 152 solutions of the mNBI. 

Solutions of the mNBI dominate 94 solutions of the QND. 

Solutions of the QND dominate 183 solutions of the NC. 

Solutions of the NC dominate 138 solutions of the QND. 

Solutions of the mNBI dominate 80 solutions of the NC. 

Solutions of the NC dominate 175 solutions of the mNBI. 
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Figure 10. The mNBI method with 121624414 TFEs. 

3f

2f
1f

2f3f

1f

 

Figure 11. The NC method with 87449325 TFEs. 

Application to HCM for IMRT treatment planning (Craft, et al., 

2007) 

As is proposed in the introduction of the current manuscript, there are a 

number of multi-criteria structure problems in engineering, economic 

and management applications which are often viewed as an SOP. An 

example of this is found in IMRT in which the main goal of the doctor 

is to destroy or reduce the tumor and at the same time to leave the 

surrounding healthy tissues untouched (see Alber and Reemtsen, 2007; 

Cotrutz, et al., 2001; Ehrgott and Burjony, 2001, for discussion). IMRT 

is multi-objective; that is to say, for this problem there exist more than 

one competing criteria which must be optimized at the same time. 

For this paper, the QND algorithm proposed in the current 

manuscript has been applied to solve such bi-objective problems of PC. 
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With an available solution set as such, the therapist can juxtapose the 

criteria values of several answers and base the resulted decisions on 

knowledge. According to Eichfelder (2014), the cancer tumor can be 

radiated by five streams with equal distances, which includes a 

compilation of 400 distinctly suppressible pencil beams. If the radiation 

structure is immovable and the researcher concentrates on an 

optimization of the radiation strength, that part of the patient’s body 

affected by the beams can be sketched by a system. According to the 

thickness of the slivers of the CT-slices in such experiments, the body 

of the patient is anatomized in voxels jv , 1, ,25787j  . As the 

researcher might face a lot of voxels, he can reduce this by applying a 

clustering method proposed by Küfer, et al. (2003) that results in 8577 

clusters. This has the same radiation stress with respect to a one-

radiation unit. Such clusters are denoted as 1 8577, ,c c . As is indicated 

in figure 12 below, in the case study of the current manuscript, 0 1,B B  

represent the tumor, 2B  represents the rectum, 3B  and 4B  represent the 

hip-bones in both sides of the body, respectively, 5B  represents the other 

tissues, and finally 6B  represents the bladder. 

Küfer et al. (2003) proposed that under radiation, 6B  and 2B  are the 

most susceptible organs in receiving the radiation doses. Moreover, the 

sparing of 6B  leads to a high dose 2B  and vice versa. The emission of 

the stream iB ,  1, ,200i to the clusters jc ,  1, ,8577j  

demonstrated by the matrix  
8577 200jiA a


 . Let 

200x R  be the strong 

form of the stream. Then, jA x with jA  the j th row of the matrix A

depicts the radiation dosage in the jc , caused by the stream iB , for the 

behavior scheme x . According to Brahme (1984), in order to compare 

the radiation stress in the organs, the researcher has to use the EUD. 
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Figure 12. Schematic axial body cut. 

According to Nimierko’s EUD (Niemierko, 1997) and using p -

norm such as clustered voxels, the following formula can be considered: 

 

 

1
( ) .( ) , 2, ,6k

k

j k

A
Ak j j

k j c B

D x c A x k
B



    (12) 

The disparity of the variable dose in a part from the appropriated 

perimeter kU  is counted by
1

( ) ( ) 1k k

k

L x D x
U

  . The number of voxels 

in the organ kB  and cluster jc  are demonstrated by kV  and jc , 

respectively. It is notable that
 | j k

j k

j c B

c B


 . The results of the case 

study of the current manuscript are presented in Table 3 below. The 

main purpose of the current study is reduced 2B and 6B . 

In this case, we will have the following bi-objective problem: 
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  (13) 

The required values are specified in Table 4. 

Table 3. Pivotal rates in the part at risk. 

 Number of organs (k) 
kA  kU  kQ  

kB  

B2 2 3.0 34 36 5750 
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B3 3 2.0 30 42 3653 

B4 4 2.0 37 42 4200 

B5 5 1.1 25 35 200378 

B6 6 3.0 35 42 2351 
 

Table 4. Pivotal rates in tumor tissues. 

 Number of organs (k) 
k  k  k  

Intention-tissue 0 67 0.11 0.11 

Increase-tissue 1 72 0.07 0.07 
 

Table 5. Optimum values for 
kD and recommended constraints for approximations of   

Also, 𝐘𝐍 is non-dominated set. 

𝒌 𝐦𝐢𝐧
{𝒊|𝒚𝒊∈𝒀𝑵}

𝑫𝒌(𝒙
𝒊) 𝐦𝐚𝐱

{𝒊|𝒚𝒊∈𝒀𝑵}
𝑫𝒌(𝒙

𝒊) 𝑼𝒌 𝑸𝒌 

2 33.71 36 34 36 

3 40.35 41 30 41 

4 38.76 42 37 42 

5 14.12 14.57 25 35 

6 34.69 42 35 42 

The application of the proposed method to the above HCM problem 

leads to the following results (see Figure.13). 

Finally, the smallest and topmost even dose rate kD  in the part kB

2,...,6k   can be compared over the total of approximation points as 

seen in Table 3. 

 
Figure 13. NDPs of the bi-objective HCM problem with the QND method 

According to the above-mentioned approximations, the therapist can 

select an appropriate plan in which he can weigh the damage to the 

bladder and the rectum against each other. 
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Conclusions 

In this paper, an efficient numerical method for solving MCOPs 

based on PS scalarization has been presented. The method produces 

a fine representation of the whole NDF for MCOPs. The introduced 

approach was applied to two problems and performed very well in 

terms of constructing the NDF. The algorithm was also applied to a 

HCM case study problem to demonstrate its applicability in practical 

problems.  

In the current study, an optimized treatment plan for radiating a 

cancer tumor has been proposed. In this plan, besides getting rid of 

or weakening the cancer tumor, the least possible hazards and 

damages to the healthy organs of the body have been witnessed. 

Moreover, an optimized medicine plan for utmost impact on control 

and overcoming cancer tumors around healthy body organs is 

necessary. 

Use of high doses of radiation leads to the side-effects in rectum 

and bladder, which is due to the high-range medicine pull of these 

organs. In the current study, minimizing the medicine pull in the 

bladder and the rectum was an aim. For this, a treatment plan is 

achieved by the physician in which the least suffering will happen in 

the patients’ bladder and the rectum during the treatment process.  

In the section on numerical examples, the results of the 

simulations showed that the time of performing the NC method was 

less than the mNBI and QND methods, which is due to the structure 

of the NC method, which is based on limiting the search space for 

the answer; this is contrary to the mNBI and QND methods that are 

gradient-oriented and do not limit the solution search space. As a 

result, it seems obvious that the computational complication of the 

NC approach is not worse than those of the other two approaches. 

On the other hand, the main criterion in the quality of NDP is its 

quality; examining the numbers in Tables 1 through 5 shows the 

superiority of the QND method. This indicates that the QND method 

has produced more high-quality responses than the other two 

methods, which firstly present a greater and better spread of the 

NDF, and secondly the distribution of responses is closer to the 

uniform distribution and can satisfy the demand of the decision-

maker at any desired level. The results of the numerical simulations 

indicate that most of the QND solutions are superior to the solutions 

obtained from the other two methods and overcome them often. This 
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suggests that the QND method approximates the NDF with more 

details and less error compared with the other two methods. Along 

with all the qualities of the QND method, one of the disadvantages 

of it is the nonlinear structure of the method that leads to an increase 

in the computational complexity observed in the examples.  
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