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Abstract 

Non-parametric estimation of a survival function from left truncated data subject to 
right censoring has been extensively studied in the literature. It is commonly assumed in 
such studies that the lifetime variables are a sample of independent and identically 
distributed random variables from the target population. This assumption is often prone 
to failure in practical studies. For instance, when recruited subjects are all from the same 
institute or the same geographical region. To the best of our knowledge, there is no 
study in the past literature addressing such situations. In this article, we study large and 
small sample behavior of Tsai-Jewell-Wang estimator under positive and negative 
association. 
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Introduction 
Failure time data typically comprise an initiating 

event, say the onset of a disease, and a terminating 
event, and say death due to the disease. The time 
between these two events is essentially what one hopes 
to observe in a follow-up study. Two commonly 
encountered issues that complicate the analysis of 
failure time data are left truncation and right censoring. 
The former occurs when the recruited subjects to the 
study have already experienced the initiating events, 
while the latter happens when the follow-up on some 
subjects is lost or the event time is not observed before 
the end of the study. Failure time data collected from 
follow-up studies on prevalent subjects, i.e. patients 
who have experienced the initiating event before being 
recruited to the study, are left truncated and can be 

subject to right censoring.  
The classical setting in survival analysis, i.e. right 

censored failure time data, has been the subject of an 
intensive research over the past almost five decades. 
Properties of the estimators of the survivor and the 
cumulative hazard function, Kaplan-Meier and Nelson-
Aalen estimator respectively, have been extensively 
studied under this classical setting. For example, 
asymptotic properties like uniform consistency and 
weak convergence were obtained by Gill [6, 8], Stute 
and Wang [20] and Stute [19]. Zhou [28] studied the 
asymptotic behavior of an estimator of distribution 
function in independent observation under left 
truncation and right censoring. 

There are some results available for the case that 
these observations exhibit some kind of dependence. 
For instance, for positively associated (PA) r.v.’s, Bagai 
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and Prakasa Rao [2] discussed the strong consistency 
and asymptotic normality of the empirical survival 
function and Yu [27] obtained weak convergence of the 
empirical process. Large sample properties of the 
product-limit estimator for the left truncated data in 𝛼𝛼-
mixing observations were studied by Sun and Zhou 
[21]. Wang et al. [25] and Lee and Tsai [11] 
investigated the estimating of survival function when 
censoring variables are dependent. Wang [24] proved 
some properties of marginal survival functions for 
dependent censored data under an assumed 
Archimedean copula. Li and Patilea [12] proposed a 
dimension reduction approach for conditional product-
limit estimators. Shen and Wang [18] investigated 
asymptotic properties of the product-limit estimator and 
Nelson-Allen estimator for censored negatively 
superadditive dependent data. 

PA data can occur in many applications, like, 
systems reliability and statistical mechanics (see, for 
instance, Newman [13]). Brindley and Thompson [3] 
investigated positive dependence in Harris’ multivariate 
extension of increasing failure rate. The concept of 
negatively associated (NA) r.v.’s was introduced by 
Alam and Saxena [1]. Joag-Dev and Proschan [10] 
studied NA property, carefully and introduced some 
applications of NA r.v.’s. Also, the asymptotic 
normality of the random fields under PA (NA) case has 
been established by Roussas [15]. Moreover, Ying and 
Wei [26] studied the survival function estimator for 
dependent lifetime. 

Our focus in this paper is on the study of asymptotic 
properties of TJW product-limit estimator (introduced 
by Tsai et al., [22]) for right censored and left truncated 
PA (NA) failure times (see Definition 1). Gijbels and 
Wang [5] obtained a strong iid representation for 
survival function and a kernel estimator of density 
function under left truncation and right censoring. 
Although, our line of attack is similar to that of Cai and 
Roussas [4], who considered the same problem,  only 
under right censoring, many steps in the paper should be 
modified or adjusted to accurate for left truncation in 
addition to right censoring. 

The layout of this paper is as follows: Section 2 
includes preliminary materials and methods required to 
establish the limit theorems. In Section 3, the strong 
uniform consistency of TJW product-limit estimator is 
discussed, under either PA or NA and a number of 
simulation studies are carried out in this section. The 
proofs of main theorems are documented in the last 
subsection of Section 3. Section 4 consists of our 
discussion on the results of this paper. 

 

Materials and Methods 
Let{ } ,  1NX N ≥ be a sequence of lifetime variables 

with a common continuous marginal distribution 
function (df) F, which may not be mutually 
independent. Suppose that{ } ,  1NY N ≥  is a sequence of 

iid r.v.’s with continuous df H and also is independent 
of iX ’s. Let the r.v.’s iX  be right censored by the r.v.’s

iY , so that one observes only pairs ( ),i iZ δ such that  

( )           i i i i i iZ X Y and I X Yδ= ∧ = ≤ , 

where ∧ and ( )I ⋅  stand for minimum and 
indicator function of the event specified in the 
parenthesis, respectively. Let { } ,  1NT N ≥  be a 

sequence of iid r.v.’s with continuous df G . The major 

concern is drawing nonparametric inference about F , 
based on the right censored and left truncated 
observations ( ), , ,  1, , i i iZ T i Nδ = … , where sample size

N  is fixed but unknown. In the left truncated model, 

( ),i iZ T  is observed only when i iZ T≥  for

   1, ,  ,i n= …  where n N< . In fact, we observe a sub-
sequence of original data, but we show both sequences 
by same letters. 

Let ( )1 1         0P T Zγ ≡ ≤ >  and without loss of generality

iX , iT  and iY  are non-negative r.v.’s and they are 
independent of each other. Suppose that the cumulative 

hazard function of F is 1

0

( ) (1 ( )) ( )
x

x F u dF u−Λ = −∫ , 

we define  
1

1 1 1 1 1 1( ) ( | ) ( ) (1 ( )),C x P T x Z T Z P T x Y F xγ −= ≤ ≤ ≤ = ≤ ≤ × − 
(1) 

and  
 

1
1 1 1 1 1 1

0

( ) ( , 1| ) ( ) ( ).
x

W x P Z x T Z P T u Y dF uδ γ −= ≤ = ≤ = ≤ ≤∫
                   (2) 

It can be shown that  

1

0

( )( ) .
( )

x dW ux
C u

Λ = ∫  

Let ( )nC x  and 1 ( )nW x  be the empirical estimators 

of   ( )C x   and 1( )F x , respectively, i.e.  
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( )nC x = 1

1
( )

n

i i
i

n I T x Z−

=

≤ ≤∑                            (3) 

and  

1 ( )nW x = 1

1
( , 1)

n

i i
i

n I Z x δ−

=

≤ =∑ ,                   (4) 

where 1 1 1( ) ( , 1)F x P Z x δ= ≤ = is a sub-
distribution of uncensored observations. Then, TJW 

product-limit estimator n̂F  of F , which is proposed by 
Tsai et al. [22] is given by  

( )

( )

11 (1 ) ;
ˆ ( )( ) .

1 ;

i

i

n
Z x n in

n

x Z
nC ZF x

x Z

δ

<

 − − <= 
 ≥

∏              (5) 

The estimator of  ( )xΛ  which is comparable with 
Nelson-Aalen estimator of the cumulative hazard 
function for right censored data is  

1
0

1

( ) ( ,  1)ˆ ( ) .
( ) ( )

nx n i i
n

in n i

dW u I Z xx
C u nC Z

δ
=

≤ =
Λ = =∑∫  (6) 

The definition of the underlying dependence 
considered here is as follows.  

Definition 1 A finite family of random variables 
{ ,1 }iX i n≤ ≤  is said to be PA if, for every 
coordinate-wise non-decreasing functions

2
1 2 1, : , [ ( ,1 )]n

if f R R E f X i n→ ≤ ≤ < ∞  and
2

2[ ( ,1 )]iE f X i n≤ ≤ < ∞ , we have  

1 2( ( ,1 ), ( ,1 )) 0.i jCov f X i n f X j n≤ ≤ ≤ ≤ ≥  

The above r.v.’s are said to be NA, if for every non-
empty proper subset A of {1, 2, , }n  and for every 
coordinate-wise non-decreasing functions,

( ) ( )
1 2: , : ,

CCard A Card Af R R f R R→ →
2

1[ ( , )]iE f X i A∈ < ∞  and
2

2[ ( , )]c
iE f X i A∈ < ∞ , we have  

1 2( ( , ), ( , )) 0.c
i jCov f X i A f X j A∈ ∈ ≤  

An infinite family of random variables is PA (NA), if 
every finite subfamily is PA (NA).  

Now, we introduce some general assumptions to be 
used throughout the article. 

(A1). { , 1}nX n ≥  is a stationary sequence of PA 
(NA) r.v.’s with marginal df F, having bounded density 
and finite second moment. 

(A2). The censoring sequence { , 1}nY n ≥  is iid 

r.v.’s with bounded density and independent of
{ , 1}nX n ≥ . The truncated sequence { , 1}nT n ≥  is 

also iid r.v.’s and independent of { , 1}nX n ≥  and

{ , 1}.nY n ≥  

(A3). 
1

2 1/3

2 1
| ( , ) |

j

i j
j i

j Cov X X
−∞

−

= =

< ∞∑ ∑ . 

(A4).
1
3

1
2
| ( , ) | ( )

n

i
i

Cov X X O nα

=

=∑ , for some

0 1α< ≤ . 

(A5). 1/3 ( 2)/2
1

1
| ( , ) | ( )r

j
j n

Cov X X O n
∞

− −

= +

=∑ , for 

some 2r > . 
For every df L denotes the left and right endpoints of 

its support by ; ( ) 0}La inf x L x= { >  and

{ ; ( ) 1}L sup x L xτ = < , respectively. For the dfs F , 

G and H , the values Fτ , ,Gτ Hτ  (possibly infinite),

Fa , Ga  and Ha  (non-negative) are defined by  

{ ; ( ) 1} { ; ( ) 0}F Fsup x F x and a inf x F xτ = < = > , 

and Gτ , Hτ , Ga  and Ha  are defined in the same 
way. 

We can find df of Z  by ( ) 1 ( ) ( )W F H⋅ = − ⋅ ⋅ . Then 
according to Stute and Wang [20], left and right 
endpoints of df W are  

.W F H W F Hand a a aτ τ τ= ∧ = ∧  (7) 
Then under the current model, we assume that 

G Wa a≤  and G Wτ τ≤ .  
 

Results 
In this section, some theorems including strong 

uniform consistency of n̂F  and ˆ
nΛ  with rates of 

convergence are introduced. In order to prove all limit 
theorems, we need the following proposition.  

Proposition 1 Suppose that (A1) and (A2) hold. Then 
(i) If { , 1}iX i ≥  has PA property and (A3) is 

satisfied, it holds  
. .sup ( ) ( )[1 ( )] 0    ,

W W

a s
n

a x
C x G x W x as n

τ≤ ≤
− − → →∞

 (8) 
and  
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. .
1 1sup ( ) ( ) 0       .

W W

a s
n

a x
W x F x as n

τ≤ ≤
− → →∞

 (9) 
(ii) If { , 1}nX n ≥  is NA, it follows that (8) and (9) 

hold true.  
Proof. See the Appendix.                   
The proof of the following theorem has been omitted 

due to the similarity to the proof of Theorem 1.1 of Cai 
and Roussas [4]. The proof is yielded by using Lemma 
2 in Gill [7] and an application of Proposition 1.  

Theorem 1 Suppose that (A1) and (A2) hold. Then, 
for all W Wa τ τ< < , we have 

 (i) If { , 1}iX i ≥  is PA and (A3) is satisfied, then  
. .ˆsup ( ) ( ) 0             .

W W

a s
n

a x
x x as n

τ≤ ≤
Λ −Λ → →∞  (10) 

(ii) If { , 1}iX i ≥  is NA, then (10) holds.  
The uniform strong consistency of TJW product-limit 

estimator is proved in the following theorem.  
Theorem 2 Suppose that (A1), (A2) and assumptions 

either in part (i) or part (ii) of Theorem  hold. Then  
. .ˆsup ( ) ( ) 0    ,

W W

a s
n

a x
F x F x as n

τ≤ ≤
− → →∞ (11) 

and  

1: :

. .ˆsup ( ) ( ) 0    ,
n n n

a s
n

Z x Z
F x F x as n

≤ ≤
− → →∞ (12) 

where  

: 1: 11
max min .n n i n ii ni n

Z Z and Z Z
≤ ≤≤ ≤

= =  

Proof. See the Appendix.                 
Theorem 3 Suppose that (A1), (A2) and (A5) hold. 

Then for every W Wa a τ τ< < < , we have  

ˆ ( ) ( ) ( ) . .,n
a x
sup x x O n a sθ

τ

−

≤ ≤
Λ −Λ =  (13) 

Where ( 2)
(2 2 )0 ,r

r δθ −
+ +< <  for any 0δ >  and r  

is given by (A5).  
Proof. For PA case, (A5) implies (26). Then by 

applying Lemma  (i) and (ii), Remark 1.3 and Corollary 
2.1 in Roussas [14], (13) holds true for both PA and NA 
cases (repeat the same way of the proof of Theorem 1.3 
in Cai and Roussas, [4]).                      

Due to the similarity of the proof of the following 
theorem to that of Theorem 1.4 in Cai and Roussas [4], 
we omit it.  

Theorem 4 Suppose that (A1), (A2) and (A4) hold. 
Then for every W Wa a τ τ< < < , we have  

ˆ ( ) ( ) ( ) . .n
a x
sup F x F x O n a sθ

τ

−

≤ ≤
− = , (14) 

where θ  is defined in Theorem 3.  

Simulation study 
In the first subsection, a Monte Carlo simulation has 

been carried out to check the goodness of convergence 
rate of the estimators. For this purpose, MATLAB 
software version R2012a is used. We generate PA (NA) 
data and calculate ˆ ( )nF ⋅ , ˆ ( )nΛ ⋅ and ( ) ( )ˆ p

n ⋅Λ , then, the 
convergence rate for these estimators are obtained by 
iterating this process. 

Using Ghosh [9] method, to generate NA data, we 
could use n-variate normal distribution with 

1 2' ( , , , )nµ µ µ µ= …  and the following covariance 
matrix:  

 
2 1

2

2

1 2

1
11 .

1
1

n

n

n n

ρ ρ ρ
ρ ρ ρ

ρ
ρ ρ ρ

−

−

− −

 − − … −
 
− − … − Σ =

 −
  − − − … 

   
 (20) 

We have a vector with NA property when 0ρ > . In 
order to generate PA data, it is enough to follow the 
same structure which used in NA case, except removing 
the negative sign from every non-diagonal elements of 
Σ  in (20). 

Accordingly, a vector with PA (NA) property will be 
obtained. We set 0.2, 12;iρ µ= = 10, ,1000i∀ = …
and the censored and truncation samples are generated 
from (13,1)N  and (11,1)N  , respectively. In addition, 
ˆ ( )nF ⋅ and ˆ ( )nΛ ⋅  are calculated. Then, (10) and (11) are 

obtained as a function of n in NA (PA) case and we 

show them by ˆ ( )
n

d n
Λ

 and ˆ ( )
nFd n , respectively. 

Moreover, we calculate the following function for 

checking almost sure convergence of ( ) ( )ˆ p
n ⋅Λ .   

( )
( )

ˆ
ˆ( ) sup | ( ) ( ) | .p

n
W W

p
n

a x
d n x x

τ
Λ

≤ ≤
= Λ −Λ   (21) 

For smoothing the results, this process is iterated 
1000 times, independently. So, the average value of 

ˆ ˆ( ), ( )
n nF nd d n

Λ
 and ( )ˆ ( )p

n
d n
Λ

 are indicated in 

Figure 1 which shows the plot of ˆ ( )
nFd n  (Graph 1), 

ˆ ( )
n

d n
Λ

 and ( )ˆ ( )p
n

d n
Λ

 (Graph 3) versus n for NA case, 

moreover,  Graph 2 and Graph 4 show the same 
functions for PA case. The red lines are the convergence 

rates (14) for ˆ ( )nF ⋅ using 0.27θ =  and the yellow 

lines are the convergence rates (13) for ˆ ( )nΛ ⋅ using
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0.12θ = . 
In order to show the convergence rate of our 

estimators numerically, we summarized the simulations 
of PA and NA cases in the following two tables for

{ }20,  30,  50,  100,  200,  500n = , by iterating 

1000  times for { }0.1,  0.2,  0.3ρ = . 

According to the estimator of ( )Λ ⋅  in Figure 1, we 

see that the convergence rates of both estimators are 

really closed but the convergence rate of ( )( )ˆ p
nΛ ⋅  is 

mostly located at the bottom of ( )ˆ
nΛ ⋅ . Therefore, it 

is preferred to use ( )( )ˆ p
nΛ ⋅  due to easier computation 

and better convergence rate. 
In these figures, we can see that the convergence 

rates are good in NA (PA) case i.e.: 
(a) In Graph 1 and Graph 2 of Figure 1, we can see 

the convergence rate could get sharper and these graphs 

show that the convergence of ( )n̂F ⋅ is good. 

(b) In Graph 3 and Graph 4 of this Figure, the 
convergence rate is not reasonable as well as Graph 1 
and Graph 2, but it is good enough to present. Since the 

acceptable range of ( )Λ ⋅  is  [0, +∞), so the 

differences less than 0.5 could be reasonable. 
 
Remark 1 In these simulation studies, it is easy to 

show that the Assumptions (A3), (A4) and (A5) are held 
true.  

 

Proofs 

The following lemmas are necessary for proving 
Proposition 1 and other limit theorems.  

Lemma 1 (Cai and Roussas, [4]) Let { , 1}nX n ≥  
be a stationary sequence of r.v.’s. Then 

(i) If the r.v.’s are PA, having finite variance and 
(A3) holds, it follows that  

 

. .

1

1 ( ) 0
n

a s
i i

i
X EX as n

n =

− → →∞∑   (25) 

(ii) If the r.v.’s are NA with finite first moment, the 
convergence in (25) holds true.  

Lemma 2 (Cai and Roussas, [4]) Let  

1( , , ) 'nU U U=  and 1( , , ) 'mV V V=    be two 
independent random vectors. Then 

(i) If   ( , ), 1, ,i i iX g U V i n= =   where 

( , )i ig U V  is non-decreasing in each , 1, ,jV j m=    

for fixed iU  and V   is PA, then so are 

1( , , ) '.nX X X=   

(ii) For m n= , if  ( , ), 1, ,i i iX g U V i n= =   

and ( , )i ig U V   is non-decreasing in iU  , for fixed 

iU  and  V   is NA, then 1( , , ) 'nX X X=   is also 
NA.  

Lemma 3 (Cai and Roussas, [4]) Let { , 1}nX n ≥  

be a sequence of r.v.’s where ( ) 0jE X =  and 

 
Figure 1. ˆ ( )

nFd n (blue line) and its convergence rate (red line) for 0.27θ =  in NA (Graph 1) and PA (Graph 2) cases, ˆ ( )
n

d n
Λ

(black line), ( )ˆ ( )p
n

d n
Λ

 (green line) and their convergence rates (yellow line) for 0.12θ =  in NA (Graph 3) and PA (Graph 4) 

cases. 
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| |jX C≤ < ∞  for 1.j ≥  Then 

(i) If the r.v.’s are PA and satisfy the condition  
 

( 2)/2

1 :| |
( , ) ( ),r

j k
k j j k n

sup Cov X X O n− −

≥ − ≥

=∑  (26) 

for some 2r > , it follows that, for all 1n ≥ , there 

exists a constant 0,B > not depending on n , such 
that  

/2

0 1
.

r
m n

r
j

m j m
sup E X Bn

+

≥ = +

≤∑  (27) 

(ii) If the r.v.’s are NA, the inequality in (27) holds 
true for every 2.r >   

Proof of Proposition 1. (i) Since { ,1 }iX i n≤ ≤  is 
PA, Lemma (i) implies that 
{ ( ),1 }i iI T x Z i n≤ ≤ ≤ ≤  is also PA on interval

[ , ]W Wa τ . By corollary of Theorem 1 in Sadikova [16] 

and (21) in Newman [13] and because iT ’s are iid and 

also, independent of iZ ’s, there exists 0M > , such 
that, for all i j≠  we have  

[ ]
[ ] [ ]
( )

( )

( ) ( )
1
3

( ), ( ) ( ) ( ), ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ), ( )

(

28

), ( )

,

i i j j i i j j

i j i j

i j i j

i j

i j

i j

Cov I T x Z I T x Z Cov I T x I x Z I T x I x Z

E I T x E I T x E I Z x I Z x

E I T x E I T x E I Z x E I Z x

Cov I Z x I Z x

Cov I Z x I Z x

M Cov Z Z

   ≤ ≤ ≤ ≤ = ≤ ≤ ≤ ≤   
   = ≤ ≤ ≥ ≥   
   − ≤ ≤ ≥ ≥   

≤ ≥ ≥

= < <

≤

 
Next, we will find an upper bound for ( ),i jCov Z Z  

for all .i j≠  In order to do this, by independence of 

{ , 1}iX i ≥  and { , 1},iY i ≥  we obtain  
( ) ( ) ( ) ( )

( ) ( )
2

2

1 2 1 2 1 2

1 2 1 2

, ( )( ) ( ) ( )

( )( ) ( ) ( ) 29

i j i j i j
R

i j
R

Cov Z Z E X y X y E X y E X y dG y dG y

Cov X y X y dG y dG y

= ∧ ∧ − ∧ ∧

= ∧ ∧

∫

∫
 

Let ( ) min( , )yf x x y=  for fixed y>0. So, fy(x) is a 

non-decreasing function of 𝑥𝑥 on interval [ , ]W Wa τ . 
Then, by Hoeffding’s inequality (see, for example, 
Theorem 2.2.6 in Vershynin [23]) for fixed y1>0 and

2 0y > , we conclude that    
Error! Bookmark not defined.

Table 1. The values of   ˆ ( )
nFd n , ˆ ( )

n
d n
Λ

and ( )ˆ ( )p
n

d n
Λ

 for different values of ρ  and n  in PA. 

ρ Estimator n=20 n=30 n=50 n=100 n=200 n=500 
0.1  

Survival function 
0.2477 0.1538 0.1272 0.1018 0.0898 0.0885 

0.2 0.2525 0.1605 0.1317 0.1041 0.0907 0.0889 
0.3 0.2625 0.1661 0.1403 0.1108 0.0994 .09457 
0.1  

Cumulative hazard 
function 

0.8109 0.5689 0.4852 0.4160 0.3937 0.3914 
0.2 0.8105 0.5534 0.4699 0.4013 0.3728 0.3671 
0.3 0.7995 0.5447 0.4444 0.3798 0.3494 0.3362 
0.1  

Cumulative hazard 
function (plug-in) 

1.2254 0.5628 0.4752 0.4036 0.3844 0.3883 
0.2 1.3412 0.5618 0.4659 0.3953 0.3667 0.3646 
0.3 0.9115 0.5422 0.4479 0.3766 0.3467 0.3350 

 
Table 2. The values of   ˆ ( )

nFd n , ˆ ( )
n

d n
Λ

and ( )ˆ ( )p
n

d n
Λ

 for different values of ρ  and n  in NA. 

ρ Estimator n=20 n=30 n=50 n=100 n=200 n=500 
0.1  

Survival function 
0.1398 0.1187 0.1004 0.0655 0.05751 0.04526 

0.2 0.1552 0.1314 0.1302 0.1117 0.05435 0.03405 
0.3 0.1795 0.1795 0.1244 0.07433 0.05867 0.04023 
0.1  

Cumulative hazard 
function 

0.5629 0.4753 0.4343 0.2597 0.2421 0.2327 
0.2 0.6456 0.6106 0.4685 0.3288 0.2802 0.2047 
0.3 0.36083 0.27931 0.21195 0.19888 0.17238 0.13241 
0.1  

Cumulative hazard 
function (plug-in) 

0.5017 0.4921 0.3638 0.2578 0.2338 0.2117 
0.2 0.6737 0.6136 0.4666 0.3293 0.2872 0.2317 
0.3 0.6917 0.4121 0.3807 0.2847 0.2123 0.1928 

 



Strong Convergence Rates of the Product-limit Estimator for Left Truncated and … 

183 

( )

1 2

1 2

0 0

1 2

0 0
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3
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 Cov(X , X . 0 )

[ ]

[ ]

y y

i

i j y i y j

i j i j

j i j

i j

P X r X s P X r P X s d

Cov X y X y Cov f X f X

P X r X s P X r P X d

r

r

ds

s d s
∞ ∞

≤ ≤

∧ ∧ =

≤ ≤ ≤

− ≤

− ≤ ≤

≤

=

∫ ∫=

∫ ∫

                
Hence by substituting of (30) into (29), we have   

 Cov(X , X )( , ) .ji j iCov Z Z ≤      (31) 

So, 
1
3) )  Cov (X , X ), (( , ( 3( 2))j ii j jiCov I T x Z I T x Z M≤ ≤ ≤ ≤ ≤

 
for some constant M>0, such that it is not depending 

on i, j and x. Thus, an application of Lemma 1 (i) yields, 
for all W Wa x τ≤ ≤ ,  

. .
1 1( ) ( ) ( )[1 ( )] ( ) ( ),a s

nC x P T x Z G x W x G x W x→ ≤ ≤ = − =
 

but both 1 ( )nC x−  and 1 ( ) ( )G x W x−  are not 

df’s on observation space [ , ]W Wa τ  and so we cannot 
use Glivenko-Cantelli theorem. In order to prove (8) 
and we use  

. .( ) ( ),        [ , ]a s
n W WG x G x x a τ→ ∀ ∈  

and  
. .( ) ( ).a s

n W WG a G a→  

Now by computing ( )
( )
n

n W

C x
G a

 and ( ) ( )
( )W

G x W x
G a

, it is 

easy to show that ( )1
( )
n

n W

C x
G a

−  and ( ) ( )1
( )W

G x W x
G a

−  are 

two df's on [ , ]W Wa τ  such that  

. .( ) ( ) ( )1 1 , .
( ) ( )

a sn

n W W

C x G x W x as n
G a G a

− → − →∞  

So according to Glivenko-Cantelli theorem, we 
obtain  

. .( ) ( ) ( )sup 0,  .
( ) ( )W W

a sn

a x n W W

C x G x W x as n
G a G aτ≤ ≤

− → →∞

 
By using  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ,n n n n n na a b x b x a b x ab x ab x a b x+ − = − + −

 
and setting  

1 1, , ( ) ( ), ( ) ( ) ( ),
( ) ( )n n n

n W W

a a b x C x b x G x W x
G a G a

= = = =

 
and with paying attention to this fact that two first 

terms above are greater than zero, we conclude that  

 
( ) ( ) ( ) 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) .

( ) ( ) ( ) ( )
n

n n W n W
n W W W n W

C x G x W xC x G x W x G a G x W x G a
G a G a G a G a

− ≤ − + −

 
Then, (8) is achieved. 
Next, Lemma 2 (i) implies that 

{ ( ),1 }j jI X x Y j n> ∧ ≤ ≤  is PA, for each fixed x on 

interval [ , ]W Wa τ . Therefore, an application of 
corollary of Theorem 1 in Sadikova [16] and (21) in 
Newman [13] again gives  
( ) ( )

( ) 1 20 0
1
3

( ), ( ) ( ), ( )

( ), ( ) ( ) ( )

( , ). (33)

i i j j i i j j

i i j j

i j

Cov I X x Y I X x Y Cov I X x Y I X x Y

Cov I X x y I X x y dG y dG y

M Cov X X

∞ ∞

> ∧ > ∧ = ≤ ∧ ≤ ∧

= ≤ ∧ ≤ ∧

≤

∫ ∫

 
Hence, for all W Wa x τ≤ ≤ , using Lemma 1 (i),  

. .
1 1 1 1( ) ( ) ( ), .a s
nW x P X x Y F x as n→ ≤ ∧ = →∞

 
Then based on similar idea for establishing (8), we 

have  
. .

1 1sup ( ) ( ) 0, .
W W

a s
n

a x
W x F x as n

τ≤ ≤
− → →∞  

This completes the proof of part (i). 
Proof of part (ii) follows by an argument similar to 

one used in the proof of part (i) and utilizing Lemma 2 
(ii).   

 
Lemma 4. Let (A, B), (A′, B′)  ∈  ℋ ×  ℬ and for any 

interval [aW, κ] such that B(κ) > 0 and B′(κ) > 0, we 
show the supremum metric by 𝜌𝜌𝜅𝜅. If 
max (ρκ(A,A′), ρκ(B,B′) ) ⟶  0   then  

( ( , ), ( ', ')) 0.k A B A Bρ Φ Φ →  
Proof. In order to prove, we must repeat the same 

lines of proof Lemma 2 of Gill [7] by using interval 
[ , ]Wa κ  for some Wκ τ< . 

Proof of Theorem 2. To establish the asymptotic 
behavior of ( )n̂F ⋅   which is mentioned in this theorem, 

let us introduce some notations as follows. 
Let 𝐴𝐴 be a bounded, non-decreasing and right-

continuous function on [𝑎𝑎𝑊𝑊 , 𝜏𝜏𝑊𝑊) such that 𝐴𝐴(𝑎𝑎𝑊𝑊) = 0 
and 𝒜𝒜 be the set of all such functions. Also, 𝐵𝐵 be a 
bounded, non-increasing and positive function on 
[𝑎𝑎𝑊𝑊 , 𝜏𝜏𝑊𝑊)  and ℬ be the set of all such functions 

For every pair (𝐴𝐴,𝐵𝐵) ∈  𝒜𝒜 × ℬ  , we define some 
version of (6) in Gill [7]: 
Φ(𝐴𝐴,𝐵𝐵)(𝑥𝑥) = ∏ �1 − 𝑑𝑑𝑑𝑑(𝑠𝑠)

𝐵𝐵(𝑠𝑠)
�  𝑒𝑒𝑒𝑒𝑒𝑒 ({𝑠𝑠≤𝑥𝑥} −

∫ 𝑑𝑑𝐴𝐴𝑐𝑐(𝑠𝑠)
𝐵𝐵(𝑠𝑠)

 )𝑥𝑥
𝑎𝑎𝑊𝑊

, 



Vol. 30  No. 2  Spring 2019 A.H. Shabani, et al. J. Sci. I. R. Iran 

184 

where 𝐴𝐴𝑐𝑐 is the continuous part of 𝐴𝐴.  We prove 
Φ(𝐴𝐴,𝐵𝐵)(∙) is a right-continuous, non-negative and non-
increasing function on  [𝑎𝑎𝑊𝑊 , 𝜏𝜏𝑊𝑊) with Φ(𝐴𝐴,𝐵𝐵)(𝑎𝑎𝑊𝑊) =
1. Also, by setting 
𝐴𝐴(𝑥𝑥) = 𝐹𝐹1(𝑥𝑥)          𝑎𝑎𝑎𝑎𝑎𝑎          𝐵𝐵(𝑥𝑥) = 𝐺𝐺(𝑥𝑥)𝑊𝑊(𝑥𝑥). 
Clearly, (𝐹𝐹1,𝐺𝐺 𝑊𝑊�  ) ∈ 𝒜𝒜 × ℬ  and  
Φ(𝐹𝐹1,𝐺𝐺 𝑊𝑊�  )(𝑥𝑥) =  ∏ (1 −{𝑠𝑠 ≤ 𝑥𝑥}

𝑑𝑑𝐹𝐹1(𝑠𝑠)
𝐺𝐺(𝑠𝑠) 𝑊𝑊� (𝑠𝑠) 

)𝑒𝑒𝑒𝑒𝑝𝑝(−  ∫ 𝑑𝑑𝐹𝐹1𝑐𝑐(𝑠𝑠)
𝐺𝐺(𝑠𝑠) 𝑊𝑊� (𝑠𝑠)

𝑥𝑥
𝑎𝑎_𝑊𝑊  ). 

Because  𝐹𝐹1 is continuous, then Φ(𝐹𝐹1,𝐺𝐺 𝑊𝑊�  )(𝑥𝑥) =
1 − 𝐹𝐹(𝑥𝑥). Moreover, by setting  

𝐴𝐴(𝑥𝑥) = 𝑊𝑊1𝑛𝑛(𝑥𝑥)          𝑎𝑎𝑎𝑎𝑎𝑎           𝐵𝐵(𝑥𝑥) = 𝐶𝐶𝑛𝑛(𝑥𝑥), 
and since(𝑊𝑊1𝑛𝑛,𝐶𝐶𝑛𝑛) ∈ 𝒜𝒜 × ℬ, it is easy to 

see Φ(𝑊𝑊1𝑛𝑛,𝐶𝐶𝑛𝑛)(𝑥𝑥) = 1 − 𝐹𝐹�𝑛𝑛(𝑥𝑥). By Proposition 1, for 
every Wτ τ≤ and Wa a≤ , we obtain (8) and (9). 
According to Lemma 4, we have 

. .sup ( ) ( ) 0ˆ , ,a s
n

a x
x F x aF s n

τ≤ ≤
− → →∞  

for every  𝜏𝜏 < 𝜏𝜏𝑊𝑊 and 𝑎𝑎𝑊𝑊 < 𝑎𝑎 for which 𝐹𝐹(𝜏𝜏)  <  1 
and 𝐹𝐹(𝑎𝑎) > 0. We may now proceed for the proof of 
(12), in view of (11), it suffices to consider the case 
𝐹𝐹(𝑎𝑎𝑊𝑊) = 0 and 𝐹𝐹(𝜏𝜏𝑊𝑊) = 1. Also, since  𝑊𝑊(𝜏𝜏𝑊𝑊) = 1, 
then 𝑍𝑍𝑛𝑛:𝑛𝑛  <  𝜏𝜏𝑊𝑊 and  𝑎𝑎𝑊𝑊 < 𝑍𝑍1:𝑛𝑛. Hence, (12) is a 
consequence of (11). So, the proof is completed (see 
proof of Theorem 1.2 in Cai and Roussas [4], for more 
details). 

 

Discussion 
In the current manuscript, we prove the strong 

uniform convergence of TJW product-limit estimator 
for PA (NA) data under random left truncation and right 
censorship model. Most of the applied papers in the 
field of survival analysis would not assume the left 
truncation model, subjected to right censorship and 
dependency of the lifetime observations. Therefore, we 
try to solve this open problem in view of Cai and 
Roussas [4], which proved strong and weak 
convergence of product-limit estimator for PA (NA) 
data under right random censorship model. One 
application of the desired model used in this paper can 
be found in Shabani et al. [17], which are estimated 
point-wise confidence bound of survival and hazard 
functions for lung cancer patients under PA. For further 
research, we propose a new model in which the 
lifetimes, censorship and truncation sequences are 
dependent. 
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