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Abstract 

In the linear regression models with AR (1) error structure when collinearity exists, 
stochastic linear restrictions or modifications of biased estimators (including Liu 
estimators) can be used to reduce the estimated variance of the regression coefficients 
estimates. In this paper, the combination of the biased Liu estimator and stochastic 
linear restrictions estimator is considered to overcome the effect of collinearity on the 
estimated coefficients. In addition, the deletion formulas for the detection of influential 
observations are presented for the proposed estimator. Finally, a simulation study and 
numerical example have been conducted to show the superiority of the proposed 
procedures. 
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Introduction 
The problem of collinearity in regression models 

refers to the situation where the explanatory variables 
have the near-linear dependency. By considering 
independent and identically distributed errors 
(homoscedasticity), it is well known that the ordinary 
least squares estimators (OLSE) are unbiased and have 
minimum variance in the class of linear unbiased 
estimators. However, in the presence of collinearity, 
they are no more reliable estimators, [1,2]. Collinearity 
causes the variance of the estimates to be large, and so 
the estimates of parameters will be unstable. To 
overcome this problem, one way is to make use of prior 
knowledge of observations and to deal with this 
information as linear stochastic restrictions. In such a 
case, the mixed estimators proposed by Theil and 

Goldberger [3] and Theil [4] can be used, which is 
gained by unifying the sample and the prior 
information. 

The other remedy to combat the collinearity problem 
is to use biased estimators such as the popular ridge 
estimator [5]. In 1993, Liu [6] introduced a new biased 
estimator called the Liu estimator by combining the 
Stein estimator [7] and the ridge estimator and showed 
that it can be superior over each of them in the MSEM 
sense. He also pointed out that it is easier to choose the 
Liu biasing parameter than to choose that of the ridge 
estimator since the Liu estimator is a linear function of 
its biasing parameter, but the ridge estimator is a 
complicated function of it. 

As by combining different estimators, one can inherit 
the advantages of each of them. Ozkale [8] introduced 
the stochastic restricted ridge estimator under the 
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assumption of homoscedasticity by combining the 
mixed estimator and the ridge estimator. Also, Hubert 
and Wijekoon [9] introduced the stochastic restricted 
Liu estimator under the same assumption and Yang and 
Xu [10] introduced another stochastic restricted Liu 
estimator by combining them in an alternative way. 

In practice, the assumption of independent and 
identically distributed errors (homoscedasticity) does 
not always hold. Sometimes the data are collected over 
time and so cause the errors to be correlated. A 
commonly occurring case is when the errors follow a 1st 
order autoregressive process (AR(1)). In such cases 
fitting an inappropriate model can have deleterious 
effects. A classic example can be found in Box and 
Newbold [11] who commented on a paper by Coen et 
al. [12]. The latter seemingly showed that car sales 
seven quarters earlier could be used to predict stock 
prices. But they failed to examine residuals and there 
was strong evidence that the errors were correlated. 
After fitting an appropriate model, Box and Newbold 
showed that there was no significant relationship 
between the two variable [13]. In fact, in practical 
applications, the neglect of such correlation in the errors 
may lead to inefficient parameter estimates and 
misleading inferences from hypothesis tests and 
inefficient predictions. The reason is that the OLSEs fail 
to achieve minimum variance estimates and the usual 
estimator of the variance-covariance matrix will be 
biased (see Griffith et al. [14]). To overcome these 
effects of autocorrelation, Aitken [15] proposed the 
generalized least squares estimator (GLSE). However, 
the presence of collinearity in the regression models 
with AR(1) error, will also result in unreliable GLS 
estimates, because of the large total variance. So these 
two problems should be examined simultaneously in 
order to achieve an appropriate estimation procedure for 
regression coefficients. The interested reader may refer 
to [16-20] for more details. 

On the other hand, all the observations do not have 
the same impact on the estimated regression coefficients 
or on the resulting fitted values, therefore after fitting a 
regression model and using an estimation procedure to 
understand the relationship between variables, it is 
important to detect influential observations and (or) 
outliers in the framework of influence analysis. There 
are different statistical measures to detect these 
potentially influential observations, some of which are 
based on deleting cases. For example, the influence 
function for ith observation can be obtained as 
differences between the parameter estimated with and 
without the ith observation. The limitation of this 
approach is that it cannot be easily generalized to the 
linear regression model with 1st order autoregressive 

errors, in which the dependency structure of the 
autoregressive model will not be valid after deleting a 
single observation from the data except for the last 
observation. But here with suitable modification as in 
Roy and Guria [21], we have kept intact the inherent 
autocorrelation structure. Detecting outliers is another 
problem, which has been extensively studied in the 
influence analysis of linear regression models, [1,2,22]. 
The method of mean-shift outlier model is one of the 
most important approaches for detecting discordant 
outliers in the regression analysis. Since the existence of 
outliers and influential observations are complicated by 
the presence of collinearity, it seems reasonable that 
after reducing the effects of collinearity by an 
appropriate estimator, the methods of influence analysis 
adequately be modified. Ullah et al. [23] and Jahufer 
[24] used the procedure of case deletion and derived 
influence measures for the Liu estimator in regression 
models with independent and identically distributed 
errors and without stochastic restrictions on parameters. 
Ullah et al. [23] also investigated the mean shift outlier 
model for the above-mentioned Liu regression. 
Zaherzadeh et al. [20] extended the method of mean-
shift outlier model for detecting outliers in case of the 
ridge regression model with stochastic linear restrictions 
when the errors follow the AR(1) process. They also 
derived extensions of measures for diagnosing 
influential observations based on case deletion methods. 

In the present paper, we have considered an 
estimator, which is a combination of the Liu estimator, 
and the mixed estimator in regression models with 
stochastic linear restrictions, in the case of correlated 
errors and especially when they are 1st order 
autoregressive. Also, a method has been given for 
choosing the Liu biasing parameter. Furthermore, some 
diagnostic measures are studied to identify influential 
observations or outliers that may be involved in the data 
modeled by the proposed method of estimation. In the 
preliminary section, the proposed model is introduced 
and the estimators are derived. In the results section, the 
case deletion diagnostics DFBETAS and DFFITS, are 
developed for the detection of influential observations. 
Furthermore, an outlier detection procedure based on 
the mean-shift outlier model is presented. Finally, an 
example to illustrate our results and a simulation study 
to show the performance of the achievements are given.  
 
Preliminaries 

Consider the following linear regression model 
y X β ε= +                                                           (1) 

where y  is an 1n×  vector of observations on the 
dependent variable, X  is an n p×  matrix of 
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observations on the explanatory variables, β  is a 1p×  
vector of unknown regression coefficients and ε  is an 

1n×  vector of error terms. Also, we assume that 
( ) 0E ε =  and ( ) 2var Vε σ= , in which V  is an n n×  

known p.d. matrix which can be decomposed as 
V TT ′= ; where T  is a nonsingular matrix. Under 
these assumptions, by pre-multiplying the linear 

regression equation (1) with 1T − , we would have the 
following transformed model: 

* * *y X β ε= +                                                        (2) 

where * 1y T y−= , * 1X T X−=  and * 1Tε ε−= . 
Therefore, the generalized least squares (GLS) estimate 

of β  is ( ) 11 1X V X X V Yβ
−− −′′= . 

When the collinearity problem is presented, the 
matrix 1X V X−′  will be near singular. In such a case, 
the generalization of the Liu estimator can be used to 
reduce the effect of collinearity on the parameters 
estimates [18]. The biased generalized Liu estimator 

dβ  is expressed as: 

d dFβ β=                                                                (3) 

where ( ) ( )11 1
dF X V X I X V X dI

−− −′= + +′ , 

0 1d< <  is the Liu biasing parameter, and β  is the 
(GLS) estimator of β . In addition, we have 

( ) ( ) 12 1
d d dvar F X V X Fβ σ

−−′ ′=    . Also dβ  can be 

considered as the GLS estimator in the augmented 

model 
p

Xy
Id

ε
β ε

    
= +    

     
 with n ( n p= + ) 

observations, where ε  satisfies the conditions in the 
model (1) and where ε  is considered to be a random 
vector of errors such that ( ) 0E ε =  and 

2var( ) pIε σ= . 

Besides using biased estimators, one can use the 
mixed estimators to overcome the collinearity problem, 
when there is some prior knowledge of the data in the 
form of linear stochastic restrictions. Suppose that 
historical observations related to the linear regression 
model (1) are available, which can be written as linear 
stochastic restrictions of the following form: 

r Rβ φ= +                                                            (4) 
where r  is a known 1m×  random vector, R  is a 

known m p×  matrix of prior information of 

rank ( )m p≤  and φ  is a random vector independent 

of ε  with ( ) 0E φ =  and ( ) 2var Wφ σ= , where W  
is an m m×  known p.d. matrix. 

By combining the linear regression model (1) with 
the restrictions (4), we would have the augmented 

model, y X
r R

ε
β

φ
     

= +     
     

 or 

y X β ε= +                                                            
(5) 

where ( ) 0E ε = , ( ) 2var Wε σ=   and 

0
0
V

W
W

 
=  
 

  is a p.d. matrix. The generalized mixed 

least squares estimator of β  in (5) is: 

( )
( ) ( )

11 1

11 1 1 1    .

m X W X X W y

X V X R W R X V y R W r

β
−− −

−− − − −′

′ ′=

′ ′= + +′

               (6) 

The mixed estimator mβ  is unbiased and 

( ) 2
mvar Aβ σ=                                                       (7) 

where ( ) 11 1A X V X R W R
−− −′ ′= + . 

Hubert and Wijekoon [9] improved the Liu estimator 
in the ordinary linear regression model by considering 
simultaneously the two approaches followed in 

obtaining the mixed estimator mβ  with V I=  and the 
Liu estimator and proposed a new biased estimator of 
β  called stochastic restricted Liu estimator. We 
consider such an estimator in the case of unequal 
variance and (or) correlated errors and combine the Liu 

estimator dβ  and the mixed estimator mβ . By 

substituting β  in equation (3) with mβ , we have 

srd d mFβ β=                                                            
(8) 

Since the mixed estimator mβ  can be written as 
1 1 1( ) ( )m S R W RS R r Rβ β β− − −′ ′= + + −      it will be 

easily seen that srdβ  can also be considered as the GLS 

estimator in the following augmented model with n (
n p= + ) observations:  

d
pm

Xy
Id Sg

ε
β

β ε
    

= +    +       
                                (9) 

where 1S X V X−′= ,  
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1 1 1) )((g S R W RS R r Rβ− − −′= + ′ −   , and ε  
satisfies the conditions ( ) 0E ε =  and ( ) 2var Vε σ= , 

and dε  is considered to be a random vector of errors 
independent of ε  such that ( ) 0 dE ε =  and 

( ) 2d
pvar Iε σ= . We refer to the augmented 

regression model (9) as stochastic restricted Liu 
regression under unequal-variance or correlated errors. 

The expectation and variance of srdβ , are obtained 

by the unbiasedness of mβ  and its variance in (7), as 

( ) ( ) 2,   srd d srd d dE F var F AFβ β β σ ′= =             (10) 

The conditions for the superiority of srdβ  over dβ  

and mβ  can be obtained by a simple modification of the 
proofs given in Hubert and Wijekoon [9] which are for 
the case of V I= . 

In what follows, we consider a special structure of V, 
in which the data are collected over time and the error 
terms follow a 1st order autoregressive process (AR (1)), 
that is 

1i i iuε ρε −= +          where     ( ) 0iE u =    and   

( ) 2
ivar u σ=     for 2, ,i n= …  

and where 1ρ < . In this case, as it is well known, 

the matrix V is expressed as 
2 1

2

2

1 2 3

1
11

1
1

n

n

n n n

V

ρ ρ ρ
ρ ρ ρ

ρ
ρ ρ ρ

−

−

− − −

 
 
 =
 −
  
 





   



      (11) 

and its inverse is given by 

2

1

2

1 0 0 0
1 0 0

0 0 0 1
0 0 0 1

V

ρ
ρ ρ ρ

ρ ρ
ρ

−

− 
 − + − 
 =
 

+ − 
 − 





     





     (12) 

which can be decomposed as 1V P P− ′= , where 
21 0 0 0 0

1 0 0 0

0 0 0 1 0
0 0 0 1

P

ρ
ρ

ρ

 −
 

− 
 =
 
 
 − 





     





.        (13) 

In practice, the matrix V  in (11) is generally 

unknown. By writing V  as a function of the unknown 

parameter ρ , say ( )V ρ , an estimator of V  can be 

defined by replacing unknown ρ  by an estimator ρ̂ , 
which can be derived, using the OLS technique as [1] 

12
2

11

ˆ
n

i ii
n

ii

e e

e
ρ −=

−=

= ∑
∑

                                                (14) 

where ie  is the ith element of the residual vector by 
ordinary least squares estimator. By denoting an 

estimator of V  by ( )ˆV ρ , the estimator srdβ  in (8) 

can be expressed in the following expansion form 
( ) ( )

( ) ( )

11 1

11 1 1 1       

ˆ ˆ

ˆ ˆ .

srd X V X I X V X dI

X V X R W R X V y R W r

β ρ ρ

ρ ρ

−− −

−− − − −

′ ′   = + +   

′ ′ ′ ′   × + +   

   (15) 

 
Selection of d  

It should be noted that Liu [6] has given different 
estimates of the Liu parameter d , in the linear model 
(1) with the assumption of independent and identically 
distributed errors. The given estimates are extended to 
the case of unequal variance or correlated errors by 
Alheety and Kibria [25]. They gave the optimal value of 
d  by minimizing the MSE  of the Liu estimator in the 
canonical form of the transformed regression model (2). 

By symmetry of ( * *'X X = ) 1'X V X− , there exists 
an orthogonal matrix E  containing normalized 
eigenvectors of 1'X V X−  such that 1' XE X V E−′ = Γ , 
where { }1, , pdiag γ γΓ = …  is a diagonal matrix and 

the iγ , 1, ,i p= … , are eigenvalues of 1'X V X− . 

Since the matrix E  is orthonormal, the transformed 
model (2) can be written in the following canonical 
form: 

* *y Zα ε= +


, where *Z EX=


 and Eα β′= .      (16) 
The least squares estimate and the Liu estimate of 

α  are ( ) 1 * 1 1'Z Z y E X V yZα
− − −′ ′ ′= = Γ

  
 and 

( ) ( ) ( ) ( )
1 1

d ZZ Z I Z dI I dIαα α
− −′ ′= + + = Γ + Γ +

    
 

respectively, where 
 ( )E αα =  and ( ) ( ) 12 2 1var Z Z σα σ

− −′= = Γ
          (17) 

and 
 1( ( )())dE I dI αα −= Γ + Γ +

 and  
2 1 1 1) (( ) ) ( )(( )dvar I dI dI Iσα − − −= Γ + Γ + Γ Γ + Γ + . (18) 

In order to find the optimal value of d , the 𝑀𝑀𝑀𝑀𝑀𝑀 of 
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dα


 is used which is defined as 

( ) ( ) ( )d d dvar B Bα α α ′+   , where ( )dB α  is the bias of 

dα


 in estimating α . Since from (18), 

( ) ( ) ( )1
dB I dI Iα α− = Γ + Γ + − 
 , the trace of 

MSE  of dα


 is obtained as 
2 2

2 2
2 2

1 1

( )( ( 1)
( 1) ( 1)

)
p p

i i
d

i ii i i

dTMSE dγ ασ
γ γ γ

α
= =

+
= + −

+ +∑ ∑  

where iγ ’s are the diagonal elements of the matrix 

Γ , and iα  ( 1, ,i p= … ) is the ith element of the 
regression coefficients vector α  in the canonical 
model (16). By differentiating the ( )dTMSE α  with 

respect to d , and equating it by zero, an estimate of d  
is found which minimizes the TMSE  criteria. After 
some simplifications, it is obtained 

12 22 2

2 21 1( 1) ( 1)
p p j ji

j
j

i
i i

d
σ γ αα σ

γ γ γ

−

= =

 + −
=   + +    
∑ ∑ . Now by 

substituting unknown parameters 2σ  and 2
iα  with 

their unbiased estimates, an estimate of d  can be 

obtained. Since the expectation and the variance of iα


, 
the ith element of the estimated regression coefficients 
α , are as given in (17), we have 

2
2 2 2) ) (( ( )i i i i

i

E var Eα α α σ α
γ

= + = +   . So an 

unbiased estimator of 2
iα  is 

2
2 ˆ
i

i

σ
γ

α − , where in turn, 

1
2 )( ()ˆ m my yX W X

n m p
β βσ

−′− −
=

+ −

    
 is an estimator of 

2σ  based on the mixed model (5).  
 By the above substitution, the optimal value of d  

after some simplifications is obtained as: 
2 2

1
2 1

1 1
1 ( 1)   ( 1ˆ ))ˆ (p

ij
p

ij ijd σ γ γ γα
=

−
− −

=
   
   = − + +∑ ∑ .    (19) 

 

Results 
Some diagnostic measures 

After using a particular estimation procedure and 
fitting a regression model, one may be interested in the 
influence of individual observations on different aspects 
of the model including estimates of the parameters and 

predicted values. Different measures of influence have 
been proposed, some of which are based on the deletion 
of cases. 

Here we concentrate on the influential measures 

based on the estimator srdβ , which is presented in the 
preliminary section and especially we consider the case 
where the error terms of the linear model are 1st order 
autocorrelated. To determine the effect of the ith 

observation on the jth element of srdβ , we consider 
DFBETAS criteria, which are based on the deletion of 
the ith case and are defined as: 

  
( )

 . .(
(

)
)

)
( srd j srd j

srd j
srd j

DFBETA
S

i
S

E
i

β β
β

−
=
 


                          (20) 

where  srd jβ  and ( ) srd j iβ  are the jth elements of 

srdβ  with and without the ith observation, respectively. 

In addition,  . .( )srd jS E β  in the denominator of (20) is 

the standard error of jth regression coefficient estimated 

by srdβ , which is an estimate of the square root of the 

diagonal element of )( srdvar β  in (10), namely, 

,( ))( d j jFS Ai F ′  . ( )S i  is the estimate of σ  based on 

the mixed model (5) and after deleting the ith case. 
Although, Kim and Huggins [26] and Tsai and Wu 

[27] claim that the deletion approach is inappropriate in 
studying the diagnostics in a regression model with 
autocorrelated errors, but Roy and Guria [21] mentioned 
that this claim is relevant to the point that the deletion of 
an observation disrupt the autocorrelation structure. Roy 
and Guria [21] with suitable modification, found a 
transformation matrix for the case of AR(1) errors, that 
incorporates the deletion of an observation keeping 
intact the inherent autocorrelation structure. 

For AR(1) errors, by using the matrix P  given in 
(13) and putting 1T P− =  in the transformed model (2), 
we have *X PX= , *y Py=  and * Pε ε= . In this 

case, the elements of *y  and *X  are as follow: 
2 2

* *1 1

1 1

1   1                 1,    
       2, ,

i i
i i i i

y x iy x
y y x x i n
ρ ρ

ρ ρ
′

− −

  ′ − − == = 
′ ′− + − + = …  

           (21) 

where *
iy  and *

ix ′  denotes the ith element of 
*y  

and the ith row of *X , respectively, and where iy  and 

ix ′  are the ith element of y  and the ith row of X . 
Now, following Roy and Guria [21], by deleting the 

ith observation, the ith row and the ith column of the 
variance matrix V  also needs to be deleted. The impact 
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of this deletion on 1V −  and P  has been shown in Roy 

and Guria [21]. Suppose that ( )iV  is the matrix V  after 

deleting its ith row and ith column and the matrices 
1

( )iV −  and ( )iP  are obtained from ( )iV . 

Result 1 (Roy and Guria [21]) For 2, , 1i n= … − , 
1

( )iV −  is obtained from 1V −  in (12) by deleting its ith 

row and ith column, and replacing in 1V −  the 
( )1, 1i i− −  and ( )1, 1i i+ +  elements by 

4 2(1 /) )(1ρ ρ+ + , and the ( )1, 1i i− +  and 

( )1, 1i i+ −  elements by 2 2( / () )1ρ ρ− + . The 

corresponding ( )iP  is obtained from P  in (13) by 

deleting its ith row and ith column, and replacing the 

( )1, 1i i+ −  element of P  by 
12 2 2( / (1) )ρ ρ− + , and 

replacing the ( )1, 1i i+ +  element of it by 12 21/ (1 )ρ+ . 

Remark 1 It should be noted that by deleting the first 
row and the first column, or by deleting the last row and 
the last column of the matrix V, the overall structure of 
this matrix does not change. So for 1i =  and i n= , 

( )iV  will be of the same form as V except for a single 

reduction in the dimension. That is the difference 
between V and ( )iV  will be that V is a square matrix of 

order n  but ( )iV  is a square matrix of order 1n − , 

where both are of the form given in (11). Hence the 
corresponding 1

( )iV −  and ( )iP  will also be the same as 
1V −  and P  with one dimension less. 

Let ( )iX  and ( )iy  be the matrix X  and the vector 

y  without the ith observation. Define (
*
( ) ( ))i iiX P X=  

and (
*
( ) ( ))i iiy P y= , where ( )iP  is as obtained in result 

1. It can be seen for 2, , 1i n= … −  that (Roy and 
Guria [21]): 

* * * * * *
( ) ( )' 'i i i iX X X X u u= − ′    and    

* * * * * *
( ) ( )' 'i i i iX y X y u ϑ= − , 2, , 1i n= … −               (22) 

in which 
1* 2 * *2

1(1 ) ( )i i iu x xρ ρ−
+= + −  and 

1* 2 * *2
1( )1 )(i i iy yϑ ρ ρ−
+= + − , and where *

ix and *
iy  

are as defined in (21). 
We found similarly for the cases of 1 and i n= . 

First, we define *
(1) (1) (1)X P X=  and *

(1) (1) (1)y P y= , 

where (1)P  is as mentioned in remark 1. It is seen that 

the first row of *
(1)X  is equal to the 2

21  xρ ′− , and 

for 2, , 1j n= … −  the jth row of *
(1)X  is equal to the 

(j+1)th row of *X , where the rows of *X  are as given 
in (21). So we have the following result: 

* *

* * * * 2
(1) (1) 2 2

3
* * * * * * 2

1 1 2 2 2 2
* *

1 1

' (1

              (1

           

)

  

)

 

n

i i
i

X X x x x x

X X x x x x x x
X X w w

ρ

ρ

′

=

′ ′ ′

′ ′

′= + −

′= − − + −

= −

∑
      (23) 

in which 1 1
* 2 * *

21  w x xρ ρ= − − . 

Also, it is seen that the first element of *
(1)y  is equal 

to the 2
21  yρ− , and for 2, , 1j n= … −  the jth 

element of *
(1)y  is equal to the (j+1)th element of 

*y , 

where the elements of 
*y  are as given in (21). So we 

have 
* * * * 2
(1) (1) 2 2

3
* *

*

* * * * 2
1 1 2 2 2 2

* *
1 1

*

(1

             (1

            

)

 

)

n

i i
i

X y x y x y

X y x y x y x y
X y v w

ρ

ρ

′

=

′

′

= + −

= − − + −

= −

∑
           (24) 

where 1 1
* 2 * *

21  v y yρ ρ= − − . 
Doing the same for the nth observation, and by 

defining *
( ) ( ) ( )n n nX P X=  and *

( ) ( ) ( )n n ny P y= , where 

( )nP  is as mentioned in Remark 1, we also have: 
* * * * * *
( ) ( )n n n nX X X X x x′ ′ ′= −    and    

* * * * * *
( ) ( )n n n nX y X y y x′ ′= − .                                (25) 

Now in order to find an expression for ( )srd iβ  in 

terms of srdβ , we first consider the mixed estimator 

mβ  in equation (6). Suppose that ( )m iβ  is the 

estimator mβ  after deleting the ith observation, which 
is computed as 

* * 1 1 * * 1
( ) ( ) ( ) ( )( )) ( )(m i i i iX X R W R X y R Wi rβ ′ ′− − −′ ′= + + . 

For 2,..., 1i n= − , applying Sherman-Morrison-
Woodbury formula ([1]) and using the expressions 
given in (22) and putting * * 1M X X R W R′ −′= + , 
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( )m iβ  can be written as: 

( )

* * * * 1 1 * * * * 1

1 * * 1
1 * * 1 * *

* 1 *

( ) ( ) )

        .
1

(m i i i i

i i
i i

i i

i X X u u R W R X y u R W r

M u u MM X y R W r u
u M u

β ϑ

ϑ

′ ′− − −

− −
′− −

−

′ ′= − + − +

 
′= + + − 

 − 

′

′

′



    2, , 1i n= … −  

Moreover, ( )m iβ  can be simplified as 
1 * * *

* 1 *

1* 1 * 2 12
 

1 *
  1

( )
1

        (1 (1

( )

) ) ( )

i i i m
m m

i i

m i i i m i m i

M u u
u M u

u M u M u e e

i ϑ ββ β

β ρ ρ

−

−

−− −−
+

−
= −

−

=

′

′

′− − + −


 

  

 

2, , 1i n= … −              (26) 

where  m ie  is the ith residual given by 
* *

 m i i i me y x β= − ′  . Doing similarly for 1,  i n=  and 
using the expressions given in (23), (24) and (25), the 

estimators (1)mβ  and ( )m nβ  are 
* * 1 * 11 1 2 2

1 1 1  1  2(1) (1 1 )() ( )m m m mw M w M w e eβ β ρ ρ− − −= − − − −′    , 
* 1 * 1 *

 
1( ) )(1m m n n n m nx M x M x enβ β ′ − −−= − −    

where  m ie  ( 1, 2,i n= ) is as defined in (26).  

Now we investigate the estimator srdβ  after deleting 
the ith case, which can be obtained as 

* * 1 * *
( ) ( ) ( ) ( )( )( )) ) ( (srd i i i i mi iX X I X X dIβ β′ ′−= + +  .  

For 2,..., 1i n= − , we have 
* * * * 1 * * * *( ) ( () ) )( .srd i i i i mX X u u I X X u u dIi iβ β′ ′−− ′= + − +′ 

 By using Sherman-Morrison-Woodbury formula and 
after substituting ( )m iβ  with the expression obtained 

in equation (26), and putting * 1 *
i i ih u M u−′=  and 

( ) 1* * * *
i i ig u X X I u

−′ +′= , the estimator ( )srd iβ  can 

be expressed as ( )srd srd iiβ β ζ= −  , in which 
12 2

* * 1
  1  

1
* * * * *

12 2
* * 1

  1
*

 

(1 )
1

(1 )( )
1

(1       )

) ( )(

       ( )

) ( )(
1

i m i m i
i

i i i d i
i

srd i sr i
i

p

id

e e X X I
g

Mg X X dI u u I F u
h

e e

I

X I
g

uX

ρζ ρ

ρ ρ

−

′ −
+

−
′

−

′ −
+

+
= − +

−

 − + − −
  −

+
+ −



+

 ′× −

−

 
 

 



 

  

                                (27) 
where  srd ie  is the ith residual given by 

* *
 srd i i srdie y x β= − ′  . For 1,  i n= , by defining the 

scalars * 1 *
1 1 1h w M w′ −= , ( ) 1* * * *

1 1 1g w X X I w
−′ ′= + , 

* 1 *
n n nh x M x′ −=  and ( ) 1* * * *

n n ng x X X I x
−′ ′= + , we find:

( )srd srd iiβ β ζ= −  ( 1,i n= ), in which 1ζ  and nζ  
are obtained as 

( )

1

* * *

1

*

12 * * 12
1    2

1

1
* *

1 1 1 1

12 * * 12
1  2

1
1

1 (1 )
1

(

)

1 )

1 

(

    ((1

) (

      )
1

)
1

( )

m m

d

srd srd

p

e e X X I
g

Mg X X dI w w I F w

e e X X

h

I
g

I

w

ζ ρ ρ

ρ ρ

′ −

−
′

−

′

′

 
× − − 

 = − − +  −

 − + − − 

+ − − +
−

 



 

      

                         (28) 
* * 1 

1
* * * * *

* * 1 * 

( )

(1 )( ) ( )
1

    

1

      

 (
1

) .

m n
n

n n n d p n
n

s n
n

n

rd

n

e X X I

Mg X X dI x x I F I x
h

e X X

g

I x
g

ζ ′ −

−
′ ′

′ −

= +

 − + − − −  −

−

 
× 


+ +



−







(29)                                     
By defining i jζ  ( 1,...,i n= , 1,...,j p= ) to be the 

jth element of the vector iζ , where iζ ( 2,..., 1i n= −
), 1ζ and nζ  are respectively defined as in (27), (28) 
and (29). The DFBETAS criteria in (20) can be 
considered as below: 

( )  
 

( )
. .( )

i j
srd j

srd j

DFBETAS i
S E

ζ
β

= ⋅


                          

(30) 
 
DFFITS criteria  

DFFITS is another criterion, which can be used to 
derive the impact of each observation on the predicted 
values of the response variable by considering the 
predicted values before and after deleting the ith 

observation. Using the estimator srdβ , the DFFITS 
criteria for the ith observation is defined as  

*

( )  *

( ( )(
)

)
. .(

) i srd srd
srd

i srd

xDFFITS ii
S E x
β β

β

′

′

−
=

 


                                            

         

where *. ).( i srdS E x β′   is the estimated standard 

error of the fitted values by the estimator srdβ . This 
criterion can be written as 

*

( )  * .
.

(
.(

)
)

i
srd

i s

i

rd

xDFFITS
S x

i
E

ζ
β

′

′=


                             (31) 

where iζ ( 2,..., 1i n= − ), 1ζ  and nζ  are 
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respectively as defined in (27), (28) and (29). It should 
be noted that in the denominator of (31), using the 
equation (10), we have: 

 
1* * * 2. .( ) ( )( )i srd i d d iS E x S i x F AF xβ′ ′ ′=    for 1, ,i n= … . 

At last, it should be noted that regularly in ordinary 
least squares regression, the cutoff points for 
DFBETAS  and DFFITS  criteria are taken as 2

n
 and 

2 p
n p−

. But here they have to be modified according 

to equation (9). By taking into account the number of 
data in the augmented model and substituting n  in the 
above expressions with n , the cutoff points are 

considered as 2
n p+

 and 2 p
n

. 

 
Mean shift outlier model 

In fitting a regression model, some of the 
observations may arouse suspicions as they are 
discordant with other observations. Such observations 
are usually referred to as outliers and they may or may 
not have an effect on estimation and inference using the 
prescribed regression model [14]. The mean shift outlier 
model can be used to test if any observation is an 
outlier. For the regression model (1), it is defined as 

iy X zβ γ ε= + + , 1,...,i n=  

where iz  is an n-dimensional vector with 1 at the ith 
position and zero elsewhere, and γ  is the shift for the 
possibly outlying observation. In the above mean shift 
outlier model, 0γ ≠  indicates that the suspected 
observation (that is the ith case) is an outlier. For testing 

0 : 0H γ =  against 1 : 0H γ ≠ , the following F-statistic 
can be considered 

0 1

1

RSS RSSF
RSS
−

=                                                 (32) 

where 0RSS  and 1RSS  are the residual sum of 

squares under 0H  and 1H , respectively. We consider 
the mean shift outlier model and define it in the 
stochastic restricted Liu regression (9) when the data 
have AR(1) errors where the variance of the error term 

in (9) is 2 0
0 p

V
I

σ
 
 
 

, in which V  is as defined in (11). 

We continue by testing if the ith ( 1, 2,...,i n= ) 
observation is an outlier. For this purpose, we reorder 
the data such that the suspected observation to be 
located at the end of the data.  

In the previous subsection, we mentioned that Roy 
and Guria [21] with a suitable modification found a 
transformation matrix that with a deletion of an 
observation the AR(1) structure do not be disrupted. In 
the same way, in what follows and after reordering the 
data, we will also find an appropriate covariance 
structure of the reordered error term such that the 
inherent autocorrelation structure be kept intact. and it’s 
inverse will be used in the F-statistic (32). 

Suppose that the 1n×  vector of responses after 

reordering is 
( )i

o
m

i

y
y d Sg

y
β

 
 = + 
 
 

   , where ( )iy  is the 

vector y  without the ith case, and also the n p×  
reordered matrix of explanatory variables is 

( )i
o

p

i

X

X I
x

 
 

=  
 ′ 

, where ( )iX  is the matrix X  without the 

ith case. Similarly, the n p×  reordered error vector is 

( )

.
i

o d

i

ε

ε ε
ε

 
 
 
 
 

=  In other words, suppose that the regression 

model (9) is stated in the following reordered form 
o o oy X β ε= +                                                                                                         

(33) 
where ( ) 0oE ε =  and 

( 1)
2 2

( 1

( )

) 1
2

1
1

0
( )

( )

( ) )
0 0

0 (1

n p i
o o

p n p p

i p

iV
var

i
V I

i

ϑ
ε σ σ

ϑ ρ

− ×

× − ×

×
−

 
 

= =  
 ′ − 

, and 

where ( )iV  is the matrix V  without the ith row and the 

ith column, and the vector ( ) 'i iϑ  is the ith row of the 

matrix V  which its ith case is omitted. In addition, for 
1,...,i n= , the inverse of the covariance matrix of 

errors is 2 1oVσ − − , where 1oV −  is found as 
1( )

( 1)
1

( 1) 1
2

1

0
0 0

0 1

i
n p

o
p n p p

p

V b
V I

b ρ

−
− ×

−
× − ×

×

 
 

=  
 ′ + 

                      (34) 

where 1( )iV −  is the matrix 1V −  in (12) without the 
ith row and the ith column, and b′  is the ith row of the 
matrix 1V −  without the ith case. Now for the regression 
model (33), the mean shift outlier model can be defined 
as 
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o o o

oo o

y X z
X

β γ ε

δ ε

= + +

= +
                                             (35) 

where 10
1
nz − 

=  
 

 , ( )oo oX X z=  and 
γ
β

δ
 

=  
 

. The 

GLS estimate of β  and the residual sum of squares 

under the hypothesis 0  : 0H γ =  are obtained as 
1 1 1

0 ( )o o o o o oX V X X V yβ − − −′ ′=  and 
1 1

0( )o o o o o oe V e y V P y− −′ ′= −                                (36) 

respectively, where 1 1 1 1
0 ( )o o o o o o oP V X X V X X V− − − −′ ′=  

and 0β  is the stochastic restricted Liu estimator srdβ  
with AR(1) errors. Under the alternative hypothesis 

1  : 0H γ ≠ , the GLS estimates of β , γ  and the 
corresponding residual vector are 

1 1 11

1

( )oo o oo oo o oX V X X V y
β

δ
γ

− − −  ′ ′= = 
 





 and 

o o oor y X δ= −  . Similarly, the residual sum of 
squares can be expressed as 

1 1
1( )o o o o o or V r y V P y− −′ ′= −                           (37) 

where 1 1 1 1
1 ( )o oo oo o oo oo oP V X X V X X V− − − −′ ′= . 

By the expressions obtained in equations (36) and (37), 
the difference between the residual sum of squares 
under 𝐻𝐻0 and 𝐻𝐻1(that is the ith observation isn’t an 
outlier or it is), equals  

1 1
1 0( )o o oo oo o oe V e V rr y P P y− −′ ′ ′− = −  

On the other hand, by the definition of ooX  and z  
in (35), we have 

1
1 2

1 1 1 1
2 2

1 1

(1 )( ) .
(1 ) 1

o o o
oo o oo i i i

i i i

X V X x x xX V X
x x x

ρ ρ ρ
ρ ρ ρ ρ

−
−

− − − +

− +

 ′ − − + +′ =   ′ ′ ′− − + + + 
 

Using the theorem of the inverse of partitioned 
matrices [1], it is found that  

1 1 1 1

1 1 1 1 1 1
2

0

1 1 1
2

0

1 1 1
2 2

0 0

( ) ( )
1   ( ) ( )

1
1   ( )

1
1   ( )

1 1

oo oo o oo oo o o o o o

o o o o o o o o o o o o

l

o o o o o o

l

o o o o o

l l

X X V X X X X V X X

X X V X X V zz V X X V X X
p

zz V X X V X X
p

zzX V X X V zz
p p

ρ

ρ

ρ ρ

− − − −

− − − − − −

− − −

− − −

′ ′ ′ ′=

′ ′ ′ ′′+
+ −

′ ′′−
+ −

′′ ′ ′− +
+ − + −

 

where 0lp  is the last element of 0P  defined in (36). 
Using the above expression and after some 
simplifications, 1 0P P−  can be expressed as 

1 1
1 0 0 02

0

1 ( ) ( ).
1

o o

l

P P V P zz V P
pρ

− −′− = − −
+ −

          (38) 

Therefore, the difference between the residual sum of 
squares can be stated as 

1 1
0 02

0

1 1 1 ( ) ( )
1

o o oo o o

l

o oo oe V e V rr y V P zz V P y
pρ

− −− −′ ′ ′ ′− − −
+ −

=
        

                    (39) 
By (32) and using the expressions given in (37) and 

(39), the following F-statistic can be used 
1 1

0 0
2 1

0 1

( 1) ( ) ( )
(1 ) ( )

o o o o

o o o
l

n p y V P zz V P yF
p y V P yρ

− −

−

′ ′− − − −
=

′+ − −

          (40) 

which has F distribution with 1 and 1n p− −  

degrees of freedom under 0H , when the parameter ρ  
is known. In practice, the parameter ρ  is unknown. By 

Judge et al. [28], an estimate of ρ  ( ρ̂ ) can be used in 
place of the actual parameter value and the F-statistic 
given in (40) goes in distribution to 2

(1)χ . Therefore, for 

finding the outliers using the mean shift outlier model 
(35), the 2

(1)χ  value can be used as the critical value of 

the proposed F -statistic in (40). 
 

Numerical Example  
In this section, the dataset due to Bayhan and Bayhan 

[17] is considered to illustrate the theoretical results of 
the previous sections. There are 75 observations and the 
dataset consists of two independent variables: weekly 
list prices (averages from selected supermarkets) of the 
shampoos ( 1X ) and of a certain brand of soap, 

substituted for shampoos ( 2X ), and one response 
variable: the weekly quantities of shampoos sold. As the 
data are given for a high and irregular inflationary 
period, the sixty of observations are taken as historical 
data, and the fifteen observations of the last 15 weeks as 
fresh data. In what follows the rescaled data are used, 
and each variable is centered and scaled by the unit 
length scaling technique. Bayhan and Bayhan [17] have 
shown that the data are strongly collinear by finding the 
correlation matrix of regressor variables and the error 
terms have AR(1) structure by the Durbin-Watson 
statistic. 

As mentioned before, for the case of AR(1) errors, 
the matrix V  takes the form (11) which depends on the 
unknown parameter ρ . By using the historical data and 
the estimator given in (14), the parameter ρ  is 

estimated as ˆ 0.707ρ = . Then following Bayhan and 
Bayhan [17], we selected the observations 48 and 49 of 
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the transformed historical data, and constructed the 
stochastic linear restriction (4); that is we have chosen 

0.1450 0.1049
0.0077 0.1850

R  
=  
 

 and 0.1303
0.1380

r  
=  
 

. By taking 

the first and the second elements of the first two rows 
and columns of the matrix V , the variance of the error 
term φ  in stochastic linear restriction is determined as 

( )
1 1

1 1

2 2
2 2

2 2

1.413( ) ( )
1.413( ) ( )
1.9991 1

 
1.9991 1

var
ρ ρ

φ σ σ
ρ

ρ
ρρ

− −

− −

 − −   
   

−
=

− 
=

. Now in order to find the Liu biasing parameter d , we 
first consider the canonical model (16) and estimate the 
regression coefficient α  as (0.5, 2.8)α′ = − , then using 
the estimator of the parameter d  given in (19), we have 

an estimate of d  as ˆ 0.417d = , where 2 0 06ˆ .0σ = . 

Different estimators of β  which were discussed in 
the preliminary section and the corresponding estimated 
standard errors are calculated and given in Table 1. For 
the estimator β , the estimated standard errors are 

obtained about 1.5 but using the Liu estimator ( dβ ), 
the estimated standard errors reduce to about 0.6. 
Furthermore, by taking into account additional 
observations and combining mixed estimator with the 

Liu estimator ( srdβ ), the standard errors are about 0.1, 
which shows that lower standard errors of the estimated 
parameters are achieved. Also as mentioned in [8], these 
additional information corrects the wrong sign problem 
of the estimated coefficients. 

For more investigation, the DFBETAS values for the 

jth ( 1, 2j = ) element of srdβ  and the DFFITS  values 
are calculated and the results are presented in Figure 1. 
The Straight lines are the cutoff points. The cutoff 

points are chosen as 2
n p+

 and 2 p
n

, which are 0.48 

and 0.73, respectively, for this study. From Figure 1, 
one can find out that only the first observation is 
recognized as influential with respect to the DFFITS  
criteria since the calculated value exceeds the cutoff 
point 0.73. 

At last, we calculated the F-statistic in (40) for the 
fresh data. The results are given in Table 2. The first, 
the fourth and the fifteenth observations have the largest 
values of the F-statistic, which are 1.31, 1.25 and 2.17, 
respectively. For other observations, the F-statistic is 
obtained less than 1. Therefore, since 2

(1) 3.84χ = (for 

0.05α = ), none of the observations can be considered 
as an outlier for this data set. 

To reveal the efficiency of our methods, a shift is 

Table 1. The estimated values of regression coefficients and their standard errors (in parenthesis) for 0.417d =  
 

1β  2β  

β  2.38 -1.62 
(1.54) (1.54) 

dβ  1.05 -0.61 
(0.65) (0.65) 

srdβ  0.20 0.24 
(0.16) (0.15) 

 

 
Figure 1. DFBETAS  for 1β  ( 1DFBETAS ) and DFBETAS  for 2β  ( 2DFBETAS ) and DFFITS  for fitted values 

by the estimator srdβ . The straight lines are cutoff points. 
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imposed on the dependent variable to investigate its 
impact on finding the outlier and on diagnosing 
influential observations. We have chosen a shift equal to 
0.52 (which is about two standard deviation of y) and 
exerted on 11th observation. In fact, the chosen shift 
value is the largest possible value such that ensures us 
that the error terms of the rescaled shifted data are still 
of the form AR(1). For the new data set, the Liu biasing 
parameter is estimated as 0.855d = , where 

2ˆ 0.018σ = . The corresponding calculated DFBETAS  
and DFFIT  values are displayed in Figure 2. 

As it is seen in Figure 2, the absolute value of the 
DFBETAS and DFFITS criteria for the 11th observation 
tends to be near the cutoff points but do not exceed the 
corresponding values 0.48 and 0.73. Also, the imposed 
shift on 11th observation has reduced the influence effect 
of the first observation on the estimated fitted values. 

Also, the values of F-statistic for the shifted data is 
given in Table 3. It can be seen from table 3, the 
calculated F-statistic for the 11th observation is 4.73 and 

for other observations, it is less than 3. So, since 
2
(1)7.70 3.84χ> = , the 11th observation is correctly 

recognized as an outlier. 
 
Simulation study  

In what follows a simulation study is carried out to 
investigate the performance of the proposed mean-shift 
outlier model and to conduct a survey on changes in 
influential measures in the presence of influential 
observation. Following McDonald and Galarneau [29], 
two collinear explanatory variables are generated from 
the following equation: 

1 2
3

1( ) ,ij ij ix z zλ
λ
−

= +  1,..., ,i t=  1, 2j =  

where 1iz , 2iz  and 3iz  are independent standard 

normal pseudo-random numbers, and λ  represents the 
correlation between two explanatory variables 1x  and 

Table 2. F-statistic values by the estimator srdβ  
Case F-statistic  Case F-statistic  Case F-statistic  

1 1.31 6 0.007 11 0.01 
2 0.005 7 0.0001 12 0.02 
3 0.002 8 0.03 13 0.01 
4 1.25 9 0.001 14 0.0006 
5 0.19 10 0.00001 15 2.17 

 

 
Figure 2. DFBETAS  for 1β  ( 1DFBETAS ) and DFBETAS  for 2β  ( 2DFBETAS ) and DFFITS  for fitted values 

by the estimator srdβ  after changing the 11th observation. The straight lines are cutoff points. 
 

Table 3. F-statistic value by the estimator srdβ  after changing the 11th observation 

Case F-statistic  Case F-statistic  Case F-statistic  
1 0.65 6 0.003 11 4.73 
2 0.0001 7 0.0004 12 2.59 
3 0.00003 8 0.009 13 0.000004 
4 0.36 9 0.002 14 0.003 
5 0.04 10 2.92 15 0.21 
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2x , which is set to be 0.9 and 0.99 in this study. Also, 
the response variable is generated based on the model 

2

1
i j ij i

j
y xβ ε

=

= +∑ , 1,...,i t= , with 1i i iuε ρε −= + , 

where ~ (0,1)iu NID  and the initial value 0ε  is 

sampled from 2 1(0, (1 ) )N ρ −− . The vector of 
coefficients is set to (1, 0.5)β ′= − . With 0.6 and 0.9 
values of ρ , 75, 90, 130 and 160 units of samples are 
produced for 1000 times. Each time the first 60 
observations are taken as historical data, and after being 
rescaled by the unit length scaling technique, they are 
used for estimating the ρ  parameter. The remaining 
(i.e. 15n = , 30, 70 and 100) are taken as fresh data. 
Also for the fresh data, the 1x , 2x  and y values are 
rescaled. Furthermore, the 59th and 60th historical 
data(which are the nearest observations to the fresh 
data) are used as the stochastic restrictions. In each 
iteration, the optimal d  Liu parameter is found for the 
stochastic restricted Liu regression under AR(1). For 
different values of λ , ρ  and n , the probability of type 
I error ( 0.05α = ) is calculated using the method of 
mean-shift outlier model. For this purpose, the 
percentage of the time that the F-statistic for testing 

0 : 0H γ =  is greater than the corresponding critical 
value is calculated and the results are shown in Table 4. 
A glance in the results of this table indicates that the 
significance level remains around 0.05. 

Also, the power of the test for the mean-shift outlier 
model is investigated in Table 4 after shifting the 

generated data set. At this point, in each dataset, the 4th 
fresh observation is taken as an outlier by exerting two 
shift values 3.5 and 4 to the original value of the 
response. These values are more than one time the mean 
of standard deviation of generated dependent 
observations and less than twice of it. Then the power of 
the test is calculated for the shifted data by the 
foregoing method. We remind that also here the shifted 
data are rescaled and before being used in the 
calculations, they’re AR(1) structure is checked by the 
Durbin-Watson statistic. It is shown in Table 4 that for 
each combination of n , λ  and ρ , the power of the 
test increases with the increase of the value of the shift. 
Also, it increases by the increase in the sample size. 

In order to study the impact of the shifted 4th 
observation on the estimated regression coefficients 1β , 

2β  the predicted values of the response variable, the 
mean of absolute values of the DFBETAS  and 
DFFITS  in 1000 replications, with and without 
stochastic linear restrictions, are computed. The results 
are shown in Tables 5 and 6 for the shift values 3.5 and 
4. The proportion of times that the absolute values of 
calculated DFBETAS  and DFFITS  values exceed 

the cutoff points 2
n p+

 and 2 p
n

 (in which 2p =

in this study) are reported in parenthesis. 
 From Tables 5 and 6, it can be seen that for 

larger sample sizes, the mean of DFBETAS , 

DFFITS  and their related proportions for the 

stochastic linear restrictions cases are smaller than the 

Table 4. The probability of type I error and Power of the F test for the mean-shift outlier model for 1 2( , ) (1, 0.5)β β = −  
n  λ  

ρ  Sig. level Power 
Shift=3.5 Shift=4 

15 0.9 0.6 0.025 0.898 0.946 
0.9 0.054 0.948 0.976 

0.99 0.6 0.034 0.919 0.947 
0.9 0.076 0.943 0.974 

30 0.9 0.6 0.034 0.988 0.998 
0.9 0.057 0.995 0.999 

0.99 0.6 0.036 0.994 0.999 
0.9 0.070 0.992 0.998 

70 0.9 0.6 0.050 0.997 1.000 
0.9 0.039 1.000 1.000 

0.99 0.6 0.066 0.998 1.000 
0.9 0.062 0.997 1.000 

100 0.9 0.6 0.050 1.000 1.000 
0.9 0.044 0.996 1.000 

0.99 0.6 0.055 0.999 1.000 
0.9 0.054 0.997 1.000 
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measures for the cases with no stochastic linear 
restrictions. This result may be due to the achievement 
of improved accuracy for the advanced model when the 
sample size is enough large, and its reduced sensitivity 
to the observation which do not have a large 
displacement from the bulk of data. 

For fix values of λ  and ρ , the mean value of 

DFBETAS  and DFFITS  decreases as n  increases 

for both models. But not any significant effect on the 
proportion of detection of influential observation can be 
shown. This may happen because cutoff points have an 
inverse relationship with the sample size and they 
decrease by the increase of n . So although we have a 
decrease in the mean of absolutes of measures, but 
simultaneously a decrease in cutoff points happens and 
causes the proportions to remain almost unchanged. It 
can also be seen from Tables 5 and 6 that with the 

increase in the degree of collinearity (λ  from 0.9 to 
0.99), the mean value of the measures increases for 
small samples while it decreases for large samples. 
Also, it is seen in all cases that increasing of ρ  (the 
autocorrelation parameter) causes a growth in the mean 
value of DFBETAS , DFFITS  and related 

proportions of both models. At last, increasing the size 
of the shift values causes the measures and the related 
proportions to increase in all cases. 

 

Discussion 
In this article, a stochastic restricted Liu estimator is 

presented to reduce the effect of collinearity when there 
are also additional stochastic linear restrictions on the 
vector of parameters and when the data are correlated 
with AR(1) errors. The AR(1) error structure is the one 

Table 5. Mean of |DFBETAS| and |DFFITS| of the 4th observation for 3.5shift =  and in parenthesis the proportion of 
times the calculated criteria exceed the cutoff points. 

n  λ  
ρ  |    (% 1DFBETASMean of |

of influential) 
|    (% 2DFBETASMean of |

of influential) 
Mean of |DFFITS|      (% 

of influential) 
   With 

Restriction 
Without 

Restriction 
With 

Restriction 
Without 

Restriction 
With 

Restriction 
Without 

Restriction 
15 0.9 0.6 0.884 0.860 0.852 0.821 1.325 1.291 

(0.688) (0.671) (0.655) (0.649) (0.773) (0.763) 
0.9 0.926 0.897 0.903 0.882 1.339 1.302 

(0.677) (0.658) (0.668) (0.659) (0.767) (0.761) 
0.99 0.6 0.908 0.888 0.907 0.883 1.344 1.309 

(0.694) (0.695) (0.694) (0.684) (0.777) (0.768) 
0.9 1.018 0.998 0.993 0.981 1.422 1.365 

(0.715) (0.715) (0.699) (0.710) (0.775) (0.764) 
30 0.9 0.6 0.563 0.566 0.560 0.556 0.854 0.851 

(0.6) (0.603) (0.617) (0.613) (0.709) (0.704) 
0.9 0.627 0.622 0.614 0.609 0.911 0.903 

(0.636) (0.632) (0.644) (0.637) (0.726) (0.722) 
0.99 0.6 0.583 0.582 0.571 0.576 0.869 0.865 

(0.617) (0.615) (0.596) (0.606) (0.730) (0.718) 
0.9 0.623 0.642 0.623 0.635 0.912 0.935 

(0.629) (0.642) (0.624) (0.627) (0.722) (0.733) 
70 0.9 0.6 0.424 0.428 0.434 0.439 0.641 0.652 

(0.648) (0.652) (0.662) (0.659) (0.754) (0.763) 
0.9 0.455 0.463 0.462 0.471 0.674 0.685 

(0.665) (0.669) (0.680) (0.687) (0.750) (0.765) 
0.99 0.6 0.410 0.417 0.413 0.420 0.623 0.633 

(0.618) (0.620) (0.630) (0.639) (0.747) (0.749) 
0.9 0.426 0.440 0.436 0.445 0.637 0.654 

(0.632) (0.644) (0.643) (0.649) (0.729) (0.745) 
100 0.9 0.6 0.364 0.372 0.366 0.373 0.541 0.552 

(0.637) (0.647) (0.65) (0.655) (0.77) (0.765) 
0.9 0.392 0.404 0.392 0.404 0.566 0.583 

(0.662) (0.672) (0.676) (0.68) (0.744) (0.754) 
0.99 0.6 0.335 0.345 0.338 0.344 0.510 0.519 

(0.628) (0.630) (0.634) (0.648) (0.755) (0.767) 
0.9 0.358 0.371 0.362 0.373 0.539 0.551 

(0.646) (0.655) (0.651) (0.665) (0.735) (0.740) 
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widely used in regressions with autocorrelated errors. 
By an example it is shown that using the proposed 
biased estimator, more computational accuracy will be 
gained, i.e. there can be found values of the biasing 
parameter d  for which the estimator has smaller MSE  
than the GLS estimator and the Liu estimator. 
Measuring the influence should be done after 
controlling the collinearity, as suggested by Belsely et 
al. [2]. Therefore, we derived influence measures and 
mean-shift outlier method in the case of stochastic 
restricted Liu estimator with AR(1) errors. The 
performance of the results is shown and approved by a 
simulation study. It is shown that the sample size affects 
the power of the proposed test for finding outlier using 
the mean-shift outlier method. A larger sample size 
gives the test more power to detect an outlier. 
Furthermore, when the sample size is large with the 

increase in the degree of collinearity, outliers seem to be 
less likely to be influential and have less influence on 
the regression fit or on the regression parameter 
estimates. The result is inversed for small samples. Also 
generally when the error terms have the higher 
autocorrelated parameter, outliers have more influence 
on the influence measures. 
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