تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,111,067 |
تعداد دریافت فایل اصل مقاله | 97,214,661 |
Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units | ||
Journal of Chemical and Petroleum Engineering | ||
مقاله 6، دوره 53، شماره 1، شهریور 2019، صفحه 73-80 اصل مقاله (436.49 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2019.273049.1261 | ||
نویسنده | ||
Hossein Mahmoodi Darian* | ||
School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran | ||
چکیده | ||
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grids. The framework supports both linear and nonlinear finite difference stencils. Furthermore, the arithmetic operators and math functions are overloaded to ease the array-based computations on GPUs. The reduction algorithms are also efficiently included in the framework. The discharge process of a lead-acid battery cell is simulated using the facilities provided by the framework. The governing equations are unsteady and include two nonlinear diffusion equations for solid (electrode) and liquid (electrolyte) potentials and three transient equations for acid concentration, porosity and the state of charge. The equations are discretized using the finite volume method. The framework allows the user to develop the numerical solver with a few efforts. The numerical simulation results are reported for different relations for open circuit potential and the electrolyte diffusion coefficient | ||
کلیدواژهها | ||
CUDA؛ Discharge Process؛ Finite Difference Method؛ Finite Volume Method؛ Graphics Processing Units؛ Lead-Acid Battery | ||
مراجع | ||
[1] Veldhuizen T. Expression templates. C++ Report. 1995 Jun;7(5):26-31.
[2] Iglberger K, Hager G, Treibig J, Rüde U. Expression templates revisited: a performance analysis of current methodologies. SIAM Journal on Scientific Computing. 2012 Mar 8;34(2):C42-69.
[3] Härdtlein J, Linke A, Pflaum C. Fast expression templates. In International Conference on Computational Science 2005 May 22 (pp. 1055-1063). Springer, Berlin, Heidelberg.
[4] Esfahanian V, Ansari AB, Torabi F. Simulation of lead-acid battery using model order reduction. Journal of Power Sources. 2015 Apr 1;279:294-305.
[5] Gu H, Nguyen TV, White RE. A mathematical model of a lead‐acid cell discharge, rest, and charge. Journal of The Electrochemical Society. 1987 Dec 1;134(12):2953-60.
[6] Gu WB, Wang CY, Liaw BY. numerical modeling of coupled electrochemical and transport processes in lead‐acid batteries. Journal of The Electrochemical Society. 1997 Jun 1;144(6):2053-61.
[7] Bode H. Lead-acid batteries. United States; 1977.
[8] Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Pearson education; 2007. | ||
آمار تعداد مشاهده مقاله: 437 تعداد دریافت فایل اصل مقاله: 417 |