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1 Introduction

In this paper, we study the following fuzzy system in which the constraints consist of
the intersection of two types fuzzy relational inequalities defined by “Fuzzy Max-Min”
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averaging operator:
A♦x ≤ b1

D ♦x ≥ b2

x ∈ [0,1]n
(1)

where I1 = {1,2, ..,m1}, I2 = {m1+1,m1+2, ..,m1+m2} and J = {1,2, ..,n}. A = (aij)m1×n and
D = (dij)m2×n are fuzzy matrices such that 0 ≤ aij ≤ 1 (∀i ∈ I1 and ∀j ∈ J) and 0 ≤ dij ≤ 1
(∀i ∈ I2 and ∀j ∈ J). b1 = (b1

i )m1×1 is an m1–dimensional fuzzy vector in [0,1]m1 (i.e.,

0≤b1
i ≤1,∀i ∈ I1) and b2 = (b2

i )m2×1 is an m2–dimensional fuzzy vector in [0,1]m2 (i.e.,

0≤b2
i ≤1,∀i ∈ I2). Moreover, “♦” is the max-♦ composition where ♦ is “Fuzzy Max-Min”

averaging operator, that is,

♦ (x,y) = λmin {x,y}+ (1−λ)max {x,y}

in which λ ∈ [0,1]. Furthermore, let S(A,b1) and S(D,b2) denote the feasible solutions
sets of inequalities type1 A♦x ≤ b1 and type2 D ♦x ≥ b2, respectively, that is, S(A,b1) ={
x ∈ [0,1]n : A♦x ≤ b1

}
and S(D,b2) =

{
x ∈ [0,1]n : D ♦x ≥ b2

}
. Also, let S(A,D,b1,b2)

denote the feasible solutions set of problem (1). Based on the foregoing notations, it is
clear that S(A,D,b1,b2) = S(A,b1)

⋂
S(D,b2).

By these notations, problem (1) can be also expressed as follows:

max
j∈J
{♦ (aij ,xj)} ≤ b1

i , i ∈ I1
max
j∈J
{♦ (dij ,xj)} ≥ b2

i , i ∈ I2
x ∈ [0,1]n

(2)

Especially, by settingA =D and b1 = b2, the above problem is converted to max-“Fuzzy
Max-Min” fuzzy relational equations.
The theory of fuzzy relational equations (FRE) was firstly proposed by Sanchez and
applied in problems of the medical diagnosis [54]. Nowadays, it is well known that
many issues associated with a body knowledge can be treated as FRE problems [50].
In addition to the preceding applications, FRE theory has been applied in many fields,
including fuzzy control, discrete dynamic systems, prediction of fuzzy systems, fuzzy
decision making, fuzzy pattern recognition, fuzzy clustering, image compression and
reconstruction, fuzzy information retrieval, and so on. Generally, when inference rules
and their consequences are known, the problem of determining antecedents is reduced
to solving an FRE [40,48].
The solvability determination and the finding of solutions set are the primary (and
the most fundamental) subject concerning with FRE problems. Actually, The solution
set of FRE is often a non-convex set that is completely determined by one maximum
solution and a finite number of minimal solutions [5]. This non-convexity property
is one of two bottlenecks making major contribution to the increase of complexity in
problems that are related to FRE, especially in the optimization problems subjected
to a system of fuzzy relations. The other bottleneck is concerned with detecting the
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minimal solutions for FREs [2]. Markovskii showed that solving max-product FRE is
closely related to the covering problem which is an NP-hard problem [47]. In fact, the
same result holds true for a more general t-norms instead of the minimum and product
operators [2,3,12,13,22 – 30,43,44,47].
Over the last decades, the solvability of FRE defined with different max-t composi-
tions have been investigated by many researchers [22–30,49,51,52,55,57,58,60,63,66].
Moreover, some researchers introduced and improved theoretical aspects and applica-
tions of fuzzy relational inequalities (FRI)[12,13,15 –20,21,31,32,41,65].
The problem of optimization subject to FRE and FRI is one of the most interesting and
on-going research topic among the problems related to FRE and FRI theory [1,8,9,11
– 30,38,42,45,53,56,59,61,65]. The topic of the linear optimization problem was also
investigated with max-product operation [11,34,46]. Moreover, some generalizations
of the linear optimization with respect to FRE have been studied with the replacement
of max-min and max-product compositions with different fuzzy compositions such
as max-average composition [14,37,61], max-Discontinuous t-norms composition [29],
max-monotone operators composition [30] and max-t-norm composition [15 – 20, 22
– 28,35,42,56].
Recently, many interesting generalizations of the linear programming subject to a sys-
tem of fuzzy relations have been introduced and developed based on composite op-
erations used in FRE, fuzzy relations used in the definition of the constraints, some
developments on the objective function of the problems and other ideas [4,6,10,22 –
28,32,39,45,62].
The optimization problem subjected to various versions of FRI could be found in the
literature as well [12,13,15 – 21,29 – 32,64,65]. Yang [64] applied the pseudo-minimal
index algorithm for solving the minimization of linear objective function subject to FRI
with addition-min composition. Xiao et al. [65] introduced the latticized linear pro-
gramming problem subject to max-product fuzzy relation inequalities. Ghodousian
et al. [12] introduced a system of fuzzy relational inequalities with fuzzy constraints
(FRI-FC) in which the constraints were defined with max-min composition.
It is well – known that for any membership values µA(x) and µB(x) of arbitrary fuzzy
sets A and B, the membership value of their union A

⋃
B (defined by any S-norm) lies

in the interval [max
{
µA(x),µB(x)

}
, Sds

{
µA(x),µB(x)

}
]. Similarly, the membership value

of the intersection A
⋂
B (defined by any T-norm) lies in the interval[
Tdp

{
µA(x),µB(x)

}
,min

{
µA(x),µB(x)

}]
Therefore, the union and intersection operators cannot cover the interval between
min

{
µA(x),µB(x)

}
and max

{
µA(x),µB(x)

}
. The operators that cover the interval

[min
{
µA(x),µB(x)

}
,max

{
µA(x),µB(x)

}
]

are called averaging operators. Similar to the S-norms and T-norms, an averaging oper-
ator is a function from [0,1]× [0,1] to [0,1]. Many averaging operators were proposed
in the literature [7]. In this paper, problem (1) was investigated where ♦ is “Fuzzy
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Max-Min” averaging operator. Clearly, the Max-Min averages cover the whole inter-
val [min

{
µA(x),µB(x)

}
,max

{
µA(x),µB(x)

}
] as the parameter λ changes from 0 to 1. The

remainder of the paper is organized as follows. In section 2, some basic properties
and the shape of the feasible solutions set of the type1 “Fuzzy Max-Min”-Inequalities
have been attained. It is proved that the set is formed by a unique minimum and a
unique maximum solution. Also, two necessary and sufficient conditions for the feasi-
bility of this type of fuzzy systems are presented. The shape of the feasible region of
the type2 “Fuzzy Max-Min”-Inequalities is investigated in section 3. It is shown that
this region is determined as a union of the finite number of minimal solutions and a
unique maximum solution. Moreover, two necessary and sufficient conditions for the
feasibility of this type of fuzzy systems are presented. In section4, the intersection of
these two fuzzy systems is studied. A necessary and sufficient condition is proposed to
determine the feasibility of the main problem and an algorithm is presented to resolve
Problem (1). Finally, in section 5 an example is described to illustrate.
2. Basic properties of type1 “Fuzzy Max-Min” – Inequalities
This section describes the structural properties concerning system A♦x ≤ b1. This
fuzzy system consists of m1 inequalities max

j∈J
{♦ (aij ,xj)} ≤ b1

i (∀i ∈ I1). For this purpose,

we firstly investigate corresponding partial inequalities ♦ (aij ,xj) ≤ b1
i , i ∈ I1 and j ∈ J .

As before, for each i ∈ I1, let S(ai ,b
1
i ) =

{
x ∈ [0,1]n : max

j∈J
{♦ (aij ,xj)} ≤ b1

i

}
. Similarly,

letS(aij ,b
1
i ) =

{
xj ∈ [0,1] : ♦ (aij ,xj) ≤ b1

i

}
that is, set S(aij ,b

1
i ) includes all solutions xj ∈

[0,1] such that

♦ (aij ,xj) = λmin
{
aij ,xj

}
+ (1−λ)max

{
aij ,xj

}
≤ b1

i , i ∈ I1 , j ∈ J

Definition 1. For each i ∈ I1 and each j ∈ J , define

W ij(λ) =
b1
i − (1−λ)aij

λ

The following four lemmas are easily verified for each i ∈ I1 and each j ∈ J , and are
very useful for some next proofs.
Lemma 1. Suppose that λ>0. Then, aij≤b1

i⇔aij≤W ij (λ).
Lemma 2. Suppose that λ<1. Then, aij≤b1

i⇔aij≤W ij (1−λ).
Also, Lemmas 1 and 2 are true if “≤” is replaced by “<”, “≥” or “>”.
Lemma 3. Suppose that λ>0. Then,

W ij (λ)≥0⇔aij=0 or
b1
i −aij
−aij

≤λ≤1
.

Lemma 4. Suppose that λ<1. Then,
W ij (1−λ)≤1⇔aij=1 or 0≤λ≤

b1
i −1
aij−1

.

Lemma 5 below determines set S(aij ,b
1
i ) where aij ≤ b1

i .
Lemma 5. Suppose that aij ≤ b1

i . Then,

S(aij ,b
1
i ) =

{ [
0 , min

{
W ij(1−λ),1

}]
, 0 ≤ λ < 1

[0 , 1] , λ = 1
.
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Proof. By aij ≤ b1
i , λ < 1 and Lemma2, we have 0≤aij≤W ij (1−λ). Thus, W ij (1−λ)≥0. Assume

that λ < 1 and xj ∈
[
0 , min

{
W ij(1−λ),1

}]
. If aij=1 or 0≤λ≤(b1

i −1)
/
(aij−1), then by Lemma4,

xj ∈
[
0 , W ij(1−λ)

]
. Therefore, in this case we have ♦ (aij ,xj) ≤ ♦ (aij ,W ij(1 − λ)) =

λaij + (1 − λ)W ij(1 − λ) = b1
i , i.e., xj ∈ S(aij ,b

1
i ). If aij<1 and λ>(b1

i −1)
/
(aij−1), then by

Lemma4, xj ∈ [0 , 1]. In this case, we have

♦ (aij ,xj) ≤ ♦ (aij ,1) = λaij + (1−λ) = λ (aij − 1) + 1

<
(
b1
i −1
aij−1

)
(aij − 1) + 1 = b1

i

Thus, xj ∈ S(aij ,b
1
i ). Moreover, if λ = 1, then ♦ (aij ,xj) ≤ b1

i is converted into min
{
aij ,xj

}
≤

b1
i . In this case, we have trivially xj ∈ S(aij ,b

1
i ), ∀xj ∈ [0 , 1].

Lemma 6 below determines set S(aij ,b
1
i ) where aij > b

1
i .

Lemma 6. Suppose that aij > b
1
i . Then,

S(aij ,b
1
i ) =

{ [
0 , W ij(λ)

]
,
((
b1
i − aij

)/(
−aij

))
≤ λ ≤ 1

∅ , otherwise

Proof. Note that in this case we have aij > 0 and 0 <
(
b1
i − aij

)/(
−aij

)
< 1. Since aij > b

1
i ,

Lemma1 implies that W ij (λ)<aij≤1. Thus, W ij (λ)<1. Also, by Lemma3 we have W ij (λ)≥0.

Now, assume that
((
b1
i − aij

)/(
−aij

))
≤ λ ≤ 1 and xj ∈

[
0 , W ij(λ)

]
. Hence, ♦ (aij ,xj) ≤

♦ (aij ,W ij(λ)) = λW ij(λ) + (1−λ)aij = b1
i that means xj ∈ S(aij ,b

1
i ). On the other hand,

if xj < 0, then xj < S(aij ,b
1
i ). If

((
b1
i − aij

)/(
−aij

))
≤ λ ≤ 1 and xj > W ij(λ), then b1

i =

♦ (aij ,W ij(λ)) < ♦ (aij ,xj), i.e., xj < S(aij ,b
1
i ). Finally, if λ <

((
b1
i − aij

)/(
−aij

))
, then we

have

♦ (aij ,xj) ≥ ♦ (aij ,0) = (1−λ)aij >

1−
b1
i − aij
−aij

 aij2
= b1

i

that implies xj < S(aij ,b
1
i ).

Corollary 1. For each i ∈ I1 and each j ∈ J ,

S(aij ,b
1
i ) =



[
0 , min

{
W ij(1−λ),1

}]
, aij ≤ b1

i , 0 ≤ λ < 1
[0 , 1] , aij ≤ b1

i , λ = 1[
0 , W ij(λ)

]
, aij > b

1
i ,

(
b1
i − aij

)/(
−aij

)
≤ λ ≤ 1

∅ , aij > b
1
i , 0 ≤ λ <

(
b1
i − aij

)/(
−aij

)
The following theorem gives a necessary and sufficient condition for the feasibility of
inequality.
Theorem 1. Let i ∈ I1. S(ai ,b

1
i ) , ∅ iff either aij ≤ b1

i or λ ≥
(
b1
i − aij

)/(
−aij

)
, ∀j ∈ J .
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Proof. For an arbitrary x ∈ [0,1]n, x ∈ S(ai ,b
1
i ) if and only if max

j∈J
{♦ (aij ,xj)} ≤ b1

i .

Also, the last inequality holds true iff ♦ (aij ,xj) ≤ b1
i , ∀j ∈ J . Therefore, S(ai ,b

1
i ) , ∅

iff S(aij ,b
1
i ) , ∅, ∀j ∈ J . Now, the result follows from Corollary1.

Definition 2. Suppose that S(ai ,b
1
i ) , ∅. We define X(i) =

[
X(i)1,X(i)2, ...,X(i)n

]
where

X(i)j =


min

{
W ij(1−λ),1

}
, aij ≤ b1

i , 0 ≤ λ < 1
1 , aij ≤ b1

i , λ = 1
W ij(λ) , aij > b

1
i ,

(
b1
i − aij

)/(
−aij

)
≤ λ ≤ 1

By Theorem2 below, the solutions set S(ai ,b
1
i ) is completely determined. The theorem

shows that S(ai ,b
1
i ) has actually the unique maximum solution, X(i), and the unique

minimum solution, 0, where 0 is an n–dimensional zero vector.
Theorem 2. Suppose that S(ai ,b

1
i ) , ∅. Then, S(ai ,b

1
i ) =

[
0 , X(i)

]
, ∀i ∈ I1.

Proof. Similar to the proof of Theorem1, for each x ∈ [0,1]n, x ∈ S(ai ,b
1
i ) iff xj ∈

S(aij ,b
1
i ), ∀j ∈ J . Thus, from Corollary1 and Definition2, for each j ∈ J we have

xj ∈
[
0 , X(i)j

]
. Therefore, x ∈

[
0 , X(i)1

]
×
[
0 , X(i)2

]
× · · · ×

[
0 , X(i)n

]
=

[
0 , X(i)

]
.

Definition 3. Let X(i) be as in Definition2, ∀i ∈ I1. We define X = min
i∈I1

{
X(i)

}
.

According to Theorem2 and the fact that S(A,b1) =
⋂
i∈I1 S(ai ,b

1
i ), the following theo-

rem is attained.
Theorem 3. Suppose that S(ai ,b

1
i ) , ∅, ∀i ∈ I1. Then, S(A,b1) =

[
0 , X

]
.

Proof. by Theorem2, we have S(A,b1) =
⋂
i∈I1 S(ai ,b

1
i ) =

⋂
i∈I1

[
0 , X(i)

]
=

[
0 ,min

i∈I1

{
X(i)

}]
.

Now, the result is obtained from Definition3.
Theorem3 determines the solutions set S(A,b1) as an n–dimensional interval

[
0 , X

]
with 0 as the unique minimum and X as the unique maximum solutions. The follow-
ing Corollary gives a necessary and sufficient condition for the feasibility of general
inequalities A♦x ≤ b1.
Corollary 2. S(A,b1) , ∅ iff 0 ∈ S(A,b1).
3. Basic properties of type2 “Fuzzy Or” – Inequalities
In this section, the properties of system D ♦x ≥ b2are investigated. This fuzzy system
consists of m2 inequalities max

j∈J
{♦ (dij ,xj)} ≥ b2

i (∀i ∈ I2). As the previous section, we

firstly investigate corresponding partial inequalities ♦ (dij ,xj) ≥ b2
i , i ∈ I2 and j ∈ J .

For each i ∈ I2, let S(di ,b
2
i ) =

{
x ∈ [0,1]n : max

j∈J
{♦ (dij ,xj)} ≥ b2

i

}
. Also, letS(dij ,b

2
i ) ={

xj ∈ [0,1] : ♦ (dij ,xj) ≥ b2
i

}
.

Definition 4. For each i ∈ I2 and each j ∈ J , define

W ij(λ) =
b2
i − (1−λ)dij

λ
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The following four lemmas are easily verified for each i ∈ I2 and each j ∈ J , and are
very useful for some next proofs.
Lemma 7. Suppose that λ>0. Then, dij≤b2

i⇔dij≤W ij (λ).
Lemma 8. Suppose that λ<1. Then, dij≤b2

i⇔dij≤W ij (1−λ).
Also, Lemmas 7 and 8 are true if “≤” is replaced by “<”, “≥” or “>”.
Lemma 9. Suppose that λ>0. Then,

W ij(λ) ≥ 0⇔ dij = 0 or
(
b2
i − dij

)/(
−dij

)
≤ λ ≤ 1

Lemma 10. Suppose that λ<1. Then,

W ij(1−λ) ≤ 1⇔ dij = 1 or 0 ≤ λ ≤
(
b2
i − 1

)/(
dij − 1

)
Lemma 11 below determines set S(dij ,b

2
i ) where dij < b

2
i .

Lemma 11. Suppose that dij < b
2
i . Then,

S(dij ,b
2
i ) =

{ [
W ij(1−λ) , 1

]
, 0 ≤ λ ≤

(
b2
i − 1

)/(
dij − 1

)
∅ , otherwise

Proof. It is easy to verify that dij < 1 and
(
b2
i − 1

)/(
dij − 1

)
< 1. Also, by dij < b

2
i , λ < 1

and Lemma8 we have 0≤dij<W ij (1−λ). Thus, W ij (1−λ)>0. Additionally, Lemma10 implies

W ij (1−λ)≤1. Now, assume that 0 ≤ λ ≤
(
b2
i − 1

)/(
dij − 1

)
and xj ∈

[
W ij(1−λ) , 1

]
. So,

b2
i = ♦ (dij ,W ij(1−λ)) ≤ ♦ (dij ,xj), i.e., xj ∈ S(dij ,b

2
i ). On the other hand, if xj > 1, then

xj does not clearly belong toS(dij ,b
2
i ). If 0 ≤ λ ≤

(
b2
i − 1

)/(
dij − 1

)
and xj < W ij(1 −λ),

then it can be easily calculated ♦ (dij ,xj) < ♦ (dij ,W ij(1−λ)) = λdij+(1−λ)W ij(1−λ) = b2
i

that implies xj < S(dij ,b
2
i ). If λ >

(
b2
i − 1

)/(
dij − 1

)
, then

♦ (dij ,xj) ≤ ♦ (dij ,1) = λdij + (1−λ) = 1 + (dij − 1)λ
< 1 + (dij − 1)

((
b2
i − 1

)/
(dij − 1)

)
= b2

i

, that is, xj < S(dij ,b
2
i ).

Lemma 12 below determines set S(dij ,b
2
i ) where dij ≥ b2

i .
Lemma 12. Suppose that dij ≥ b2

i . Then,

S(dij ,b
2
i ) =

{ [
max

{
0, W ij(λ)

}
, 1

]
, 0 < λ ≤ 1

[0 , 1] , λ = 0

Proof. At first, we note
(
b2
i − dij

)/(
−dij

)
≥ 0. Since dij ≥ b2

i and λ > 0, Lemma7 implies

that W ij (λ)≤dij≤1. Thus, W ij (λ)≤1. Assume that xj ∈
[
max

{
0, W ij(λ)

}
, 1

]
. If either dij =
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0 or
(
b2
i − dij

)/(
−dij

)
≤ λ ≤ 1, then by Lemma9, xj ∈

[
W ij(λ) , 1

]
. In this case, we

have ♦ (dij ,xj) ≥ ♦ (dij ,W ij(λ)) = λW ij(λ) + (1 − λ)dij = b2
i that means xj ∈ S(dij ,b

2
i ).

Furthermore, if dij > 0 and λ <
(
b2
i − dij

)/(
−dij

)
, xj ∈ [0 , 1] from Lemma9. In this case,

we have

♦ (dij ,xj) ≥ ♦ (dij ,0) = (1−λ)dij >
(
1−

((
b2
i − dij

)/(
−dij

)))
dij = b2

i

, that is, xj ∈ S(dij ,b
2
i ). On the other hand, if xj > 1 or xj <max

{
0, W ij(λ)

}
= 0, then ob-

viously xj < S(dij ,b
2
i ). If xj < max

{
0, W ij(λ)

}
= W ij(λ), then ♦ (dij ,xj) < ♦ (dij ,W ij(λ)) =

b2
i , i.e., xj < S(dij ,b

2
i ). Moreover, if λ = 0, then ♦ (dij ,xj) ≥ b2

i is converted into max
{
dij ,xj

}
≥

b2
i . In this case, we have trivially xj ∈ S(aij ,b

1
i ), ∀xj ∈ [0 , 1].

Corollary 3. For each i ∈ I2 and each j ∈ J ,

S(dij ,b
2
i ) =



[
max

{
0, W ij(λ)

}
, 1

]
dij ≥ b2

i , 0 < λ ≤ 1
[0 , 1] dij ≥ b2

i , λ = 0[
W ij(1−λ) , 1

]
dij < b

2
i , 0 ≤ λ ≤

(
b2
i − 1

)/(
dij − 1

)
∅ dij < b

2
i , λ >

(
b2
i − 1

)/(
dij − 1

)
The following theorem gives a necessary and sufficient condition for the feasibility of
inequality.
Theorem 4. Let i ∈ I2. S(di ,b

2
i ) , ∅ iff there exists some j ∈ J such that either dij ≥ b2

i or

0 ≤ λ ≤
(
b2
i − 1

)/(
dij − 1

)
.

Proof. For an arbitrary x ∈ [0,1]n, x ∈ S(di ,b
2
i ) if and only if max

j∈J
{♦ (dij ,xj)} ≥ b2

i . There-

fore, x ∈ S(di ,b
2
i ) iff ♦ (dij ,xj) ≥ b2

i , for some j ∈ J . Therefore, S(di ,b
2
i ) , ∅ iff S(dij ,b

2
i ) , ∅,

for some j ∈ J . Now, the result follows from Corollary3.
Definition 5. Suppose that S(di ,b

2
i ) , ∅. Let

J1 =
{
j ∈ J : dij ≥ b2

i , λ > 0
}
, J2 =

{
j ∈ J : dij ≥ b2

i , λ = 0
}

and
J3 =

{
j ∈ J : dij < b

2
i , λ ≤

(
b2
i − 1

)/(
dij − 1

)}
Definition 6. Suppose that S(di ,b

2
i ) , ∅. For each j ∈ J1

⋃
J2

⋃
J3, we define X(i, j) =

[X(i, j)1,X(i, j)2, ...,X(i, j)n] where

X(i, j)k =


max

{
0,max

{
0, W ij(λ)

}}
, k = j , j ∈ J1

0 , k = j , j ∈ J2
W ij(1−λ) , k = j , j ∈ J3
0 , otherwise
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By Theorem5 below, the solutions set S(di ,b
2
i ) is completely determined. The theorem

shows that S(di ,b
2
i ) has actually the finite number of minimal solutions, X(i, j), and the

unique maximum solution, 1, where 1 is an n–dimensional unite vector.
Theorem 5. Suppose that S(di ,b

2
i ) , ∅. Then, S(di ,b

2
i ) =

⋃
j∈J1

⋃
J2

⋃
J3 [X(i, j) , 1], ∀i ∈ I2.

Proof. According to the proof of Theorem4, for each x ∈ [0,1]n, x ∈ S(di ,b
2
i ) iff xj ∈

S(dij ,b
2
i ), for some j ∈ J . Therefore, S(di ,b

2
i ) =

⋃
j∈J S(dij ,b

2
i ). Thus, from Corollary3

and Definition5, we have S(di ,b
2
i ) =

⋃
j∈J1

⋃
J2

⋃
J3
S(dij ,b

2
i ). Now, the result is attained

from Corollary3 and Definition6.
Definition 7. Let e : I2 → J1

⋃
J2

⋃
J3 so that e(i) = j ∈ J1

⋃
J2

⋃
J3, ∀i ∈ I2, and let ED

be the set of all vectors e. For the sake of convenience, we represent each e ∈ ED as an
m2–dimensional vector e = [j1, j2, ..., jm2

] in which jk = e(k), k = 1,2, ...,m2.
Definition 8. Let e = [j1, j2, ..., jm2

] ∈ ED . Let X(e) = [X(e)1,X(e)2, ...,X(e)n], where
X(e)j = max

i∈I2

{
X(i, e(i))j

}
= max

i∈I2

{
X(i, ji)j

}
, ∀j ∈ J .

Based on Theorem 5 and Definition8, we have the following theorem characterizing
the feasible region of the general inequalities D ♦x ≥ b2.
Theorem 6. Suppose that S(di ,b

2
i ) , ∅, ∀i ∈ I2. Then, S(D,b2) =

⋃
e∈ED [X(e) , 1].

Proof. Since S(D,b2) =
⋂
i∈I2 S(di ,b

2
i ), Theorem5 implies that

S(D,b2) =
⋂
i∈I2

⋃
j∈J1

⋃
J2

⋃
J3

[X(i, j) , 1].

Therefore, we have

S(D,b2) =
⋃

j∈J1
⋃
J2

⋃
J3

⋂
i∈I2

[X(i, j) , 1] =
⋃
e∈ED

⋂
i∈I2

[X(i, e(i)) , 1] =
⋃
e∈ED

[
max
i∈I2
{X(i, e(i))} , 1

]
Now, the result follows from Definition8.
Theorem6 determines the solutions set S(D,b2) as the union of the finite number of n–
dimensional interval [X(e) , 1] with X(e) as the minimal and 1 as the unique maximum
solutions. The following Corollary gives a necessary and sufficient condition for the
feasibility of general inequalities D ♦x ≥ b2.
Corollary 4. S(D,b2) , ∅ iff 1 ∈ S(D,b2).
4. The resolution of Problem (1)
In this section, a necessary and sufficient condition is derived to determine the feasi-
bility of the main problem. As is shown, the feasible region is completely found by the
finite number of closed convex cells.
Lemma 13. S(A,D,b1,b2) , ∅ iff there exists some e ∈ ED such that [0 ,X]

⋂
[X(e),1] , ∅.

Proof. Since S(A,D,b1,b2) = S(A,b1)
⋂
S(D,b2), from Theorems 3 and 6 we have

S(A,D,b1,b2) =
[
0 , X

]⋂ ⋃
e∈ED

[X(e) , 1] =
⋃
e∈ED

( [
0 , X

]⋂
[X(e) , 1]

)
This completes the proof.
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The following Corollary gives a necessary and sufficient condition for the feasibility of
the intersection of general inequalities A♦x ≤ b1and D ♦x ≥ b2.
Corollary 5. Assume that S(A,b1) , ∅ and S(D,b2) , ∅. Then, S(A,D,b1,b2) , ∅ iff
X ∈ S(D,b2).
Proof. According to Lemma13, S(A,D,b1,b2) , ∅ iff [0 ,X]

⋂
[X(e′),1] , ∅ for some e′ ∈

ED . Thus, S(A,D,b1,b2) , ∅ iff X ∈ [X(e′),1] that means X ∈
⋃
e∈ED [X(e),1]. The ore,

S(A,D,b1,b2) , ∅ iff X ∈ S(D,b2), from Theorem6.
The following theorem characterizes the feasible region of Problem (1). The theorem
determines the solutions set S(A,D,b1,b2) as the union of the finite number of closed
convex intervals.
Theorem 7. Suppose that S(A,D,b1,b2) , ∅. Then S(A,D,b1,b2) =

⋃
e∈ED [X(e),X].

Proof. According to the proof of Lemma13, we have

S(A,D,b1,b2) =
⋃
e∈ED

( [
0 , X

]⋂
[X(e) , 1]

)
.

Now, the required equality is resulted from Corollary5.
We now summarize the preceding discussion as an algorithm.
Algorithm 1 (solution of problem (1))
Given problem (1):
1. If for some i ∈ I1 and j ∈ J , aij > b1

i and λ <
(
b1
i − aij

)/(
−aij

)
, then stop; S(ai ,b

1
i ) is

infeasible (Theorem1).
2. If 0 < S(A,b1), then stop; S(A,b1) is infeasible (Corollary2).
3. If for some i ∈ I2 and each j ∈ J , dij < b2

i and λ >
(
b2
i − 1

)/(
dij − 1

)
, then stop; S(di ,b

2
i )

is infeasible (Theorem4).
4. If 1 < S(D,b2), then stop; S(D,b2) is infeasible (Corollary4).
5. Compute vectors X(i) (∀i ∈ I1) from Definition2, and then vector X from Definition
3.
6. If X < S(D,b2), then stop; S(A,D,b1,b2) is infeasible (Corollary5).
7. Compute vectors X(e) (∀e ∈ ED) from Definition8.
8. Find the feasible solutions set S(A,D,b1,b2) as

⋃
e∈ED [X(e),X] (Theorem7).

5. Numerical example
Consider the following problem formed as the intersection of two fuzzy systems de-
fined by “Fuzzy Max-Min”-Inequalities: 0.4 0.8 0.4

0.7 0.4 0.5
0.5 0.5 0.3

♦x ≤
 0.8

0.7
0.4

 0.8 0.8 0.7
0.6 0.2 0.9
0.2 0.5 0.3

♦x ≥
 0.2

0.3
0.4


x ∈ [0,1]n
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Step1: for i = 1,2 and j = 1,2,3, we have aij ≤ b1
i . Then, from Theorem1 S(a1,b

1
1) , ∅

and S(a2,b
1
2) , ∅. Also, 0.5 = λ ≥

(
b1

3 − a31

)/
(−a31) = 0.2, 0.5 = λ ≥

(
b1

3 − a32

)/
(−a32) = 0.2

and a33 ≤ b1
3 that imply S(a3,b

1
3) , ∅.

Step2: The following calculation shows that 0 ∈ S(A,b1). 0.4 0.8 0.4
0.7 0.4 0.5
0.5 0.5 0.3

∇
 0

0
0

 =

 0.4000
0.3500
0.2500

 ≤
 0.8

0.7
0.4


Therefore, S(A,b1) , ∅, from Corollary2.
Step3: Since d1j ≥ b2

1 for each j ∈ J , then S(d1,b
2
1) , ∅ from Theorem4. Also, d21 ≥

b2
2d23 ≥ b2

2, and 0.5 = λ ≤
(
b2

2 − 1
)/

(d22 − 1) = 0.875 that imply S(d2,b
2
2) , ∅. Finally,

since 0.5 = λ ≤
(
b2

3 − 1
)/

(d31 − 1) = 0.75, 0.5 = λ ≤
(
b2

3 − 1
)/

(d33 − 1) = 0.8571 and d32 ≥
b2

3, then S(d3,b
2
3) , ∅.

Step4: According to the calculation below, 1 ∈ S(D,b2). Hence, from Corollary4,
S(D,b2) , ∅.  0.8 0.8 0.7

0.6 0.2 0.9
0.2 0.5 0.3

∇
 1

1
1

 =

 0.9000
0.9500
0.7500

 ≥
 0.2

0.3
0.4


Step5: From Definition2, we have

X(1) = [1.0000 0.8000 1.0000]
X(2) = [0.7000 1.0000 0.9000]
X(3) = [0.3000 0.3000 0.5000]

Therefore, from Definition3, we attain X = [0.3 0.3 0.5].
Step6: From Corollary5, since X ∈ S(D,b2), then S(A,D,b1,b2) , ∅. It can be easily
verified as follows:  0.8 0.8 0.7

0.6 0.2 0.9
0.2 0.5 0.3

∇
 0.3

0.3
0.5

 =

 0.6
0.7
0.4

 ≥
 0.2

0.3
0.4


Step7: From Definition8, the feasible vectors X(e) (i.e., X(e) ≤ X) are resulted as fol-
lows:

e1 = [1 1 2] ⇒ X(e1) = [0 0.3 0]
e2 = [1 1 3] ⇒ X(e2) = [0 0 0.5]

Vectors X(e1) and X(e2) are actually minimal solutions of the problem.
Step8: From Theorem7, we attain S(A,D,b1,b2) = [X(e1),X]

⋃
[X(e2),X].

Conclusion
In this paper, we proposed an algorithm to solve the intersection of two types of fuzzy
relational inequalities defined by “Fuzzy Max-Min” averaging operator. The feasible
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solutions set of each type of these fuzzy systems was obtained. Based on the foregoing
results, the feasible region of the problem is completely resolved and four necessary
and sufficient conditions were presented to determine the feasibility of the problem.
As future works, we aim at testing our algorithm in other type of fuzzy systems and
linear optimization problems whose constraints are defined as FRI with other averag-
ing operators.
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