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1. Introduction 

The using of nano structures is increasing in the engineering 

applications from day to day. Nano structures are used various 

applications, such as actuators, atomic microscopes, electro-

mechanical devices. The experimental investigations of the nano 

structures are still difficult problems in today. So, the molecular 

dynamic simulation is used for the nanostructural analysis. 

However, this method has high computational cost. So, 

approximate models continuum models are preferred in the 

researches such as the nonlocal continuum theories. The nonlocal 

continuum theories consist of size effect in contrast with classical 

continuum theory. Although, this models do not gives realistic 

results in contrast with molecular dynamic simulation, it can be 

obtained determined results in the restricted conditions.    

 

In the last decade, vibration, stability and static behavior of the 

nano structure have been investigated within nonlocal continuum 

theories in the literature at large (Eringen [1,2], Toupin [3], Lam 

et al. [4], Mindlin [5,6], Yang et al. [7], Park and Gao [8], 

Hasanyan et al. [9], Loya et al. [10], Civalek et al. [11], Reddy 

[12,13], Hasheminejad et al. [14], Liu and Reddy [15], Ansari et 
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al. [16], Wang et al. [17], Asghari et al. [18], Belkorissat et al. 

[19], Akgöz and Civalek [20,21], Karličić et al. [22], Kocatürk 

and Akbaş [23], Sedighi et al. [24], Al-Basyouni et al. [25], 

Şimşek [26], Chaht et al. [27], Akbaş [28,29], Arda and Aydogdu 

[30],Eren and Aydogdu [31], Uzun et al. [32], Arda and Aydogdu 

[33], Zargaripoor et al. [34], Ke et al. [35], Kordani et a. [36], 

Zakeri et al. [37], Ebrahimi and Shafiei [38], Ebrahimi et al. [39], 

Ahouel et al. [40], Aissani et al. [41], Bellifa et al. [42],Hadji et 

al. [43], Hosseini et al. [44,45], Hadi et al. [46,47], Akbaş [48], 

Shishesaz et al. [49], Moradi et al. [50], Nejad et al. [51]).     

 

In investigation of cracked nano-elements in open literature as 

follows; Hasheminejad et al. [52] investigated free vibration of 

cracked nanobeams with surface effects. Loya et al. [53] 

examined free vibration analysis of Euler-Bernoulii nanobeams 

based on nonlocal elasticity theory. Roostai and Haghpanahi [54] 

investigated free vibration results of nanobeams with multi 

cracks by using nonlocal elasticity theory. Liu et al. [55] 

presented vibration responses of the cracked micro cantilever 

beams under electrostatic forces. Torabi and Nafar Dastgerdi 

[56] studied free vibration of cracked Timoshenko nanobeams by 

using nonlocal elasticity theory.Wang and Wang [57] presented 

free vibration cracked Timoshenko nanobeams with surface 
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This study presents axially forced vibration of a cracked nanorod under harmonic 
external dynamically load. In constitutive equation of problem, the nonlocal 
elasticity theory is used. The Crack is modelled as an axial spring in the crack 
section. In the axial spring model, the nonrod separates two sub-nanorods and the 
flexibility of the axial spring represents the effect of the crack. Boundary condition 
of the nanorod is selected as fixed-free and a harmonic load is subjected at the free 
end of the nanorod. Governing equation of the problem is obtained by using 
equilibrium conditions. In the solution of the governing equation, analytical 
solution is presented and exact expressions are obtained for the forced vibration 
problem. On the solution method, the separation of variable is implemented and 
the forced vibration displacements are obtained exactly. In the open literature, the 
forced vibration analysis of the cracked nanorod has not been investigated broadly. 
The objective of this study is to fill this blank for cracked nanorods. In numerical 
results, influences of the crack parameter, position of crack, the nonlocal parameter 
and dynamic load parameters on forced vibration responses of the cracked nanorod 
are presented and discussed. 

Keywords: 

Nanorods 

Crack  

Nonlocal Elasticity Theory 

Forced Vibration Analysis 

  



Journal of Computational Applied Mechanics, Vol. 50, No. 1, June 2019, pp 63-68 

64 

energy. Tadi Beni et al. [58] investigated effects of the cracks on 

vibration characterises of the nanobeams by using couple stress 

theory. Yaylı and Çerçevik [59] examined dynamics of nano 

beams with crack by analytically. Stamenkovic´ et al. [60] 

studied forced vibration of single-walled carbon nanotubes with 

magnetic effects. Peng et al. [61] presented energy rate for crack 

nano beams. Akbaş [62] presented effects of the cracks on the 

static displacements of the microbeams based on couple stress 

theory by analytically. Akbaş [63] studied free vibration of 

cracked micro beams by using finite element method and couple 

stress theory. Akbaş [64,65] investigated forced vibration 

analysis of cracked nano/micro beams based Euler-Bernoulii 

beam theory by using couple stress theory. Hsu et al. [66] 

investigated effects of the crack on axial vibration of nanobeams 

based nonlocal elasticity theory. Rahmani et al. [67] investigated 

torsional vibration of nanobeams with crack. Sourki and Hoseini  

[68] presented vibration analysis of cracked microbeams based 

couple stress theory. 

 

In the literature survey, the forced vibration studies of the 

nanorods with crack have not been investigated at large. The 

novelty in this paper is to investigate longitudinal forced 

vibration of cracked cantilever nanorod and to fill this blank for 

cracked nanorods. In effects of crack, crack section is modelled 

as an axial spring which separate two sub-nanorods. Governing 

equation of problem is solved by analytically with using the 

separation of variable procedure. The explicit forced vibration 

displacements are obtained in domain time by analytically. The 

effects of nonlocal, dynamic load and crack parameters on forced 

vibration responses of cracked nanorod are presented and 

discussed. 

2. Theory 

Figure 1 shows a cantilever cracked circular nanorod subjected 

to dynamically point force (P(t)). The load is subjected at the free 

end of nanorod. In figure 1, L and D indicate the length and 

diameter of the nanarod, respectively. The crack depth indicates 

as a and the location of the crack from fixed support indicates as 

L1. 

 
Figure 1. A cantilever cracked circular nanorod subjected to dynamically 

point load. 

 

By using the nonlocal elasticity theory, constitutive equation of 

the problem is given (Eringen [1,2]);  

                          𝜎𝑥𝑥 − 𝜇
𝑑2𝜎𝑥𝑥

𝑑𝑥2 = 𝐸 𝜖𝑥𝑥                                

(1) 

 

where, 𝜎𝑥𝑥 and 𝜖𝑥𝑥 are nonlocal normal stress and strain, 

respectively. E and μ are Young's modulus and nonlocal 

parameter, respectively. where 𝜇 = (𝑒0𝑎)2, 𝑒0 indicates length 

scale parameter. By using equilibrium of forces in axially 

direction, the equation of motion is expressed as follows; 

               𝐸
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
− 𝜌

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
+ 𝜌𝜇

𝜕2

𝜕𝑥2
(

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
) = 0              (2) 

where, 𝜌 and u are mass density and axial displacement function, 

respectively. By simplifying equation 2, the following equation 

is obtained. 

              𝑐2 𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
−

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
+ 𝜇

𝜕2

𝜕𝑥2
(

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
) = 0                   (3) 

where                                                                        

                                 𝑐2 =
𝐸

𝜌
                                                 (4) 

In the crack model, the crack section is modelled as linear 

elastic spring. In the axial spring model, the nonrod seperates two 

sub-nanorods and the flexibility of the axial spring represents the 

effect of the crack as shown figure 2. 

 
Figure 2. Axial spring model in crack section. 

In figure 2, kc indicates the axially stiffness coefficient of the 

crack. Because of the crack, the nanobeam is formed as two sub 

portion. So, two different displacement functions and equation of 

the motion are rewritten; 

𝑐2 𝜕2𝑢1(𝑥,𝑡)

𝜕𝑥2 −
𝜕2𝑢1(𝑥,𝑡)

𝜕𝑡2 + 𝜇
𝜕2

𝜕𝑥2 (
𝜕2𝑢1(𝑥,𝑡)

𝜕𝑡2 ) = 0 , 0 ≤ 𝑢1 ≤ 𝐿1    

(5a) 

𝑐2 𝜕2𝑢2(𝑥,𝑡)

𝜕𝑥2 −
𝜕2𝑢2(𝑥,𝑡)

𝜕𝑡2 + 𝜇
𝜕2

𝜕𝑥2 (
𝜕2𝑢2(𝑥,𝑡)

𝜕𝑡2 ) = 0,   𝐿1 ≤ 𝑢2 ≤ 𝐿  (5b) 

where, u1 and u2 are the axial displacement functions of the first 

portion (left side of crack) and second portion (right side of 

crack). The boundary conditions of the problem are given as 

follows; 

                    𝑢1(0, 𝑡) = 0,     
𝜕𝑢1(𝐿1,𝑡)

𝜕𝑥
=

𝜕𝑢2(𝐿1,𝑡)

𝜕𝑥
,    

                
𝑘𝑐(𝑢2(𝐿1,𝑡)−𝑢1(𝐿1,𝑡))

𝐸𝐴
=

𝜕𝑢1(𝐿1,𝑡)

𝜕𝑥
,   

𝜕𝑢2(𝐿,𝑡)

𝜕𝑥
=

𝑃(𝑡)

𝐸𝐴
             (6) 

where, A indicates the area of the cross section. The external 

dynamically load (P(t)) is considered a harmonic function;                                                    

                              𝑃(𝑡) = 𝑃0𝑠𝑖𝑛 (𝛺𝑡)                                        (7) 

where, 𝑃0 and 𝛺 are the amplitude and frequency of load, 

respectively. To solve the forced vibration problem, the solution 

(𝑢𝑝) of equation (5) for the forced vibration problem is solved by 

using the separation of variable; 

   𝑢𝑝1(𝑥, 𝑡) = 𝑈𝑝1(𝑥)𝑠𝑖𝑛 (𝛺𝑡),             0 ≤ 𝑢1 ≤ 𝐿1                (8a) 

   𝑢𝑝2(𝑥, 𝑡) = 𝑈𝑝2(𝑥)𝑠𝑖𝑛 (𝛺𝑡),            𝐿1 ≤ 𝑢1 ≤ 𝐿                 (8b) 

Substituting Eq. (8) into equation (5) gives following equations 

of motion: 

(𝑐2 𝑑2Up1(x)

𝑑𝑥2 + Ω2Up1(x) − 𝜇 Ω2 𝑑2Up1(x)

𝑑𝑥2   ) sin (Ωt) = 0,             
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                                         0 ≤ 𝑢1 ≤ 𝐿1                                     (9a) 

(𝑐2 𝑑2Up2(x)

𝑑𝑥2
+ Ω2Up2(x) − 𝜇 Ω2 𝑑2Up2(x)

𝑑𝑥2
  ) sin (Ωt) = 0,                

                                          L1 ≤ 𝑢1 ≤ L                                   (9b) 

After the simplifying expression (9), the following equation is 

obtained as follows:   

      (
𝑑2Up1(x)

𝑑𝑥2
+ 𝛾2Up1(x)) = 0,     0 ≤ 𝑢1 ≤ 𝐿1                   (10a) 

 

      (
𝑑2Up2(x)

𝑑𝑥2
+ 𝛾2Up2(x)) = 0,        L1 ≤ 𝑢1 ≤ L                (10b) 

where 

                    𝛾2 =
Ω2

𝑐2− 𝜇 Ω2                       (11) 

By implementing the boundary conditions in the equation 

(10) for clamped-free boundary conditions, the 𝑈𝑝1(𝑥, 𝑡) and 

Up2(x, t) is obtained as follows: 

            𝑈𝑝1(𝑥, 𝑡) = 𝐵1 𝑠𝑖𝑛(𝛾𝑥) 𝑠𝑖𝑛 (𝛺𝑡),      0 ≤ 𝑢1 ≤ 𝐿1     (12a) 

𝑈𝑝2(𝑥, 𝑡) = (𝐴2 𝑐𝑜𝑠(𝛾𝑥) + 𝐵2 𝑠𝑖𝑛(𝛾𝑥))𝑠𝑖𝑛 (𝛺𝑡), 𝐿1 ≤ 𝑢1 ≤ 𝐿     

                              (12b) 

where 

        𝐵1 =
−2 P0 kcr

𝐸𝐴γ α
 ,        𝐴2 =

−2 P0 (cos(γ𝐿1)2)

 α
,               

                𝐵2 =
− P0 (2 kcr+𝐸𝐴γ sin(2γ𝐿1))

𝐸𝐴γ α
 ,                             (13) 

where 

 α = 𝐸𝐴γ sin(γ𝐿) − 2 kcr cos(γ𝐿) + 𝐸𝐴γ sin(γ𝐿 − 2γ𝐿1)   (14) 

The flexibility coefficient of the crack (𝐺𝑐𝑟) is given as follows: 

                              𝐺𝑐𝑟 =
1

𝑘𝑐𝑟
                         (15) 

The dimensionless quantities are given as follows: 

   𝜂 =
𝑒0𝑎

𝐷
,   𝛺̅ = √

𝜌 𝐷2

𝐸
𝛺 ,   𝜆 =

𝐿

𝐷
,   𝑈 =

𝑈𝑝

𝐿
,  𝐺̅𝑐𝑟 =

𝐺𝑐𝑟 𝐸𝐴

𝐷
  ,     

                                      𝐿̅𝑐𝑟 =
𝐿1

𝐿
                                              (16)   

where 𝜂 and 𝛺̅ indicate the dimensionless nonlocal parameter 

and dimensionless the frequency of the dynamic load, 

respectively. 𝜆 is the aspect ratio,  𝑈 is dimensionless the 

longitudinal displacement, 𝐺̅𝑐𝑟 is dimensionless flexibility 

coefficient of crack and,  𝐿̅𝑐𝑟 is crack location ratio. 

3.  Examples 

In numerical examples, effects of dimensionless nonlocal 

parameter, dimensionless the frequency of the dynamic load, the 

dimensionless flexibility coefficient and location of crack on 

dynamic displacements of cracked nanorod are investigated. In 

the numerical study, the material of the nanorod is considered as 

epoxy (E=1,44 GPa,  𝜌 = 1600 𝑘𝑔/𝑚3). The diameter of the 

nanorod is taken as D=1nm. The length of the nanorod is selected 

according to the aspect ratio (𝜆). 

In order to verify this study, some results of Hsu et al. [66] 

and Singh [69] are compared with obtained results of present 

study in table 1. In the comparison study, the first three vibration 

eigenvalues of clamped-free cracked rod are compared in theses 

of [59] and [66]. In the comparison study, the following 

parameters are used; L̅cr = 0.202, G̅cr = 0.1144, η = 0.01, λ =

√
ρ L2

EA
ω. Where, ω and λ dimensional and dimensionless 

vibration eigenvalues. It is seen from table 1 that the results of 

present study are good agreement of the results of Hsu et al. [66] 

and Singh [69]. 

Table 1. Comparison study: the first three dimensionless 

vibration eigenvalues of clamped-free cracked rod. 

Mode Number 
λ 

Present Ref. [66] Ref. [69] 

1 1,4278 1,4278 1,4278 

2 4,5576 4,5576 4,5576 

3 7,8540 7,8540 7,8540 

   In figure 3, relationship between the dimensionless 

displacements and the dimensionless frequency of the dynamic 

load (𝛺̅) is presented for different values of dimensionless 

flexibility coefficients of the crack (𝐺̅𝑐𝑟) for the aspect ratio 𝜆 =
20, amplitude of dynamic load is taken as 𝑃0 = 1 nN, the 

dimensionless nonlocal parameter 𝜂 = 0.01 and the crack 

location ratio 𝐿̅𝑐𝑟 = 0.5. It is stated that the dimensionless 

amplitude displacements (𝑈𝑚) are calculated at the free end of 

the cracked nanorod in all figures. 

   Figure 3 displays that increasing of dimensionless flexibility 

coefficients of crack yields to increase the dimensionless 

displacements naturally. The dynamic responses the cracked 

nanorod change with increase of the 𝐺̅𝑐𝑟. Also, the resonance 

frequency change considerably with increase of 𝐺̅𝑐𝑟 parameter. 

The resonance case can be seen in the vertical asymptote lines in 

all figures. Increasing of the 𝐺̅𝑐𝑟 parameter yields to decreasing 

the resonance frequency. 

 

Figure 3. The relationship between dimensionless displacements and 

dimensionless frequency of load for different values dimensionless 
flexibility coefficients of crack. 

In figure 4, relationship between the dimensionless 

displacements and the dimensionless frequency of dynamic load 

(𝛺̅) is presented for different values of the crack location ratio 

(𝐿̅𝑐𝑟) for 𝜆 = 20, 𝐺̅𝑐𝑟=0.3, 𝜂 = 0.01and 𝑃0 = 1 nN.  
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As seen from figure 4, the displacements and dynamic 

responses of the cracked nanorod change considerably. With 

increase of the crack location ratio, in other words, crack location 

get closer to fixed end (left end), dynamic displacements increase 

as it expected. Also, the resonant frequencies change with 

different values of 𝐿̅𝑐𝑟. With the crack get closer to fixed end, the 

resonant frequencies of the nanorod decrease significantly. It is 

concluded from figures 3 and 4 that the crack flexibility and 

location parameters have important role on forced dynamic 

responses of cracked nanorod. 

 

Figure 4. Relationship between dimensionless displacements and 
dimensionless frequency of the load for different values crack location 

ratios. 

Figure 5 shows the relationship between the dimensionless 

displacements and the dimensionless nonlocal parameter (𝜂) for 

various values of 𝐺̅𝑐𝑟 for 𝜆 = 20, 𝐿̅𝑐𝑟 = 0.5 and 𝛺̅ = 3. In a 

similar manner, effects of the crack location ratio on the 𝑈𝑚- 𝜂 

relation is plotted in figure 6 for 𝐺̅𝑐𝑟 = 0.3, λ = 20 and 𝛺̅ = 3. 

    As seen from figures 5 and 6, resonant frequencies change 

considerably with increasing of the nonlocal parameter. With 

increasing dimensionless nonlocal parameter to resonance point 

from zero, the difference among of results in the flexibility 

coefficients increases. In a similar way, the difference among of 

the crack location ratios increases in the nonlocal parameters of 

the resonance region. The nonlocal parameter is very effective to 

change the effects of crack on dynamic responses of nanorods. 

 

Figure 5. The relationship between dimensionless displacements and 

dimensionless nonlocal parameter for different values the dimensionless 

flexibility coefficients of the crack. 

 

Figure 6. The relationship between dimensionless displacements and 
dimensionless nonlocal parameter for different values the crack location 

ratios. 

In figure 7, time (t)- dimensionless displacement relation is 

presented for different values of 𝐺̅𝑐𝑟 for 𝜆 = 20, 𝐿̅𝑐𝑟 = 0.2, 𝜂 =
0.01 and 𝛺̅ = 20. Figure 7 display that the flexibility coefficients 

of the crack change dynamic responses of the nanorods 

considerably. 

 

Figure 7. Time responses of the cracked nanorod for for different values the 
dimensionless flexibility coefficients of the crack. 

4. Conclusion 

Longitudinal forced vibration problem of a cracked nanorod 

is investigated and its formulations are derived by using nonlocal 

elasticity theory. The Governing equation of problem is solved 

by analytically within using separation of variable procedure and 

the dynamic displacements are obtained domain of time. In the 

crack section, the effect of the crack is modelled as an axial 

spring. The influences of nonlocal, dynamic load and crack 

parameters on forced vibration results of cracked nanorod are 

examined and discussed. It is concluded from the numerical 

results that nonlocal parameter is very effective in crack 

behavior. With changing the nonlocal parameter, forced 

vibration responses and resonant frequencies of cracked 

nanorods change significantly. Also, dynamic responses of 

nanorods change with increasing the dimensionless flexibility 

coefficients of the crack and crack location ratios considerably. 

The resonant frequencies change significantly with different 

values of crack location ratios. The nonlocal parameter play 

important role in the resonant region for cracked nanorods.   
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