تعداد نشریات | 161 |
تعداد شمارهها | 6,479 |
تعداد مقالات | 70,032 |
تعداد مشاهده مقاله | 123,013,047 |
تعداد دریافت فایل اصل مقاله | 96,244,875 |
Intelligent application for Heart disease detection using Hybrid Optimization algorithm | ||
Journal of Algorithms and Computation | ||
مقاله 2، دوره 51، شماره 1، شهریور 2019، صفحه 15-27 اصل مقاله (237.32 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2019.71277 | ||
نویسندگان | ||
Marzieh Eskandari* 1؛ Zeinab Hassani2 | ||
1Department of computer science, Alzahra University, Tehran, Iran | ||
2Department of computer science, Kosar University of Bojnord, Iran. | ||
چکیده | ||
Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and identify effective factors in the disease. this paper is investigated a new hybrid algorithm of Whale Optimization and Dragonfly algorithm using a machine learning algorithm. the hybrid algorithm employs a Support Vector Machine algorithm for effective Prediction of heart disease. Proposed method is evaluated by Cleveland standard heart disease dataset. The experimental result indicates that the SVM accuracy of 88.89 $\%$ and nine features are selected in this respect. | ||
کلیدواژهها | ||
Hybrid Optimization Algorithm؛ Support vector Machine؛ Whale Optimization Algorithm؛ Dragonfly Algorithm؛ Feature Selection | ||
آمار تعداد مشاهده مقاله: 593 تعداد دریافت فایل اصل مقاله: 510 |