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ABSTRACT ARTICLE INFO

The explicitly restarted Arnoldi method (ERAM) can be
used to find some eigenvalues of large and sparse matri-
ces. However, it has been shown that even this method
may fail to converge. In this paper, we present two new
methods to accelerate the convergence of ERAM algo-
rithm. In these methods, we apply two strategies for
the updated initial vector in each restart cycles. The
implementation of the methods have been tested by nu-
merical examples. The results show that we can obtain
a good acceleration of the convergence compared to orig-
inal ERAM.
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1 Introduction

Eigenvalues and eigenvectors are highly important in applications. They arise in many
areas of mathematics, physics, chemistry and engineering. They arise in analytic geometry
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in connection with finding the particular coordinate system in which a conic in the plane
or a quadric surface in three-dimensional space finds its simplest canonical expression. In
physics and engineering they arise in connection with finding, for example, the critical
frequencies of a vibrating string, suspension bridge or rotating shaft, the critical load of
a supporting column or the energy levels of a system in quantum mechanics.
Several methods have been proposed to solve the eigenvalue problems for large-scale ma-
trices. One of the important of these methods is Arnoldi process. This method, was
proposed by Arnoldi in 1951[2]. Many algorithms are based on Arnoldi process. In fact,
Arnoldi method is an orthogonal projection method on to Krylov subspace[10]. In this
method, the problem of finding some eigenpairs of a matrix with large-scale dimension
n × n converts to finding some eigenpairs of a matrix with smaller dimension m × m
(m << n). However, this approximation may not be very effective. In these cases, we can
apply different techniques to improve approximation solutions, such as restarted Arnoldi
techniques. In 1980, Saad proposed a restarting of this method, which be called explicitly
restarted Arnoldi method (ERAM)[10]. This technique restarts the Arnoldi projection
with a better subspace. This new subspace differs by the last one by its initial vector
which is formed by an explicit combination of the computed Ritz elements. The restart-
ing may not be easy, because one new starting vector must be defined as an explicit linear
combination of desired Ritz vectors. If this vector is not carefully chosen, it can lead to
a very poor selection for the new starting vector, thus the cost will be increased.
Another important technique for restarting and improving the Arnoldi method is im-
plicitly restarted Arnoldi method (IRAM). Sorensen in [14] has suggested this efficient
technique.
In addition, the several hybrid methods were proposed to accelerate the convergence
and/or to improve the accuracy of the ERAM or IRAM. These methods combine several
different methods by parameterized copies of the same method to solve these problems
efficiently[1, 4, 5, 6, 8, 9, 11, 12, 13].
The present paper considers two new version of ERAM, for computation of a few extreme
eigenvalues and associated eigenvectors of a large sparse matrix. In fact, in these methods
we change the subspace by changing the initial vector in each restart cycles. Therefore,
this paper organized as follows:
In section2, we review the problem and some related notations. The section 3 presents
the Arnoldi method and explicitly restarted Arnoldi method (ERAM). In section 4, we
describe two new invariants of ERAM and their algorithms. These algorithms are eval-
uated in section 5 by a set of matrices, and the results are compared with the original
ERAM.

2 General Purpose and Notations

Let A be a large complex non-Hermitian matrix of dimension n× n and K be a subspace
of Cn. An orthogonal projection method allows to approximate an eigenpair (λi, ui) of A



93 S. A. Shahzadeh/ JAC 51 issue 1, June 2019, PP. 91 - 105

by a Ritz-elements pair (λ
(m)
i ∈ C, u(m)

i ∈ K). If the subspace K = Km,v where

K = Km,v = span{v, Av, . . . , Am−1v}

and v is a vector, then the orthogonal projection method is called Krylov subspace method.
The subspace Km,v is called Krylov subspace.
This method approximates k eigenpairs of A by a matrix of order m obtained by an
orthogonal projection onto an m-dimensional subspace Km,v with k ≤ m << n.
Let Vm be the matrix whose columns v1, . . . , vm are an orthogonal basis of Km,v. The

problem is to find λ
(m)
i ∈ C and y

(m)
i ∈ Cm such that

(Hm − λ(m)
i I)y

(m)
i = 0 (1)

where the matrix Hm of dimension m×m, is defined by Hm = V H
m AVm. Note that V H

m is

the transpose conjugate of Vm and u
(m)
i = Vmy

(m)
i . Therefore, some eigenvalues of A can

be approximated by the eigenvalues of the matrix Hm. These eigenvalues can be found
by building an orthogonal basis of Km,v and by solving equation (1). There are different
ways of building such basis and the most used process is the Arnoldi’s orthogonalization.

3 Arnoldi method

Let the initial guess v1 be normalized to v/||v||2. The well-known Arnoldi process gen-
erates an orthogonal basis v1, . . . , vm of the Krylov subspace Km,v by using the Gram-
Schmidt orthogonalization process. The basic Arnoldi algorithm is as follows[10]:

Algorithm 1. The Arnoldi algorithm

Input: A ∈ Rn×n, v ∈ Rn×1, m ∈ N (m << n)
Output: V ∈ Rn×(m+1), H ∈ Rm+1×m

1. v1 = v
||v|| ; z = Av1; α1 = v∗1z;

2. r1 = z − α1v1; V1 = [v1]; H1 = [α1];

3. for j = 1, . . . m-1 do

• βj = ||rj||; vj+1 = rj/βj;

• Vj+1 = [Vj, vj+1]; Ĥj =

[
Hj

βje
T
j

]
;

• z = Avj;

• h = V ∗j+1z; rj+1 = z − Vj+1h;

• Hj+1 = [Ĥj, h];
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end for

The above algorithm may break down if rj = 0 for some j. This may happen if the
minimal polynomial of v is of degree j. In this case, the subspace Km,v is invariant under
A and the Ritz elements are exact [10]. This method was introduced by Arnoldi[2] in
1951 to reduce a matrix to a Hessenberg form. The reduced matrix Hm is a Hessenberg
representation of A in the orthonormal basis Vm of Km,v when m = n. Arnoldi hinted that
the process could give good approximations to some eigenvalues of A if stopped before
completion [1], i.e., when m < n. Today, it is the most common used method. The
matrices Hm and Vm issued from the algorithm 1 and the matrix A satisfy the equation:

AVm = VmHm + fme
H
m

where fm = hm+1,mvm+1 and em is the mth vector of the canonical basis of Cm. Once
the choice of the orthogonalization process is fixed, the k desired Ritz values (with

largest/smallest real part or largest/smallest magnitude) Λm = (λ
(m)
1 , . . . , λ

(m)
k ) and the

corresponding Ritz vectors Um = (u
(m)
1 , . . . , u

(m)
k ) can be calculated as follows[6]:

Algorithm 2. The basic Arnoldi algorithm

Input: A ∈ Rn×n, k ∈ N (number of desired eigenpairs), tol > 0

Output: Λm = (λ
(m)
1 , . . . , λ

(m)
k ), Um = (u

(m)
1 , . . . , u

(m)
k ), rk

1. Apply Algorithm 1 to generate (Vm, Hm, fm)

2. Compute the eigenpairs of Hm and select the k desired ones.

3. Compute the k associated Ritz vectors u
(m)
i = Vmy

(m)
i .

4. Compute rk = (ρ1, . . . , ρk) with ρi = ||(A− λ(m)
i I)u

(m)
i ||2.

If the accuracy of the computed Ritz elements is not good enough, the projection can be
restarted again onto a new Km,v.

3.1 Restarted Arnoldi method with a larger subspace

The new Km,v can be defined with the same initial vector v and a larger m value. It is
clear that, according to the hypothesis that v does not belong to any desired invariant
subspace, m has to be as large as possible. An important, well-known, shortcoming of
this version of the Arnoldi method is its alarmingly large storage space requirement and
computation cost for large values of m.
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3.2 Explicitly Restarted Arnoldi Method

In this version of the method, the new subspace can be defined with the same subspace
size and a new initial vector. Therefore, if the convergence does not occur, then the start-
ing vector is updated (using appropriate methods on the computed Ritz vectors), and
the process of Algorithm 1 is restarted until the accuracy of the approximated solution
is satisfactory. This update is designed to force the vector to be in the desired invariant
subspace. This goal can be reached by some polynomial restarting strategies proposed
in [10]. This method is called the explicitly restarted Arnoldi method(ERAM) and its
algorithm is given below[10]:

Algorithm 3. Explicitly Restarted Arnoldi Method (ERAM)

Input: A ∈ Rn×n, k ∈ N (number of desired eigenpairs), tol > 0

Output: Λm = (λ
(m)
1 , . . . , λ

(m)
k ), Um = (u

(m)
1 , . . . , u

(m)
k ), rk

1. Choose a parameter m ∈ N, (m << n) and an initial vector v ∈ Rn×1

2. Apply Algorithm 2 to generate (Λm, Um, rk).

3. If max(ρ1, . . . , ρk) > tol, then use Λm and Um to update the starting vector v and
go to step 2.

4 Some new variants of ERAM

The restarting strategy is a critical part of explicitly restarted Arnoldi algorithm. In
this section, we propose two new methods for the restarting technique to improve the
convergence of ERAM.

4.1 Version 1

In this version, we use the vector Av instead of v in the start of the ERAM algorithm.
We call this algorithm by V1-ERAM. The process of V1-ERAM is as follows:

Algorithm 4. Version 1 of ERAM (V1-ERAM)

Input: A ∈ Rn×n, k ∈ N (number of desired eigenpairs), tol > 0

Output: Λm = (λ
(m)
1 , . . . , λ

(m)
k ), Um = (u

(m)
1 , . . . , u

(m)
k ), rk

1. Choose a parameter m ∈ N, (m << n) and an initial vector v ∈ Rn×1
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2. Set v := Av.

3. Apply Algorithm 2 to generate (Λm, Um, rk).

4. If max(ρ1, . . . , ρk) > tol, then use Λm and Um to update the starting vector v and
go to step 3.

4.2 Version 2

In this version of ERAM, we use vector Av instead of v in the start step and all of
restart steps of ERAM algorithm. This strategy is equivalent to using the subspace
Knewm,v = span{Av,A2v, . . . , Am−1v} instead of Km,v in the Arnoldi process. Note that, the
new subspace Knewm,v is introduced by deleting the vector v from the subspace Km,v. The
algorithm of this version of ERAM is as follows:

Algorithm 5. Version 2 of ERAM (V2-ERAM)

Input: A ∈ Rn×n, k ∈ N (number of desired eigenpairs), tol > 0

Output: Λm = (λ
(m)
1 , . . . , λ

(m)
k ), Um = (u

(m)
1 , . . . , u

(m)
k ), rk

1. Choose a parameter m ∈ N, (m << n) and an initial vector v ∈ Rn×1

2. Set m := m− 1.

3. Set v := Av.

4. Apply Algorithm 2 to generate (Λm, Um, rk).

5. If max(ρ1, . . . , ρk) > tol, then use Λm and Um to update the starting vector v and
go to step 3.

5 Numerical examples

Algorithms 4, 5 and ERAM algorithm (Algorithm 3) are tested for various matrices
by MATLAB software. In this section, we report some of these numerical examples to
illustrate the efficiency and reliability of these new versions of ERAM algorithm.
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Remark. In step 3 of the ERAM algorithm (algorithm 3), step 4 of algorithm 4 and in
step 5 of the algorithm 5, we compute the restarting vector with a linear combination of
k-Ritz vectors:

v(j) =
k∑
i=1

αiui(j)

where ui(j) denotes ith Ritz vector computed at the iteration j. There are several ways
to choose the scalar values αi. In this paper, we use the method proposed in[7]. For this
reason, we set

v =
k∑
i=1

li(λ)ui

where the coefficient li(λ) are defined by

li(λ) =
k∏

j=1, j 6=i

(
λ− λj
λi − λj

)
with

λ =
λmin + λ̄− (λmin/n)

2
, λ̄ =

∑k
j=1 λj

k

and λmin is the eigenvalue with the smallest residual norm.
Now, we choose the vector v as follows:

v =
k∑
i=1

li(λ)ui,

and use this vector for Step 3 in Algorithm 2, Step 4 in Algorithm 4 and Step 5 in
Algorithm 5.
All the numerical experiments presented in this section were carried out on an Intel(R)
Core(TM) i7-2630QM CPU @ 2.00GHz using MATLAB software. In all examples we
used the initial vector v = (1, 1, . . . , 1)T . Moreover, if the relative maximum residual

norm rj = max(ρ1, ρ2, . . . , ρk) < tol where ρi = ||(A−λi)ui||
||A||F

with tol as prescribed tol-

erance, then (λi, ui) is accepted to have converged. Every other stopping criterion can
replace the requirement to find k eigenvalues. From now on, we denote by iter the number
of restarts and error the maximum of above relative residual norms. Also ∗ represents
that in the method, convergence has not been reached. The used matrices are taken from
the matrix market[3] and presented in Table 1. In this Table, the number of nonzero
elements of a matrix is denoted by nnz.

Table 1. The matrix market used matrices
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Matrix Matrix size nnz
bcsstk29 13992 619488
bcsstm13 2003 21181
bfw782b 782 5982
bp1600 822 4841
pde2961 2961 14585
rdb2048l 2048 12032
tols4000 4000 8784
utm1700a 1700 21313
west2021 2021 7310

The Table 2 presents a comparison between the results obtained by ERAM, V1-ERAM
and V2-ERAM algorithms on some large-scale sparse matrices, in terms of the number of
restarting and the error. In these examples, we set tol = 10−10. We notice from this Table
that in terms of the number of the restarts, nv1-ERAM and nv2-ERAM are considerably
more efficient than ERAM. We show graphically in Figs. 1-11 the residual norm as a func-
tion of iteration number to reach convergence using ERAM, V1-ERAM and V2-ERAM.

Table 2. Comparison of ERAM (Algorithm 3), V1-ERAM (Algorithm 4) and V2-ERAM

(Algorithm5)

ERAM V1-ERAM V2-ERAM
Matrix m k error iter error iter error iter
bcsstk29 20 3 8.38e-11 119 8.44e-11 118 9.16e-11 83
bcsstm13 10 3 2.00e-11 21 2.71e-11 19 7.23e-11 17
bfw782b 20 3 1.44e-05 200∗ 8.02e-12 164 1.54e-05 200∗

bp1600 20 3 1.46e-11 46 3.77e-11 25 3.16e-11 14
10 1 2.20e-11 200∗ 8.99e-11 115 3.31e-11 146

pde2961 20 3 7.79e-11 46 5.59e-11 41 9.82e-11 28
rdb2048l 20 3 7.39e-04 200∗ 2.81e-08 200∗ 7.94e-11 51
tols4000 20 1 9.89e-11 39 6.90e-11 15 7.39e-11 17
utm1700a 20 2 4.04e-10 200∗ 8.73e-11 96 8.78e-11 134
west2021 20 3 5.34e-11 7 6.07e-12 2 9.86e-11 5

20 5 2.09e-12 8 1.70e-11 4 1.17e-11 4
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Figure 1: The residual norm for matrix bcsstk29 with m = 20 andp k = 3
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Figure 2: The residual norm for matrix bcsstm13 with m = 10 and k = 3
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Figure 3: The residual norm for matrix bfw782b with m = 20 and k = 3
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Figure 4: The residual norm for matrix bp1600 with m = 20 and k = 3
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Figure 5: The residual norm for matrix bp1600 with m = 10 and k = 1
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Figure 6: The residual norm for matrix pde2961 with m = 20 and k = 3
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Figure 7: The residual norm for matrix rdb2048l with m = 20 and k = 3
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Figure 8: The residual norm for matrix tols4000 with m = 20 and k = 1
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Figure 9: The residual norm for matrix utm1700a with m = 20 and k = 2
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Figure 10: The residual norm for matrix west2021 with m = 20 and k = 3
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Figure 11: The residual norm for matrix west2021 with m = 20 and k = 5

6 Conclusion

In this paper, we proposed two new strategies for choosing the initial vector in the ex-
plicitly restated Arnoldi method for computing eigenvalues of large-scale sparse matrices.
Numerical examples indicate that our new methods presented here often perform much
better than the original emplicitly restarting Arnoldi method (ERAM). Indeed, we ex-
pected the resulting algorithms are more powerful.
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