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Abstract 
Economically optimal management of a continuous cover forest is considered here. 

Initially, there is a large number of trees of different sizes and the forest may contain 

several species. We want to optimize the harvest decisions over time, using 

continuous cover forestry, which is denoted by CCF. We maximize our objective 

function, the expected present value, with consideration of stochastic prices, timber 

quality variations and dynamically changing spatial competition. The problem is 

solved using an adaptive control function. The parameters of the control function are 

optimized via the first order optimum conditions based on a multivariate polynomial 

approximation of the objective function. The second order maximum conditions are 

investigated and used to determine relevant parameter ranges. The procedure is 

described and optimal results are derived for a general function multi-species CCF 

forest. Concrete examples from Germany, with beech, and from Sweden, with 

Norwegian spruce, are used to illustrate the methodology and typical numerical 

results. It is important to make market adapted harvest decisions. If the stochastic price 

variations are not considered when the harvest decisions are taken, the expected 

present value is reduced by 23%.  

Keywords 
Economic optimization, Multi species forests, Forest management, Stochastic 

processes, Adaptive optimal control.  
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Introduction 
Economic forest management is an interesting area from a 

methodological point of view. Several dynamic and stochastic 

processes should be considered. Market prices are very important to 

optimal decisions, but often rapidly change and cannot be perfectly 

predicted. The central question is this: what is the best way to 

sequentially update the information and adaptively determine the 

management decisions? It is important to get a perspective on the 

theoretically rapidly changing field of forest management. First, we 

start with two typical cases of the classical steady state definition of the 

forest management problem. Note that the advocated planning 

principles with this approach are completely insensitive to prices, costs 

and dynamic market changes. Hessenmöller et al. (2018) derive target 

volumes and densities for different diameter ranges of uneven-aged 

beech stands, with the plan to obtain a steady state distribution of tree 

diameters. Such forests can also be called ”continuous cover forests”, 

or CCF forests. They write that beech-dominated selection forests 

presently are covering about 10,000 hectares in the Hainich-Dün region 

of Thuringia, Germany. These forests have been managed in different 

ways during almost 1000 years. They also claim that such forests often 

are considered to be resilent to disturbances and resemble natural 

conditions.  

Schütz (2006) investigates steady states and sustainability of pure 

beech forests. He defines demographic steady state via an invariant 

distribution of numbers of trees of different dimensions and writes that, 

if we are interested in ”real” sustainability, it is also necessary that the 

removal volume is equal to the observed periodic volume increment. 

We note that Hessenmöller et al. (2018) and Shütz (2006) focus on 

dynamic equilibria. Key problems are to determine ”target volumes”, 

”target densities” and ”steady states”. From the point of view of 

economic management, we make this observation: the suggested and 

utilized forest management planning methods in these cases are 

completely insensitive to prices, costs and dynamic market changes. 

Still, the methods and ideas in these articles are common in practical 

forest management and forest research projects in several countries. 

However, if we are interested in economic results and market adapted 

forest management decisions, we cannot ignore prices, costs and other 

economically important parameters. It is necessary to consider the 

degree of predictability of future values of these parameters. 
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Furthermore, in a dynamic world, the economically optimal levels of 

adjustments of management decisions to changes in prices, that are not 

perfectly predictable, are important. In stochastic markets, production 

capacity levels, stock policies and flexibility are important to the 

expected profitability. Nasseri and Bavandi (2018) discuss and analyze 

the importance of stochastic objective function parameters in 

mathematical programming. They claim that stochastic objective 

function parameters are important in real applications. In an earlier 

article, Attari and Nasseri (2014) introduced FMP, Fuzzy Mathematical 

Programming. Then, however, stochastics and fuzziness concerned the 

problem of feasibility under stochastic disturbances, via fuzzy 

constraints. In a similar spirit, Nemati et al. (2017) advocate new 

investigations of dynamic prices and the effects of forecast errors on the 

optimal selection of management planning models. 

Forest management decisions can be taken at many different levels. 

When the level of detail increases, the number of partial decision 

problems increases almost without bound. In continuous cover forestry, 

CCF, we may consider the management of each tree as a decision 

problem. Should we harvest this tree now or wait until some future point 

in time? Furthermore, these decision problems at the tree level are not 

independent. If one tree is harvested now, the available space increases 

for other trees in the neighborhood to continue growing. Hence, the 

optimal management decisions of the neighbor trees are affected. In 

production planning, it is often necessary to derive solutions that 

optimize many objective functions at the same time, which is stressed 

by Moradi Dalini and Noura (2018). This is quite correct and relevant 

to forestry and motivates the present model development. In the present 

paper, a harvest control function is developed. With the help of this 

function, all of the harvest decisions, of every tree, are optimized in 

such a way that the expected value of the total objective function is 

maximized. All of the interdependencies are considered.  

With large numbers of problem dimensions, stochastic parameter 

changes, large numbers of nonlinearities and adaptive decisions, the 

problem structure makes it difficult or even impossible to utilize 

standardized linear and nonlinear programming methods from the field 

of operations research. In order to give relevant solutions to real world 

problems, it is necessary to let the model contain the relevant structure 

with respect to how different parts of the analyzed system are connected 

and influence each other. One way to do this is to use stochastic 

simulation. A very positive and wide perspective on the importance and 
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use of simulation in production management problems is given by 

Shahbazi et al. (2017). Many kinds of applications of simulation are 

suggested, including job scheduling, ground and air transportation, 

resource distribution and so on. In the present paper, stochastic 

simulation will be used as a part of an adaptive control function 

optimization procedure. This approach has been developed by 

Lohmander (2017b; 2018b). With stochastic simulation as a subroutine, 

it is possible to search the best way to control the system to reach the 

most desirable solution, in case the following procedure is utilized: first, 

a stochastic simulation model of the complete system under analysis is 

developed. The adaptive control of this system is defined via a specified 

control function. General theoretical principles in the field of analysis 

can be used to define the functional form of the adaptive control 

function to be used in the system. The exact values of the optimal 

parameters of the control function are still unknown. Next, the complete 

system is simulated with a large number of alternative control function 

parameter value combinations. Thereafter, multidimensional regression 

analysis is used to determine an approximating function that gives the 

expected objective function value of the system as a nonlinear function 

of the control function parameters. Then, we maximize the value of the 

approximating function. From the first order optimum conditions, the 

optimal parameter values of the control function are determined. In case 

the approximating function is quadratic, the equation system of first 

order optimum conditions is linear. Then, the optimum is usually unique 

and it is possible that the approximating function can be shown to be 

strictly concave. If that is the case, the derived control function 

parameters give a maximum that is globally unique. In case the 

approximating function is not quadratic, but for instance cubic, the 

analysis is more complicated. Then, the equation system of first order 

optimum conditions is not linear. Still, if the equation system only 

contains a limited number of nonlinearities, the solutions may be 

calculated via elimination and analytical methods of quadratic, cubic or 

quartic equations. In such cases, it may be found that the approximating 

function is strictly concave in some region(s). Then, it may be possible 

to show that one of the solutions of the first order optimum conditions 

gives an optimum that is also a locally unique maximum. In some cases, 

it may be possible to show that we also have a unique global maximum. 

In this paper, this method will be utilized to derive optimal adaptive 

control functions in forest management.  
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Optimization problems with many dimensions, nonlinearities and 

stochastic disturbances are common in most sectors of the economies. 

Lohmander (2007), (2017a) and (2018a) presents alternative 

optimization methods to handle such situations in a rational way. In this 

paper, we focus on CCF, continuous cover forestry. Initially, there is a 

large number of spatially distributed trees of different sizes. The central 

question is this: what is the best way to adaptively control and manage 

such a forest? Lohmander (1992a), (1993) and (2000) shows that there 

are considerable option values associated with mixed forests. Single 

species forests give less options to adjust production to possible 

stochastic events. For instance, prices of different species may change. 

Then, it is valuable to have the option to adjust the harvest activities to 

these changing market conditions. Furthermore, some species may be 

negatively affected by pests, insects or large animals. Some species may 

not produce well in case the climate changes or if pollution increases. 

In these cases, it is valuable to be able to adaptively adjust forest 

production. This can easily be done if we already have several species 

growing in the forest. In some cases, it is possible to calculate the 

expected present value of forestry, conditional on the initial species 

mix. This has been done and Lohmander (1993) reports such results. 

Lohmander (2007) presents several optimization methods and typical 

solutions to adaptive forest management problems.  

Methods 
In the present study, we have the ambition to develop and describe a 

general analytical and numerical method to handle management 

decision problems of this type: we want to optimize the harvest 

decisions over time. We want to maximize our objective function, the 

expected present value. The prices of the different species are 

stochastic. The problem is solved using an adaptive control function. 

The parameters of the control function are optimized via the first order 

optimum conditions of an approximation of the expected objective 

function. The second order maximum conditions are investigated. The 

expected objective function is estimated via Monte Carlo simulation. In 

this section, a general procedure is given for a multi-species forest with 

trees of different sizes. In later sections, concrete examples are analyzed 

and discussed. Now, we consider a mixed species forest. Initially, there 

is a large number of spatially distributed trees of different sizes and 

species. We want to optimize the harvest decisions over time. We want 

to maximize our objective function, the expected present value. The 

prices of the different species are stochastic.  
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0(0)i ib b i   (1) 

( )ib t is the basal area of tree number i  (at height 1.3 meters above 

ground) at time t  (from 0 0t  ). Each period normally represents one 

year but other time intervals are sometimes more relevant. The initial 

condition is 0ib . ( )id t is the diameter of tree i at time t  at height 1.3 

meters above ground. 

( )
( ) 2 i

i

b t
d t



 
  

 
 (2) 

( , )u i t represents the control decision. If ( , ) 1u i t  , the tree i  is harvested 

in period t . Otherwise, ( , ) 0u i t  . 

 ( , ) 0,1 ,u i t i t   (3) 

0

( , ) 1
T

t

u i t i


   (4) 

( )ib t develops according to a discrete time process. The increment, 

growth, G , is a function of the basal area ( )ib t , the species ( )S i  and 

the competition, ( , )L i t .  ( ) 1,.,S i N where N is the total number of 

species. ( )ms i  is a ”species dummy variable” defined in (5).  

 
1 ( )

( ) , 1,.,
0 ( )

m

if S i m
s i i m N

if S i m


  


 (5) 

The level of competition of relevance to tree i  at time t  is denoted 

by ( , )L i t . In different studies, ( , )L i t  has been specified in different 

ways. Usually, ( , )L i t is a strictly increasing function of the size (for 

instance, basal area) of neighbouring trees. Furthermore, neighbouring 

trees that are close to tree i  influence the value of ( , )L i t more than 

what more distant trees do. In Lohmander (2018b), ( , )L i t is the total 

basal area of neighbouring trees per hectare within a circle of  radius 10 

meters, where tree i  represents the center of the circle. In Lohmander 

et al. (2017), ( , )L i t  is a nonlinear function of the properties of the 

competitors; ( , )L i t  decreases with the distance to the competitors and 

increases with the size of the competitors. 
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The general function (.)G , for ( , ) 0L i t  , has been defined and 

presented by Lohmander (2017c). Lohmander also derived a 

differential equation consistent with (.)G and the dynamic properties of 

the basal area development. Empirical estimations of the parameters of 

(.)G  with variations of ( , )L i t  have been performed for forests with 

different tree species in Iran by Hatami et al. (2017). 

 ( ) ( ), ( ), ( , ) ( , ) 0
( 1)

0 ( , ) 1

i i

i

b t G b t S i L i t for u i t
b t

for u i t

  
  


 (6) 

The present value of all profits is denoted by Z . This is the 

discounted net value of all harvests. Hence it is a function of all harvest 

decisions, the rate of interest, the prices of the different species, the 

volumes of trees at different points in time and the harvest costs.  

 
0 1

( , ) ( ( ), ) ( ( ), ( )) ( ( ), ( ), )
T I

rt

i i

t i

Z e u i t P S i t V S i b t C S i b t t

 

    (7) 

rte  Is the discounting factor of period t with rate of interest r. 

( ( ), )P S i t  denotes price per cubic meter of species i  in period t. 

( ( ), )P S i t  is a stationary variable which is stochastic at , 0t n n   .  

 ( ( ), )E P S i t  Is the expected value of ( ( ), )P S i t  at , 0t n n   . In the 

two species case, if trees i  and j  belong to different species, then 

( ( ), )P S i t  and ( ( ), )P S j t  have correlation  . 1 1   . ( ( ), ( ))iV S i b t  

is the volume of tree i  as a function of the species and the basal area. 

( ( ), ( ), ))iC S i b t t  denotes the harvest cost of tree i  . This cost is a 

function of species, basal area and time. 

This problem is highly stochastic, multidimensional and nonlinear. 

Furthermore, it contains a large number of integer variables. It is 

necessary to define a reasonable type of adaptive control function that 

can be used to handle the many control decisions in a way that takes the 

stochastic prices and competition between trees into account. Then the 

parameters of the control function may be optimized. For this purpose, 

the following rule is suggested: first, we calculate the ”limit diameter” 

( )iD t of tree i  at time t . The limit diameter is a function of the tree 

species index, the relative deviation of the price from the expected level 

and the competition.  
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 

 1

( ( ), ) ( ( ), )
( ) ( ) ( , )

( ( ), )

N

i m m P L

m

P S i t E P S i t
D t s i L t i

E P S i t
  



 
    

 
  (8) 

In case the diameter ( )id t  is larger than the limit diameter, we instantly 

harvest. Otherwise, we wait at least one more period before we harvest 

the tree. 

 

 

 

1

0

1

0

0 ( ) ( ) 1 ( , ) 0

( , ) , 0, ,2 ,...,

1 ( ) ( ) 1 ( , ) 0

t

i i

t

t

i i

t

if d t D t u i t

u i t i t n

if d t D t u i t

  









  
    

  
  

       





 (9) 

 denotes the harvest decision interval. This is an integer 1  . n  

is the total number of harvest decision intervals and n T  , where T is 

the total planning horizon. 

Z is a function of many things, including the stochastic price 

outcomes. When the control decisions are optimized, we are interested 

in the expected value of Z , namely ( )E Z . We may estimate ( )E Z for 

given parameter values via Monte Carlo simulation. The average value 

of Z is determined based on a large number of random outcomes of the 

stochastic prices of the different species. The correlations may be 

estimated from real price series and Cholesky factorization can be used 

to generate the correlated price series. It is a good idea to store all of the 

simulated price series and to use the same set of simulated price series 

in every step of the control function parameter optimizations.  

 
0 1

( ) ( , ) ( ( ), ) ( ( ), ( )) ( ( ), ( ), )
T I

rt

i i

t i

E Z E e u i t P S i t V S i b t C S i b t t

 

 
  

 
   (10) 

In the following derivations, N is assumed to take the value 2, which is 

a typical case in real applications. The procedure can easily be extended 

to other values N .  

Procedure: 

Make an initial guess  
0 0 0 01 2, , ,P L    of the optimal values of the 

parameters  1 2, , ,P L    . 

Create a number, W, of alternative parameter combinations, w , such 

that stochastic variables  1 2, , ,P L    are added to  
0 0 0 01 2, , ,P L    . 

The probability density functions of these stochastic variables are 
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defined with consideration of the interesting parameter ranges. 

 ,j jd d
 

 denote the lower ( ) and upper ( ) bounds of j  , 

 1,2, ,j P L . 

1 1 1 2 2 2; ; ;P P P L L Ld d d d d d d d
       

           . Normally, 

this means that 
1 1 2 20 ; 0 ; 0 ; 0P P L Ld d d d d d d d
       
        . 

Let 
wj

 denote the value of j in parameter combination w . 

   
0 0 0 01 2 1 1 2 2, , , , , ,

w w w w w w w wP L P P L L                . 

For each random parameter combination w , estimate the value of 

  1 2( ) , , , ,...
w w w wP LE Z E Z     . 

Make a quadratic approximation  1 2, , ,P L     of the 

function   1 2( ) , , , ,...P LE Z E Z      according to the lines 

suggested by equations (11) – (14), via OLS, the ordinary least squares 

method. 

It is important to be aware that cubic approximations or other 

functional forms may sometimes be more relevant. This is further 

investigated at the end of this paper. 

 1 2, , ,P L     (11) 

 1 2

1 1 2 2

2 2 2 2

11 1 22 2

12 1 2 1 1 1 1 2 2 2 2

, , ,P L

P P L L

PP P LL L

P P L L P P L L PL P L

k k k k

k k k k

k k k k k k

   

   

   

           

 

    

    

     

 (12) 

1 2 1 2( , , , ) ( ( , , , ,...))P L P LE Z          (13) 

  
0 1

2

1 2 1 1 2
, ,...,
min , , , ; ,..., ( ( , , , ,...))

PL
P L PL P L

k k k
E k k E Z           
 

 (14) 

Use the quadratic approximation  1 2, , ,P L    to determine 

the approximately optimal values of the parameters 1 2, , ,P L    .  The 

approximate optimal values can be used as new initial conditions, and 
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the approximation process can continue any number of iterations until 

the solution is considered satisfactory. 

The first order optimum conditions are found in (15).  

1 11 1 12 2 1 1

1

2 12 1 22 2 2 2

2

1 1 2 2

1 1 2 2

2 0

2 0

2 0

2 0

P P L L

P P L L

P P P PP P PL L

P

L L L PL P LL L

L

d
k k k k k

d

d
k k k k k

d

d
k k k k k

d

d
k k k k k

d

   


   


   


   



     




     



      



      


 (15) 

We may determine the optimal parameter values via (16). 

11 12 1 1 1 1

12 22 2 2 2 2

1 2

1 2

2

2

2

2

P L

P L

P P PP PL P P

L L PL LL L L

k k k k k

k k k k k

k k k k k

k k k k k









     
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
     
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     

          

 (16) 

M is presented in (17) and the second order maximum conditions 

are found in (18).  

11 12 1 1

12 22 2 2

1 2

1 2

2

2

2

2

P L

P L

P P PP PL

L L PL LL

k k k k
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M
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k k k k

  (17) 

11 12

11

12 22

11 12 1 1

11 12 1

12 22 2 2

12 22 2

1 2

1 2

1 2

2
2 0, 0,

2

2
2

2
2 0, 0

2
2

2

P L

P

P L

P

P P PP PL

P P PP

L L PL LL

k k
k

k k

k k k k
k k k

k k k k
k k k

k k k k
k k k

k k k k

 

 

 

(18) 

The optimal parameter values are obtained via (19) – (22). 
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1 12 1 1

2 22 2 2

2
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(20) 
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P
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M









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(21) 

11 12 1 1

12 22 2 2

1 2

1 2

2

2

2

P

P

P P PP P

L L PL L

L

k k k k

k k k k

k k k k

k k k k

M









  

(22) 

Spatial dynamic illustration 
A typical illustration of a simulated spatial and dynamic devlopment of 

a CCF beech forest with adaptive management control is given in 

Figures 1., 2. and 3.. The simulation is based on the model developed 

in Lohmander (2018b). The figures show the positions and sizes of the 

trees in a forest area of one hectare. The situation in year 35 is found in 

Figure 1.. Then, the trees grow until year 69 (Figure 2.). Some of the 

largest trees in Figure 1. are harvested before we come to the situation 

in Figure 2.. The trees are affected by local competition and the largest 

trees grow better than the smaller trees. Between year 69 and year 70, 

timber prices are very high. As a result, most of the large trees in year 
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69 (Figure 2.) have been harvested before we reach year 70 (Figure 3.).  

In the simulation model, new, young and small trees are dynamically 

generated from seeds in random locations.  

When the parameters of the harvest control function were optimized, 

Lohmander (2018b) defined the numerical model with 10 hectares of 

forest, in the form of 10 independent one-hectare forests. The 

illustrations in this chapter show the development of one of these one-

hectare forests.  

It was possible to change the selected number, 10, of hectares in the 

model, to any other number. Numerical tests showed that the optimized 

values of the harvest control function parameters usually converge to 

stable solutions also with rather low number of hectares. Already with 

5 hectares, the optimized control function parameter values were almost 

identical to the optimized control function parameter values obtained 

with 10 hectares. The excecution time is, however, almost proportional 

to the number of hectares and every research project has some time 

limit. For these reasons, it was considered satisfactory to use 10 hectares 

in the optimizations. Of course, since the speed of computers increases 

over time, and since future researchers may be interested in even higher 

parameter precision, future applications of the model may be based on 

even larger forests.   
 

 
Figure 1. Spatial map of simulated trees in a CCF forest in year 35. The 

map represents one hectare where the four sides of the square are 100 

meters each. The circles represent trees and the diameters of the circles 

are proportional to the diameters of the trees. 
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Figure 2. Spatial map of simulated trees in a CCF forest in year 69. 

 
Figure 3. Spatial map of simulated trees in a CCF forest in year 70. 

A detailed numerical case 
Continuous forest management has earlier usually been optimized at the 

stand level via deterministic and stochastic dynamic programming and 

optimal control theory. Lohmander (1986), (1987), (1988) and (1990) 

and Lohmander and Mohammadi (2008) are such examples. In 

Lohmander (1992b) and (1992c), optimal control functions are derived 

via quasi gradient methods in combination with stochastic simulation. 

In these studies, it has been found that the optimal harvest level is an 

increasing function of the price and stock levels and that the expected 

present value is an increasing function of the risk in the price process, 

as long as we have adaptive harvest decisions and stationary price 

processes. Now, we may use these general principles as background 

when we optimize forestry decisions at a more detailed level. Concrete 

transformations of the earlier findings from stand level optimizations to 

preliminary principles in forestry with tree level decisions, H1 – H3, 

will now be suggested. Fundamental production economics principles 

give the following hypotheses: 
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H1: In case the market price is equal to the expected price and in 

case the tree has no competition, then there is a unique limit diameter 

m such that  0 1,2m m   . 

H2: It is economically rational to harvest more during periods with 

higher prices and less during periods with lower prices. This means that 

it is optimal to harvest a tree at a smaller diameter than m  in case the 

price is very high and to harvest the tree at a larger diameter if the price 

is very low. Hence: 0P  . 

H3: Trees may have strong or weak competition with neighboring 

trees. (Strong competition corresponds to a high stock level and weak 

competition corresponds to a low stock level.) If the competition is 

weak in a local area, the trees grow well and it is profitable to let them 

develop to larger diameters than if the competition is strong. If the 

competition is strong in a local area, it is economically rational to 

harvest the trees at a smaller diameter. This way, the remaining trees 

will grow better than under strong competition. Hence: 0L  . 

Now, a particular case with empirical background presented in 

Lohmander et al. (2017) will be analyzed. The forest and the adaptively 

controlled stochastic simulation model contain trees of only one 

species, Norway spruce, in Sweden. However, different trees have 

different timber qualities. The timber quality of a particular tree, ( , )Q t i

, is high ( , ) 1Q t i   or low ( , ) 0Q t i  . Trees that have higher quality 

also have higher prices per cubic meter. The notation is adjusted to fit 

the application. The parameters are defined in Table 1. 
 

Table 1. Adaptive control function parameters in the particular numerical case. 

Parameter 

name: 

Corresponding 

parameter in 

the general 

model: 

Constant 

in the 

limit 

diameter 

function 

Derivative 

of limit 

diameter 

with respect 

to: 

These 

transformations 

simplify the 

analysis: 

dlim_0 1  Yes  dlim_0  =  0.1x 

dlim_c L  No 
Local 

competition 
dlim_c = 0.001z 

dlim_q  No 

Timber 

quality of the 

particular 

tree 

 

dlim_p P  No 

Timber price 

– expected 

timber price 

dlim_p = 0.001y 
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In order to make this section easier to follow, the optimization of the 

parameter dlim_q is excluded. An even more detailed pre-analysis of the 

problem gave an optimal value of dlim_q. This parameter is included in the 

finally documented adaptive control function. 

The approximating function is (.) . Using the transformations described 

in Table 1. and treating dlim_q as an already known parameter, we have the 

approximating function  , ,x y z . This function is specified to have this 

functional form: 
2 3 2

x xx xy yyy z zz xzk x k x k xy k y k z k z k xz         (23) 

Multiple regression analysis was used to test the function and to estimate 

the parameter values. To create the data set, 448 alternative parameter 

combinations with stochastic full system simulations were used. The 

approximating function fits the data well. The R2 value exceeds 99.2%. All of 

the p-values of the estimated parameters of the approximating function 

obtained values below the 5% significance limit. The highest of these values 

was 0,037697081. Five of the seven p-values were far below 0,001. 

 
Table 2. Regression statistics 

Multiple-R 0,996060268 

R2 0,992136058 

Adjusted R2 0,989761492 

Standard error of estimate 14,5934915 

Number of observations 448 

Table 3. ANOVA 

 fg KvS MKv F 
p-value 

for F 

Regression 7 11849170,53 1692738,647 7948,24949 0 

Residual 441 93919,76743 212,9699942   

Total 448 11943090,3    

Table 4. Parameter estimations 

Parameter Coefficient 
Standard 

error 
t-ratio p-value 

Constant 0    

x 92,23657812 1,637862818 56,31520363 1,6304E-203 

xx -15,12419474 0,379080306 -39,89707323 1,9827E-148 

xy -3,971394886 0,168170542 -23,61528261 2,69321E-80 

yyy 0,162419153 0,012052529 13,4759396 6,60883E-35 

z -10,87340641 2,854717482 -3,80892557 0,000159361 

zz -1,247730986 0,598599346 -2,084417556 0,037697081 

xz 1,272859441 0,561028884 2,268794845 0,023763276 
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After the regression analysis, we make this approximating function: 
2 3

2

92.237 15.124 3.9714 0.16242

10.873 1.2477 1.2729

x x xy y

z z xz

    

  
 

(24) 

In the rest of the analysis, we consider this approximation to be a 

correct representation of the expected present value per hectare,  . 

Hence,   
2 3

2

92.237 15.124 3.9714 0.16242

10.873 1.2477 1.2729

x x xy y

z z xz

    

  
 

(25) 

The first order optimum conditions are: 

2

92.237 30.248 3.9714 1.2729 0

3.9714 0.48726 0

10.873 1.2729 2.4954 0

d
x y z

dx

d
x y

dy

d
x z

dz








    




   



    


            (26) 

 

 

 

 

 

 

Note that one of the equations is not linear. Hence, we can not apply 

the linear equation solution via Cramers rule which was described in 

the earlier section. We will start with some variable eliminations. 

 2 23.9714 0.48726 0 0.12269
d

x y x y
dy

 
      

 
 

(27) 

 10.873 1.2729 2.4954 0 4.3572 0.51010
d

x z z x
dz

 
         

 
 

(28) 

 
2

20.12269
4.3572 0.062584

4.3572 0.51010

x y
z y

z x

 
    

   

 
(29) 
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 

 

2

2

2

2

92.237 30.248 3.9714 1.2729 0

0.12269

4.3572 0.062584

92.237 30.248 0.12269 3.9714

1.2729 4.3572 0.062584 0

d
x y z

dx

x y

z y

y y

y

 
     

 
  

 
    

 

  
 
    
 

 

 

 (30) 

Now, we have a quadratic equation: 
23.6315 3.9714 86.691 0y y     (31) 

We follow the standard procedure to solve it. 
2 1.0936 23.872 0y y    (32) 

2
1.0936 1.0936

23.872
2 2

y
 

    
 

 

(33) 

0.5468 4.9164y     (34) 

So, two different values of y meet the first order optimum 

conditions: 

 1 2, (4.3639, 5.4632)y y    (35) 

Most likely, one of these solutions represents a maximum and one a 

minimum. We want to investigate the second order maximum 

conditions. We have a three-variable quadratic form. 

30.248 3.9714 1.2729

3.9714 0.97452 0

1.2729 0 2.4954

xx xy xz

yx yy yz

zx zy zz

y

  

  

  

 

 



 

 

(36) 

 

Note that we find y in one place in the quadratic form. The second 

order maximum conditions of the three principal minors are: 
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0

0

0

xx

xx xy

yx yy

xx xy xz

yx yy yz

zx zy zz



 

 

  

  

  







 

 

 

 

(37) 

30.248 30.248 0xx       (38) 

Observation a:  

The first maximum condition is always met. 

30.248 3.9714
0

3.9714 0.97452

xx xy

yx yy y

 

 

 
 


 
 

(39) 

   
230.248 3.9714

30.248 0.97452 3.9714 0
3.9714 0.97452

y
y

 
    


 

(40) 

29.477 15.772 0y    (41) 

0.53506y    (42) 

Observation b:  

The second maximum condition is met if 0.53506y   . 

30.248 3.9714 1.2729

3.9714 0.97452 0 0

1.2729 0 2.4954

xx xy xz

yx yy yz

zx zy zz

y

  

  

  

 

  



 

 

(43) 

39.357 71.979 0

xx xy xz

yx yy yz

zx zy zz

y

  

  

  

    

 

(44) 

0.54678y    (45) 

Observation c:  

The third maximum condition is met if y<-0.54678 . So, if we want to 

make sure that we have a maximum, then: 

 0 0.53506
xx xy

yx yy

y
 

 

 
     

 
 

 

(46) 
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 0 0.54678

xx xy xz

yx yy yz

zx zy zz

y

  

  

  

 
 

    
 
 

 

 

(47) 

Since the first order optimum conditions are met by 

 1 2, (4.3639, 5.4632)y y   , we now know that 5.4632y    gives 

a unique maximum. We may mark the maximizing values with stars 

and also calculate the maximizing values of x and z . * 5.4632y   , 

 
2

* *0.12269 3.6619x y  , 

 
2

* *4.3572 0.062584 2.4893z y     . This point gives the globally 

unique maximum:  
* * *( , , ) (3.6619, 5.4632, 2.4893)x y z     (48) 

The optimal values of 
* * *( , , )x y z calculated with more decimals are: 

*x  = 3.661887475, 
*y  = -5.463160161, 

*z  = -2.489293673. If we use 

these values, we may calculate the expected present value (the unit is 

kSEK/hectare). 
* * * *( , , ) 195,6554283 x y z    (49) 

Now, it is time to calculate the optimal parameters of the the limit 

diameter function: 

dlim_0 
*x

 0.366
10

   
(50) 

dlim_p
*y

 0.00546
1000

    
(51) 

dlim_c 
*z

 0.00249
1000

    
(52) 

The optimized, numerically specified version of the limit diameter 

function is: 

  ( ) 0.366 0.00546 ( ( ), ) ( ( ), )

.00249 ( , ) 0.0600 ( , )

iD t P S i t E P S i t

L t i Q t i

  

 
 

(53) 

( )iD t is given in the unit meters, ( ( ), )P S i t has the unit SEK and 

 ( , ) 0,1Q t i  , 0 for the second highest and 1 for the highest timber 

quality, respectively. The estimation and the precise definition of the 

expression for ( , )L t i may be studied in Lohmander et al. (2017). (The 
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details of the particular function ( , )L t i  have no general interest and 

they would complicate this text too much to be included here.). 

The approximation of the objective function is illustrated in Figures 

4., 5. and 6.. It may be noted  that the maximum value is approximately 

195.7 kSEK/ha in all of the figures. Furthermore, the calculated values 

of dlim_0, dlim_p and dlim_c seem to be correct and the expected 

present value function looks strictly concave in the three graphs.  

 
Figure 4. The approximated objective function, the expected present value, as a function 

of two of the adaptive control function parameters, dlim_0 and dlim_p. The other 

parameters in the adaptive control function have been given the optimal values.  It may 

be noted that in case the price variations are not used to determine the optimal harvest 

decisions (dlim_p = 0), then the objective function decreases from approximately 195.7 

kSEK/ to 150.6 kSEK/ha. The reduction is 23%. Obviously, it is very important to 

consider prices when harvest decisions are taken. 
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Figure 5. The approximated objective function, the expected present value, as a function 

of two of the adaptive control function parameters, dlim_0 and dlim_c. The other 

parameters in the adaptive control function have been given the optimal values. In case 

local competition is not used to determine the optimal harvest decisions (dlim_c = 0), 

then the objective function decreases from approximately 195.7 kSEK/ to 188.1 

kSEK/ha. The reduction is 3.9 %. 

 
Figure 6. The approximated objective function, the expected present value, as a function 

of two of the adaptive control function parameters, dlim_c and dlim_p. The other 

parameters in the adaptive control function have been given the optimal values. In case 

prices and local competition are not used to determine the optimal harvest decisions 

(dlim_p = 0 and dlim_c = 0), then the objective function decreases from approximately 

195.7 kSEK/ to 140.6 kSEK/ha. The reduction is 28.2 %. 
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Results 
We have considered forests with large numbers of trees of different sizes 

and species. Prices of different species are stochastic. The total expected 

present value has been maximized. The problem is solved using an adaptive 

control function. The parameters of the control function are optimized via 

the first order optimum conditions of a multivariate polynomial 

approximation of the objective function. Three general results are: 

R1. A tree should be harvested at a smaller diameter if the local competition 

from other trees is high than if the local competition is low. 

R2. A tree should be harvested at a larger diameter if the timber quality is 

high and not low. 

R3. A tree should be harvested at a smaller diameter if the market net price 

for wood is high and not low.  

General observations: 

O1. The definitions and results derived from the general function model are 

relevant as long as the introduced functional forms are relevant. The general 

model may serve as a tool to be used in general, theoretical analysis and 

optimization of forest management. In case alternative functional forms can 

be motivated in particular cases, the analysis should be adjusted in the same 

way.   

O2. The conclusions from the numerical model are dependent on a particular 

growth function, particular price process and cost function assumptions, 

timber quality premium figures and many other detailed model assumptions 

relevant to natural regeneration. With other assumptions, the numerical 

results will in general be different. However, the general tendencies reported 

here, R1 – R3, are expected to be valid. 

Conclusions 
It is possible to find optimal solutions even if the management problems 

have large numbers of integer variables, nonlinearities and stochastic 

processes. The introduced and tested methods are quite general and can be 

applied to many other kinds of problems in other sectors. The present 

approach makes it possible to determine optimal adaptive control rules and 

to estimate the economic values of mixed forests with trees in many size 

classes and of many species. With traditional forest management planning 

methods, the market price variations, locally relevant competition 

information, multi-species management options and variations in timber 

quality are not considered in the optimal way. It is important to make market 

adapted harvest decisions. If the stochastic price variations are not 

considered when the harvest decisions are taken, the expected present value 
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is reduced by 23%. As a result, the economic values of optimally managed 

forests are underestimated via traditional calculation methods.  

Discussion 
In the introduction, the central question of this study was presented: “What 

is the best way to sequentially update the information and adaptively 

determine the management decisions?” Now, we have seen that it is possible 

to obtain a significant improvement of the expected present value, if the 

timber market prices and tree sizes are sequentially monitored and harvest 

decisions are adaptively optimized via the derived optimal control function. 

The optimal harvest decisions are functions of the observed market prices 

and the tree sizes. It is quite clear that the earlier studies by Hessenmöller et 

al. (2018) and by Schütz (2006) suggested forest management decisions that 

were insensitive to market price changes. In the example presented in this 

study, the expected present value is reduced by 23% if the stochastic price 

variations are not considered when the harvest decisions are taken. 

Obviously, the earlier methods underestimated the economic results and 

gave less rational management guidelines. 

In order to widen the perspective on the presented topic, optimal 

continuous cover forestry, we should consider model assumptions and 

limitations. First, as always, we have to be aware that every model is just a 

model. No model exists that covers every detail of real problems. Mostly, in 

applied operations research, the choice has been to represent real world 

problems in ways that suit some standard optimization methods, or, in some 

way that makes it possible to use simulation. In the first case, with standard 

optimization methods, it has sometimes been possible to derive solutions 

that can be proved to be optimal, perhaps even globally optimal. However, 

the transformations of a real problem to some format needed by some 

optimization method may have made it questionable if the derived solution 

really is the optimal solution to the original real problem. 

In the second case, when the simulation approach is used, the problem 

structure and many details of the original problem may be considered and 

the dynamic model behavior may resemble the real world very well. 

However, nothing has really been optimized; just simulated. In the present 

study, a methodology has been suggested and tested that makes it possible 

to really maintain most details of the structure of the real problem and still 

obtain an optimized solution. This may be considered a general 

improvement obtained via this approach. 

Some of the model properties may, of course, be questioned such as the 

use of expected present value as the objective function. Expected value 

analysis is relevant under the assumption of risk neutrality. In applications, 
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other attitudes towards risk may prevail. However, with perfectly diversified 

portfolios, risk neutrality can be considered relevant, even if the investors 

are not risk neutral. Present value maximization can be shown to be optimal 

if the capital market is perfect, in the sense that it is possible to borrow and 

save arbitrarily selected amounts of money with an exogenously determined 

rate of interest. Clearly, this assumption is seldom fully met in real 

applications. Nevertheless, present value maximization is standard in almost 

all economic production theory. 

There are many assumptions concerning functional forms and parameter 

values in the forest growth equations, timber price and harvest cost equations 

and stochastic market price equations that may be discussed and questioned. 

The best available empirical and statistical methods have been used to derive 

these equations. Unfortunately, it is impossible to present and discuss all of 

these many details within the framework of one article.  

Two suggestions for future research are the following:  

- The method should be used in combination with new empirical 

forest and market data from different regions. It is possible to derive 

optimal forest management policies to be used for alternative 

combinations of tree species in different parts of the world. 

- Another ambition of this paper has been to highlight the 

methodological approach that can also be useful in other kinds of 

applied problems, and not only in forestry. Hopefully, the reader will 

consider new applications of the general methodology in the near 

future. 
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