€

Journal of Algorithms and Computation

VAKHOD™ journal homepage: http://jac.ut.ac.ir

Algorithm for finding the largest inscribed rectangle in
polygon

Zahraa Marzeh*!, Maryam Tahmasbil? and Narges Mirehit?

1’2’3D(—:'partmemt of computer science, Shahid Beheshti University, G.C., Tehran, Iran.

ABSTRACT ARTICLE INFO

In many industrial and non-industrial applications, it is Article history:

necessary to identify the largest inscribed rectangle in a Received 11, August 2018
certain shape. The problem is studied for convex and Received in revised form 15,
non-convex polygons. Another criterion is the direction March 2019

of the rectangle: axis aligned or general. In this paper Accepted 13 April 2019

a heuristic algorithm is presented for finding the largest Available online 01, June 2019

axis aligned inscribed rectangle in a general polygon.
Comparing with stare of the art, the rectangles resulted
from our algorithm have bigger area. We also proposed
an approach to use the algorithm for finding a rectangle
with general direction.

Keyword: non-convex polygon, IIC, inscribed rectangle,
longest path, largest cycle.

AMS subject Classification: 05CT78.

1 Introduction

In many industrial and non-industrial applications, it is essential to identify the largest
inscribed rectangle in a certain shape. For instance, one of the applications of this problem
is for labeling different areas in contours. Most of the research done with respect to

*zahramarzayahoo.com
fCorresponding author: Maryam Tahmasbi. Email: m_tahmasbi@sbu.ac.ir
n_mirehi@sbu.ac.ir

Journal of Algorithms and Computation 51 issue 1, June 2019, PP. 29 - 41

30 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

search for inscribed rectangle is related to convex polygons. In order to find the inscribed
rectangle in a polygon, it is possible to take a specific direction (axis-aligned) into account
or not in the sense (arbitrary orientation) that we generally search for the inscribed
rectangle (Figure 1).

T

a b

Figure 1: Largest area rectangle with: a) Axis-aligned. b) arbitrary orientation.

In order to measure the largest rectangle in specific direction in a convex closed-contour
polygon, it is possible to refer to algorithms proposed by Knauer et al. [3], Cabello et
al. [2], and Alt et al. [1]. In this algorithm [3], in order to find the largest rectangle in a
polygon, one can choose four groups of edges of given polygons (i.e. Edges of €1, €9, €3, €4)
and separate all of the rectangles that their three vertices are on eq, e, e3 edges and the
last vertex is exactly on e, or the edges cut e4 .For example, if the rectangle R C P has
one corner on polygon area of P or the two forming corners of one edge is on the area of
a P polygon, and then by moving one edge it is possible to find an inscribed rectangle
with the largest area.

Thus, the largest inscribed rectangle has two statuses: Status 1: having to opposite corner
(ex : a & ¢) on the area of polygon. Status 2: three corner (a, b, ¢) on the area of a
polygon (see Figure 2). In order to find the largest inscribed rectangle in digital objects,

| "‘Inc
i y
i s el
[Sl © ! {I \NC
: ad I P
| 4/%’ | "k J’I
AS e AR L m,
< B : el - mac Ve
\Inc v "
¢ \ L,
4 :'\ A
m, o g i

Figure 2: Two possible statuses for the largest inscribed rectangle.

Sarkar et al. [4], first divided the area into a network with stable size and then into a
series of convex subareas and also searched the largest inscribed rectangle by defining a

31 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

Figure 3: (a) The digital object, (b) Inner isothetic cover, (c¢) Largest Rectangle.

series of rules for convex subareas (Figure 3). This paper is inspired by the two methods
of Alt et al. [1] and Sarkar et al. [4] for finding largest inscribed rectangle in general
polygon. In this algorithm, by drawing horizontal and vertical lines from the vertex and
some extra points on the edges of polygon, it is divided into rectangular shapes. Then the
algorithm searches for the largest inscribed rectangle that is formed by the combination
of some rectangular regions.

This algorithm is easier to follow and the performance on some images show better results
of this algorithm. Sarkar et al. [4] solution depends on the precision of IIC while in the
proposed algorithm, there is no such dependency and the answer is more precise. The
steps of our algorithm are as follows:

1. Dividing polygon into subareas

2. Identifying rectangular subareas

3. Forming RA graph

4. Identifying cycles and paths and identifying the largest rectangle

The paper is organized as follow: The main algorithm is presented in section 2. In Section
3 experimental study and comparing the results with other studies is shown. Section 4
presents the conclusion and future study.

2 Main result

2.1 Dividing polygon into rectangular areas.

In this approach, first we divide the polygon to smaller polygons, most of these polygons
are rectangle. Then we find the largest inscribed rectangle by joining these rectangles
together. The steps are as follows:

1. Finding the smallest rectangle containing (SAR) the polygon (figure 4).

2. Drawing horizontal and vertical lines from the vertices of polygon ignoring the repeti-
tion lines (Figure 5). 3. As shown by Alt et al. [1], and it was already stated, the vertices
of the largest rectangle are not necessarily on the vertices of the polygon, but may also
be on the polygon edges. Therefore, the drawing of horizontal and vertical lines from the
polygon vertices is not sufficient. We draw vertical and horizontal lines from the crossing

32 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

Figure 4: A polygon and its smallest area rectangle.

Figure 5: Drawing vertical and horizontal lines from the vertices of polygon.

points of the lines in the previous steps with the edges of polygon and repeat this process
for two times (Figure 6).

Figure 6: Adding vertical and horizontal lines on the crossing points with the polygon
edges in SAR.

As a result, SAR is divided into rectangular subareas. In order to give address for the
rectangles in the next steps, they are numbered from top left to bottom right. Since the
goal is to look for the largest inscribed rectangle inside a polygon, the rectangles located
completely inside the polygon are identified and other rectangles that are outside the
polygon are removed. The method was explained in the following section.

33 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

2.2 Identifying rectangular subareas outside the polygon.

In order to speed up identifying the rectangular subareas outside the polygon, we identify
the ones that is probable to interfere with polygon edges.
To do so, the edges of the polygon are divided into 8 types. The type of each edge in the
polygon is recognized by algorithm 1. In this algorithm the type of edge can be identified
by walking on the edges of the polygon in counterclockwise order and examining the two
end points of each edge. The classification is shown in Figure 7.
Algorithm 1: Examining the type of edges in a polygon
for edge=1:end

if (Istm’t < Zend && Yend > ystaTt)

then edge — type < 01

else if (xstart > Tend && Yend > ystart)

then edge — type < 02
else if ('Tstart > ZTend && Yend < ystart)
then edge — type < 03
else if (xstart < Zend && Yend < ystm‘t)
then edge — type < 04
else if (xstart = Tend && Yend > ystart)
then edge — type < 05
else if (J;start > Tend && Yend = ysta'rt)
then edge — type < 06
else if ($sta7“t = Tend && Yend < ystart)
then edge — type < 07
else if (xstart < Zend && Yend = ystart)
then edge — type < 08

end

Type 06 Type 05 Type 02 Type 01 ‘

Type 07 Type 08 Type 03 Type 04

Figure 7: Types of polygon edges.

For instance, in Figure 8, the type of edges is shown for a polygon.

In the next step, for each edge of the rectangle that the given edge is one of its diagonals
is considered and the rectangles that are within range are selected. For instance, the
subareas of an edge are shown in Figure 9.

34 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

Figure 8: Identifying the type of edges in polygon.

T
5 3

Figure 9: The subarea around the given edge.

The normal vector for each edge in the polygon (V7) toward outside the area is calculated.
Each edge is identified by using the internal or external rectangles around one edge.
Algorithm 2 identifies the inside and outside rectangles using these vectors.
Algorithm 2: Identifying the internal subareas
for edge=1:end
for rectangle=1:end

vy <— Normal from polygon edge

vy <— Normal from rectangle vertex

if V1.U9 2 0 then

rectangle — inside < Yes
else
rectangle — inside <— No
end if
end

end
In this algorithm, for every edge of the vertices of rectangles in the range, they are
numbered like in the Figure 10 in counter clockwise order and it is drawn from the vertex
that its number is equal to the edge and a vertical vector is drawn on the edge (V2).
If the vectors V7 and V5 are in the same direction, the rectangle is inside the polygon and
otherwise, it is outside (Figure 11). For instance, the internal subareas for a polygon is

35 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

Figure 10: Numbering the vertices of rectangular subareas.

shown in Figure 12.

Figure 12: Internal subareas.

2.3 Constructing RA graph.

In order to simplify the process and easier identification the rectangular regions, a graph
is constructed to show the rectangular subareas and their adjacencies. There is a vertex
for each subarea and two subareas are adjacent in the graph is their share an edge. We
call this graph, the RA graph. The subareas outside the polygon and identified in the
previous step, form as isolated nodes without any edges connected to them. The vertices
of RA graph are the vertices of a complete mesh but some edges are missing. Figure 13
shows the RA graph of polygon in Figure 12.

36 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

Figure 13: Equal graph in the rectangular subareas.

2.4 Identifying cycles and routes

In RA graph, each path of vertical edges, each path of horizontal edges and each cycle
that is a rectangle in the graph show a rectangle in the polygon. To find the largest
rectangle, we need to find the longest paths of these types and the biggest cycle.

[noooooaoaoaol
cCorOoOOROOOOO
= i o Y S S Gy A R i
[R o R e = T = = = =]
i Y S W S S O S) =
CooooORRR OO0
oooBooBoRABoBEB
coooooooooo
O0B0ooo0ooooo

=

I
T oaroocoocooaoaol
ooooooooooo
Doo0oco0o00O00O0O0

OO0+ O0OO0OD0ODOOOODO

000 K KHKH B - B =
[T e R B e S = o = =
000 kKK KHKMKR KR B O
000 +HKHHHKKKEKRDO
O 00000 KKK OO

Figure 14: Matrices of L. and R.

We assign two nm matrices L (and R) that shows the edges between each node in RA
graph with the node below (right) it. If a node has edge to below (the right) node, the
corresponding element in L is 1 otherwise it is 0. For example, Matrices R and L for the
above mentioned graph is as follows in Figure 14:

Algorithm 3: identifying cycles and routes.

for i=1:N

for j=1:M
if L(i,7) >0 && R(i,j) > Othen

37 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

create H and V matrix
if H(1),V (1) # 0 then
fork=2:V(1)+1
if H(k) > 1 then
forl=2:H(k)+1
if V() > 17— 1 then
create cycle

endif
end
endif
end
endif
endif
end
end

In this algorithm, form every node in R and L which is more than zero and it is possible
to form a cycle, the whole rectangular cycle is calculated from that node. For every node
two vectors of V and H are formed. These two vectors show how much one can move from
node to the right and below in the graph and find another vertex diagonally in front of
that node to form the rectangular cycle. In order to form these two vectors, the longest
horizontal and vertical paths are identified from each node to right and below. The length
of vector H is equal to the length of vertical path plus 1 and the length of vector V equals
to the length of horizontal path plus 1. Vector H is computed using R and vector V is
computed using L. For example, an arbitrary node is shown for forming vectors V and
H in Figure 15. Every cycle shows a rectangle made of attaching the forming subareas.
The passing areas from every node are identified and their algorithm is very simple and
does not need more explanation. A cycle or a path with maximum total area shows the
largest inscribed rectangle (Figure 16).

o o 1 ©0 © © ©0 0o 0 o o o ©o @ o o o 0

o] 1 0 1 1 0] 0 a] 0 0 1 0 0 0 0

o o |[@ 1 1 1 1 0 0 o o [@ 1 1 1 o 0 0 4

] o 1 1 1 1 1 i i a o 1 1 1 1 1 0 o a

o o 1 1 1 1 1 o o o o 1 1 1 1 1 0 0 | 5
Lo o 1 1 1 1]] 0 o 1 1 1 1 1] 0 T H= 4

5] s} 1 1 1 1 s] o] a gl o 1 1 1 o o o] 0 3

o] 1 1 1 1 0 0 0 o o 1 1 1 o] 0 i 3

1 1 0 0 0 0] 0 0 i 1 1 1 1 o o o i 3

o 0 0 0 0 0 o 1] 0 1] 0 0]]] 0 il

o 0 0 ouo o o 0 0 o 0 0 0 o o o 0 il

V=[6 6 6 6]

Figure 15: Forming vectors V and H.

38 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

Figure 16: The largest inscribed rectangle.

i
s |
o

Figure 17: The largest inscribed rectangle in an IIC by: (first row) the results of Sarkar
et al [4] (second row) the proposed method.

Table 1: A comparison of the largest inscribed rectangle for the original figure and I1C
figure

Figure IIC (area) Contour (area) Area diff (%)

Cat 17094 23085 26
Bird 41292 50794 19
Hand 50451 54600 8
Mapple Leaf 29580 39204 25

3 Experimental study

In this section, the results of the algorithm are examined for some different figures. The
examined figures in this part of the article are extracted from Sarkar et al. [4]. They
identified the largest inscribed rectangle in IIC by a specific algorithm after extracting
I1C from the images. In this section, the results for the proposed algorithm are compared
to other figures by Sarkar et al [4]. For this purpose, IIC and the contour of the original
figure were each defined as the entering code and in both cases, the largest inscribed

39 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

rectangle was extracted. In Figure 17, the results of the IIC are compared to the results
by Sarkar et al [4].

M
iy A .
L oo A,
: Ap] " ; EEIC R S S : .
‘l'l] -r i
N J
| S—
Hand A=50451 Mapple Leaf A= 20580 Cat A= 17094 Bird A= 41292

A= 54600 A= 39204 A= 23085 A= 50794

Figure 18: The largest inscribed rectangle (second row) for the original figure (first row)
I1C.

CRN I
sl s NRN s N2 s

3 & 8 8 3 8 E 3

8
3
B

Figure 19: Some other examples.

As shown, the largest rectangle is the same in both methods and there is no difference
between them. In Figure 18, the area of the largest inscribed rectangle is shown for the
original figure and IIC and Table 1 compares the area for the largest inscribed rectangle
with two methods. Some other examples can be seen in Figure 20. In all examples, the
area of largest rectangle in original figure is greater than with IIC. So it means that,

40 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

O=0°, A=39204 O=10°, A=35091 O=20°, A=36447

\7

4

=308, A=30082 ©=40°. A=29973 ©=50°, A=30341

Figure 20: The largest rectangle in the desired direction.

the proposed method finds larger rectangles than Sarkar et al [4] . Their method was
dependent on the size of the network for measuring I1C. The minimum percentage of area
difference is 8 and the maximum is 26.

4 Conclusion

In this paper, an innovative method is presented for identifying the largest inscribed
rectangle in a general polygon. The results are compared to another algorithm on some
figures. For IIC, there was no difference between the results of this method and those of
Sarkar et al [4] . However, comparing the areas of the largest inscribed rectangle, the areas
were bigger by this algorithm because this algorithm directly calculates the polygon and
does not need IIC. Therefore, the minimum difference in areas was 8 and the maximum
was 26 percent.

The algorithm of Sarkar et al [4] based on IIC, the precision of the solution depends on
the precision of IIC. In the proposed algorithm, there is no such dependence and the
answer is better. Here’s a question that might be posed: the largest rectangle found
axis parallel. Therefore, the proposed algorithm is limited to calculating the largest
axis parallel rectangle. To resolve this limitation, the solution is considered such that by
rotating the boundary of the shape in different directions, in each case the largest rectangle
is computed. Then, by comparing their area with each other, the largest rectangle is
specified in the desired direction. For example, this is done for one of the above problems
and the result is shown in Figure 20.

41 M. Tahmasbi / JAC 51 issue 1, June 2019, PP. 29 - 41

References

[1] Alt, H., Hsu, D., and Snoeyink, J., Computing the largest inscribed isothetic rectangle,
In CCCG (1995), 67-72.

[2] Cabello, S., Cheong, O., Knauer, C., and Schlipf, L., Finding largest rectangles in
convex polygons, Computational Geometry, 51 (2016), 67-74.

[3] Knauer, C., Schlipf, L., Schmidt, J. M., and Tiwary, H. R., Largest inscribed rectangles
in convex polygons, Journal of discrete algorithms, 13 (2012), 78-85.

[4] Sarkar, A., Biswas, A., Dutt, M., Bhattacharya, A., Finding a largest rectangle inside

a digital object and rectangularization, Journal of Computer and System Sciences, 95
(2018), 204217.

