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1. Introduction 

The governing equations of the theory of elasticity for three 

dimensional (3D) problems are very complicated, regardless 

of the reference coordinate system used. Thus, analytical 

solutions to 3D elasticity problems are very difficult to obtain. 

Hence, some 3D problems are sometimes simplified by 

introducing two dimensionality assumptions [1 – 4]. 
 

The fundamental two dimensional (2D) problems in the 

theory of elasticity are formulated using the theories of plane 

strain, and plane stress elasticity. The simplification of 3D 

problems to 2D problems permit the solution of many 

problems in elasticity theory. 
 

Generally, 2D elasticity problems are governed by the 

requirements of stress – strain laws (material constitutive 

behaviour), the strain – displacement relations (kinematic 

relations) and the differential equations of equilibrium subject 

to the boundary conditions [5 – 7]. 
 

The governing equations can be presented using displacement 

formulation, stress formulation or mixed formulation 

methods. In a displacement formulation of the 2D elasticity 

problem, the displacement components are the primary 

unknowns, and the system of governing equations expressed 

in terms of displacement components [8 – 11]. In a stress 

formulation, the governing equations of 2D elasticity are 

expressed in terms of stress components which are the 

unknowns [8 – 11]. 
 

In mixed formulation, the governing equations are expressed 

in terms of some stress components and some displacement 

components as the primary unknowns [8 – 11]. This study 

adopted the stress – based formulation. 
 

Specifically, the Airy stress function expressed in 2D polar 

coordinates (r, ) was used in this study to express the 2D 

elasticity formulation in terms of a single unknown function 

of the space coordinate variables. The Airy stress function 

formulation/approach is based on the general philosophy of 

developing a solution to the partial differential equations of 

equilibrium for the unknown stress fields and thus seeking to 

obtain a single governing partial differential equation for the 

2D elasticity problem from the equations of compatibility. 
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1.1 Research aim and objectives 

The main aim of this study is to use the Mellin transform 

method to obtain solutions to the 2D problem of the theory of 

elasticity in plane polar coordinates. The specific objectives 

are: 

(i) to present a stress formulation of the problem of 2D 

elasticity in plane polar coordinate system. 

(ii) to present Airy stress functions in the 2D polar coordinate 

system as the solutions of the 2D elasticity problem 

provided the stress functions are harmonic. 

(iii) to present the stress – compatibility equations for 2D 

elasticity problems. 

(iv) to apply the Mellin transform to the stress compatibility 

equation, and obtain solutions for the Airy stress 

functions in the Mellin transform space. 

(v) to apply Mellin transform to the stress field components 

and obtain the stress field components in Mellin 

transform space. 

(vi) to apply the Mellin transform inversion formula to the 

stress field components to obtain the solutions to the 

stress field components in terms of the physical domain 

space variables. 

(vii) to apply the Mellin transform method to the specific case 

of the solution of the Flamant problem. 

 

2.0 Theoretical framework 

The differential equations of equilibrium for 3D elasticity 

problems in r, , z cylindrical polar coordinates system are: 

1
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r r r z
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   
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where r r             (4) 

z z              (5) 

rz zr             (6) 

where fr, f  and fz are body forces in the r,  and z coordinate 

directions, rr,  and zz are normal stresses, r, z and rz 

are shear stresses. 
 

The stresses at any point in a body for a two dimensional (2D) 

elasticity problem are uniquely defined by the three stress 

components rr,  and r where rr is the radial normal 

stress,  is the circumferential normal stress, and r (r) is 

the shear stress on the r plane. 2D elasticity problems are 

governed by the three simultaneous requirements of the 

differential equations of equilibrium, the stress – strain laws 

and the strain – displacement relations. The governing 

equations are given by: 

1
0r rrrr

rf
r r r

    
   
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    (7) 
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     (8) 

which are the differential equations of equilibrium when body 

forces fr and f are present. The stress – strain equations are 

given by: 

21
( )rr rr

E
    


       (9) 
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E
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       (10) 

r r rG               (11) 

where rr is the radial strain, r is the shear strain,  is the 

tangential (circumferential) strain,  is the Poisson’s ratio and 

E is the Young’s modulus of elasticity, G is the shear 

modulus. 
 

Hooke’s law for plane stress conditions is given by: 

1
( )rr rr

E
            (12) 
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             (14) 

1
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E
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 
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Hooke’s law for plane strain is: 

1
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E
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 
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The strain – displacement equations are given by: 

r
rr

duu

r dr


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
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
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
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where ru u  is the radial displacement, u is the 

displacement in the  direction 

1
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Airy solved the 2D elasticity problems in plane polar 

coordinates in a stress-based formulation by finding Airy 

stress potential (harmonic) functions ( , )r   of the space 

coordinates (r, ) that identically satisfied the differential 

equations of equilibrium. The stress fields that solve any 2D 

elasticity problem in 2D polar coordinates become derivable 

from the Airy stress potential functions as follows: 
2
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          …(24) 

 

2.1 Compatibility equations 

The compatibility equation expressed in terms of strain for the 

case of polar coordinates is 
2 22

2 2 2 2

1 2 1 2 2
0r rrr rrr

r r r r r rr r r

          
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          …(25) 

The compatibility equations in 2D elasticity problems are 

expressed in terms of Airy stress potential functions ( , )r   

as: 
2 2 4 0( , ) ( , )r r               (26) 

where  
2 2

2

2 2 2

1 1

r rr r

  
   

 
    (27) 

and   4 2 2            (28) 

2 is the Laplacian operator while 4 is the biharmonic 

operator. 
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Thus the compatibility equation is given by: 
4 3 2 4

4 3 2 2 3 2 2 2

2 1 1 2

r rr r r r r r r

         
    

     
 

 
3 2 4

3 2 4 2 4 4

2 4 1
0

r r r r

     
  

   
    (30) 

 

3.0 Research methodology 

The Mellin transform is used to solve the biharmonic stress 

compatibility equation which is given in terms of the Airy 

stress potential function. The solution is sought subject to the 

boundary conditions of the particular 2D elasticity problem. 

The Mellin transformation of the Airy stress potential 

function ( , )r   is an integral transformation denoted by 

( , )k   and defined as [12 – 14] 

1

0

( , ) ( , )

r
k

r

k r r dr






           (31) 

where k is the parameter of the Mellin transform or the Mellin 

transform parameter, and rk1 is the kernel (or nucleus) of the 

Mellin transform. 
 

Similarly, the Mellin transform of the nth derivatives of the 

Airy stress potential function are given by the integral 

transform: 
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For 1 2 3 4, , , ,...n    

where 1 1 1( ) ( ) ( ) ( )!              (33) 

1( ) ( )              (34) 

(x) is the gamma function, defined as: 

1

0

( ) ;x xx t e dt


      0x        (35) 

From Equation (32) we obtain the Mellin transforms of the 

first, second, third and fourth partial derivatives of ( , )r   

with respect to r as follows: 
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3.1 Advantages of the Mellin transform 

The Mellin transform is chosen as the tool for this research 

because of the obvious simplifications it offers in dealing with 
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problems described using the Laplacians in the cylindrical or 

spherical coordinates given as: 
2

2

2 2

1 1f f
f r

r r r r

   
   

   
      (42) 

or  
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2
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1 1f f f
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The simplifications arise because the differential given as: 
2

2

1 1 1
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    
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which is part of the Laplacian is readily transformed as: 

 1 2 2

0

1
( )

r
k

rr r

r

r f f r dr k F k
r





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where 1

0

( ) ( )k

r

F k r f r dr






        (46) 

F(k) is the Mellin transform of f(r, ). 
 

Another advantage is that the Mellin transform is a linear 

operator and can be readily applied to linear differential 

equations. 

 

4.0 Results 

 

4.1 Application of the Mellin transform 

The Mellin transform is applied to both sides of the stress 

compatibility equation to obtain: 

4 1

0

0( ( , )) kr r dr


           (47) 

The Mellin transformation is expressed as: 
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The linearity property of the Mellin transformation is used to 

simplify the Mellin transformation of the stress compatibility 

equation to the ordinary differential equation (ODE) in terms 

of the Mellin transform of the Airy stress potential function 

( , )k   given by: 
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Simplifying, 
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          …(50) 

Further simplification yields: 
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d
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 
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This fourth order ODE is solved using the method of trial 

functions or D operator methods. 

Let  ( , ) expk m           (52) 

where m(k) is a parameter we seek to find such that the 

assumed exponential form for ( , )k   can be a solution. 

Then, the Equation (50) becomes: 
4 2 2 2 2 22 2 0( ( ) ) ( )m m mm e k k m e k k e           

          …(53) 

Simplifying, 
4 2 2 2 2 22 2 0( ( ( ) ) ( ) ) mm k k m k k e         (54) 

For non-trivial solutions, 

0me             

The auxiliary (characteristic) polynomial is thus obtained as 

the fourth order polynomial: 
4 2 2 2 2 2 2 2 2 22 2 2 0( ( ) ) ( ) ( )( ( ) )m k k m k k m k m k            

          …(55) 

The roots of the characteristic polynomial yield the general 

solution to the Airy stress potential function in the Mellin 

transform space as: 

1 2 3 42 2( , ) sin cos sin( ) cos( )k c k c k c k c k           

          …(56) 

where c1, c2, c3, and c4 are four constants of integration which 

are determined from the boundary conditions of the specific 

2D elasticity problem. 

 

4.2 Stress fields in the Mellin transform space 

The stress fields are obtained in the Mellin transform space by 

applying the Mellin transformation to the equations of the 

Airy stress potential functions – Equations (22) – (24). 

Thus, 
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    

  
 

    

           …(58) 

Simplifying, 
2

2 1 1 1

2
0 0 0

( ) k k k
rrr r dr rr dr r dr

r

  
    

  
 

     (59) 

2
2 1 1 1

2
0 0 0

k k k
rrr r dr rr dr r dr

r

  
   

   
 

     (60) 

2
2 1

2
0

k
rr

d
r r dr k

d


 

   


        (61) 

Similarly, from Equation (9), 
2

2 1 2 1

2
0 0

k kr r dr r r dr
r

 
 



 
 


       (62) 

   
21 2( ) ( )

( )

k

k

   



    (63) 
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21 1

1
1

( ) ( )!
( )

( )!

k
k k

k

 
    


   (64) 

Using Equation (23), 

2 1 2 1

0 0

1k k
r r r dr r r dr

r r

 
 



  
    

        (65) 

2
2 1 1

0 0

k k
r r r dr r r dr

r

 
 



   
   

         (66) 

2 1 1 1

0 0 0

k k k
r r r dr r dr r r dr

r

  
  



  
  

       (67) 

2 1 1 1

0 0 0

k k k
r r r dr r dr r r dr

r

  
  



  
   

       (68) 

2 1

0

1( )k
r

d
r r dr k

d







  

       (69) 

 

4.3 Stress fields in the physical domain variables 

The stress fields in the physical domain space variables (r, ) 

of the problem are obtained by application of the inverse 

Mellin transformation to the Equations (61), (64) and (69). 

Thus, by inversion, the stresses are given by the line integrals: 
2

2

2

1

2
( , )

a i
k

rr

a i

d
r k r dk

i d

 
 

 

 
     

  
    (70) 

21
1

2
( , ) ( ) ( , )

a i
k

a i

r k k k r dk
i

 
 



 

     
     (71) 

21
1

2
( , ) ( ) ( , )

a i
k

r

a i

d
r k k r dk

i d

 
 



 


    

     (72) 

where i is the imaginary number in complex analysis, 

1,i    a is a constant. 

 

5. Specific applications of the Mellin transform method 

to the Flamant problem 

 

5.1 The Flamant problem 

The Flamant problem which is encountered in elasticity is the 

2D elasticity problem of finding the stress fields in a semi-

infinite body due to line loads of magnitudes (intensities) Q1 

and Q2 and of infinite extent applied at the origin O (on the xz 

plane) on the boundary of an elastic half plane 

0( )x z        as shown in Figure 1. 

 

 
 

Figure 1: Flamant problem (line loads Q1 and Q2 of infinite 

extent applied at the origin O of an elastic half plane) 

 

Airy stress formulation of the Flamant problem is given by 

Equations (22 – 24) and the biharmonic stress compatibility 

equation – Equation (26). The boundary conditions are: 

0 0( , ) ( , )r rr r               (73) 

0 0( , ) ( , )r r               (74) 
 

The Mellin transformation of the biharmonic stress 

compatibility equation was performed to transform the 

governing biharmonic equation to a fourth order ODE which 

was solved to obtain the Airy stress function in the Mellin 

transform space as Equation (56). 
 

By inversion, the Airy stress function is obtained in the 

physical domain space variables as: 

1 2 3( , ) sin ln cos cosr c r c r r c r             

  4 ln sinc r r         (75) 

where 1 2 3 4, , ,c c c c  are constants that are obtained by the 

enforcement of stress boundary conditions. 

 

Stress fields 

The stresses are obtained from Equations (22 – 24) as follows: 

1 2 3

1
( , ) ( sin ln cos cosrr r c r c r r c r

r r


       


  

         
2

4 1 22 2

1
ln sin ) ( sin ln cosc r r c r c r r

r


      


 

   3 4cos ln sin )c r c r r          (76) 

1 2 3 4

2 2cos cos sin sin
( , )rr r c c c c

r r r r

   
        

           …(77) 

1 2

1
( , ) ( sin ln cosr r c r c r r

r r


 
       

 
  

  3 4cos ln sin ))c r c r r       (78) 

 2 4

sin cos
( , )r r c c

r r


  
         (79) 

2

1 2 32
( , ) ( sin ln cos cosr c r c r r c r

r



          


  

  4 ln sin )c r r         (80) 

   2 4

cos sin
( , )r c c

r r


 
         (81) 

 

Enforcement of boundary conditions 

Using the boundary conditions Equations (73) and (74) we 

have: 

40 0( , )r

c
r

r
             (82) 

Hence, 4 0c           (83) 

20 0( , )
c

r
r

            (84) 

2 0c             (85) 

Then, we have 

0( , )r            (86) 
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0( , )r r            (87) 

31 22
( , ) cos sinrr

cc
r

r r
           (88) 

 

Equilibrium equations 

The equilibrium equations are: 

1

0

0( ( , )sin ( , )cos )v rr rF Q r r rd



              

          …(89) 

for the vertical direction. 

2

0

0( ( , )cos ( , )sin )h rr rF Q r r rd



              

          …(90) 

for the horizontal direction. 

0

0( , )rM r r rd



            (91) 

Since 0( , )r r    everywhere in the elastic half plane the 

equations of equilibrium become: 

1

0

0( , )sinrrQ r rd



           (92) 

2

0

0( , )cosrrQ r rd



           (93) 

Hence, 

31
1

0

22
0

sincos
sin

cc
Q rd

r r


 

     
    (94) 

31
2

0

22
0

sincos
cos

cc
Q rd

r r


 

     
    (95) 

1 1 3

0

2 0( cos sin )sinQ c c d



          (96) 

2 1 3

0

2 0( cos sin )cosQ c c d



          (97) 

1 3 0Q c            (98) 

2 1 0Q c            (99) 

Solving, 2
1

Q
c  


        (100) 

1
3

Q
c  


         (101) 

Hence, 

2 1( , ) sin cos
Q Q

r r r        
 

    (102) 

2 12 2cos sin
( , )rr

Q Q
r

r r

 
    

 
    (103) 

2 1

2
( , ) ( cos sin )rr r Q Q

r


      


    (104) 

The solutions can be decomposed into two: namely solution 

for Q1 acting alone, and solution for Q2 acting alone. The 

problem of Q1 acting alone on the surface of a half plane is 

more frequently encountered. 
 

For Q2 applied alone, 

2( . ) sin
Q

r r     


       (105) 

2

2
( , ) cosrr r Q

r


   


       (106) 

0( , ) ( , )r r r              (107) 

For Q1 applied alone, 

1( . ) cos
Q

r r     


      (108) 

1

2
( , ) sinrr r Q

r


   


       (109) 

0( , ) ( , )r r r              (110) 

 

Stress fields in Cartesian coordinates 

The stress fields are obtained in Cartesian coordinates for the 

Flamant problem where the vertical line load Q1 of infinite 

extent is applied alone. 

Then, 

2 312
( , ) sin sinzz rr

Q
x z

r
      


    (111) 

 
3 3

1 1
4

2 2
( , )zz

Q Q zz
x z

r r r

 
  

 
     (112) 

 
44

1 1
4

2 2
( , )zz

Q Qz z
x z

z z rr

 
  

 
    (113) 

24 2
1 1

2 2 2 2 2

2 2
( , )

( )
zz

Q Qz z
x z

z zx z x z

  
    

   
(114) 

22
1 12

1( , ) ( , )zz

Q Qx
x z I x z

z z z


   

      
   

 (115) 

2 212
cos sinxx

Q

z


   


       (116) 

2 2 2
1 1

2 2 2 2 2 2 2

2 2

( )
xx

Q x z Q x z

zx z x z x z

   
     

     
  (177) 

1 12 2
1

2 2

2
1 1xx

Q z x

z x z

 
   

      
   

    (118) 

1 12 2

2

2
1 1( , )xx

Q z x
x z

z x z

 
    

        
     

  (119) 

2
1

2 2 2

2

( )
xz

Q xz

x z
 

 
        (120) 

( )yy xx zz              (121) 

 

6. Discussion 

The Mellin transformation method which is an integral 

transform method has been used in this study to obtain 

general solutions for the stress fields in 2D elasticity 
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problems. Stress based formulation of the 2D elasticity 

problem was adopted. This allowed the use of Airy stress 

functions as the stress potential functions that solved the 

differential equations of equilibrium. The Mellin 

transformation was applied to the stress compatibility 

equation expressed in terms of the Airy stress function, and 

the boundary value problem of 2D elasticity simplified to a 

fourth order ordinary differential equation (ODE) – (Equation 

(50)) – in terms of the Mellin transformed Airy stress 

potential function. The fourth order ODE was solved using 

the method of trial functions to obtain the conditions for non-

trivial solutions as the characteristic (auxiliary) fourth degree 

polynomial-Equation (55). The Airy stress potential function 

was thus obtained from the four roots of the fourth degree 

polynomial as Equation (56) which had four unknown 

constants of integration corresponding to the fourth order 

ODE obtained as Equation (50). 
 

The four constants of integration can be obtained for 

particular cases where the load is proscribed using the 

boundary conditions. The Mellin transformations of the stress 

field components were done using the Airy stress potential 

functions expressions for the stress fields to obtain the Mellin 

– transformed stress field components as Equations (61), (64) 

and (69). The Mellin transform inverse was then applied to 

Equations (61), (64) and (69) to obtain the general 

expressions for the stress field components in the physical 

space domain of the problem. 
 

Flamant problem which is the problem of finding stresses in 

an elastic half plane due to line loads at the origin was used to 

illustrate the application of the Mellin transform to 2D 

elasticity problems. The Flamant problem is governed by 

biharmonic stress compatibility equation in terms of the Airy 

stress function. The solution Equation (75) – was obtained for 

the Airy stress function for the Flamant problem and was 

found by inversion of the Airy stress function in the Mellin 

transform space. The Airy stress function obtained is 

expressed in terms of four integration constants. The stresses 

are obtained using Equations (22 – 24) as Equations (77), (79) 

and (81). 
 

Enforcement of boundary conditions yielded two constants of 

integration 4c  and 2c  as Equation (86) and (85), and the 

stresses , r as Equations (84) and (87). The radial stress 

field is then found as Equation (88) which has two integration 

constants. The two constants are found from the requirement 

of equilibrium of internal and applied forces as Equations 

(100) and (101) and rr is found as Equation (104). 
 

The solution for applied vertical line load is found in terms of 

Cartesian coordinates as Equations (115), (119), (120) and 

(121). Vertical stress influence coefficients obtained for 

applied vertical line load on the half plane using Mellin 

transform in the present work are compared with solutions 

obtained by Das [15] and Onah et al [16] and found to be in 

exact agreement as shown in Table 1. 

 

Table 1: Variation of vertical stress influence coefficients 

( , )I x z  in the Flamant problem 

x/z 
Das [15] 

( , )I x z  
I(x, z) 

Present work 

0 0.637 0.637 

0.1 0.624 0.624 

0.2 0.589 0.589 

0.3 0.536 0.536 

0.4 0.473 0.473 

0.5 0.407 0.407 

0.6 0.344 0.344 

0.7 0.287 0.287 

0.8 0.237 0.237 

0.9 0.194 0.194 

1.0 0.159 0.159 

1.5 0.060 0.060 

2.0 0.025 0.025 

3.0 0.006 0.006 

 

7. Conclusions 

The following conclusions are made: 

(i) 2D elasticity problems that are formulated in terms of 

stresses can be solved using the Mellin transform method. 

(ii) The Mellin transformation of the biharmonic stress 

compatibility equation in terms of the Airy stress function 

( , )r   transforms the BVP to a fourth order ODE in 

terms of the Mellin transformed Airy stress potential 

function ( , ),k   and ultimately, a fourth degree 

auxiliary (characteristic) polynomial in ( , ).k   

(iii) Ultimately, the Mellin transformation transforms the 

biharmonic stress compatibility equation to an algebraic 

equation. 

(iv) The general solution for the Airy stress potential function 

in the Mellin transform space variable is given in general 

as Equation (56) where the integration constants are 

determined from the boundary conditions of 

particular/specific 2D problems. 

(v) The general solutions for the stress field components are 

obtained as the line integrals given by Equations (64) – 

(69). 

(vi) The path integrals given as the general solutions contain 

unknown constants of integration, c1, c2, c3 and c4, which 

are evaluated for particular problems of 2D elasticity 

from the use of the appropriate boundary conditions. 

(vii) The specific illustrations presented in the study show that 

by the Mellin transformation, the biharmonic equation in 

two dimensions (polar coordinates) is simplified to a 

fourth order ordinary differential equation in the Mellin 

transform space. 

(viii)The solutions for the Flamant problem using the Mellin 

transform method are found to be identical with solutions 

in the literature obtained using other methods. 
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Nomenclature/Notations 

r,  radial coordinate and angular coordinate in 2D 

polar coordinate system 

,

,

,

,

r

r z

q z


 cylindrical coordinate variables 

rr radial normal stress 

 circumferential normal stress 

r(r) shear stress on the r plane 

fr, f, fz body forces in the r, , and z coordinate 

directions 

r, z, rz shear stresses in the 3D cylindrical polar 

coordinates 

rr, , rz normal stresses in the 3D cylindrical polar 

coordinates 

rr, , zz normal strains in the 3D cylindrical polar 

coordinates 

E Young’s modulus of elasticity 

G shear modulus or modulus of rigidity 

 Poisson’s ratio 

ur, u displacements in the 2( )r D  polar coordinate 

system 

(r, ) Airy stress potential function 

( , )r    Mellin transform of the Airy stress potential 

function 

k Mellin transform parameter 

2 Laplacian operator 

4 Biharmonic operator 

(x) gamma function 

! factorial function 

,
r

 

 
  partial differential operator 

 integration (integral) 

i imaginary number 

 infinity 

x,z 2D Cartesian coordinates 

3D three dimensional 

2D two dimensional 

ODE ordinary difernetial equation 
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