تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,536 |
تعداد دریافت فایل اصل مقاله | 97,206,154 |
تعیین متغیرهای ورودی برای تخمین تابش خورشیدی با استفاده از تئوری آنتروپی و تحلیل مؤلفه اصلی | ||
تحقیقات آب و خاک ایران | ||
مقاله 10، دوره 50، شماره 3، مرداد 1398، صفحه 625-639 اصل مقاله (1.76 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.257150.667906 | ||
نویسندگان | ||
بابک محمدی1؛ زهرا آقاشریعتمداری* 2؛ روزبه مؤذن زاده3 | ||
1گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران کرج، ایران | ||
2هیئت علمی/پردیس کشاورزی ومنابع طبیعی | ||
3استادیار گروه آب و خاک/ دانشکده کشاورزی/دانشگاه شاهرود/ شاهرود/ایران | ||
چکیده | ||
تابش خورشیدی رسیده به سطح زمین یکی از متغیرهای اصلی مورد استفاده در پروژهها و مدلسازیهای هیدرولوژی، کشاورزی، هواشناسی و اقلیمی میباشد. در این تحقیق قابلیت عملکرد روش تحلیل مؤلفه اصلی (PCA) و تئوری آنتروپی (EN) برای تعیین ورودی مدلهای شبکه عصبی مصنوعی پرسپترون چندلایه (MLP)، شبکه عصبی مصنوعی تابع پایه شعاعی (RBF)، ماشین بردار پشتیبان (SVM) و برنامهریزی ژنتیک (GEP) در برآورد تابش خورشیدی در دو ایستگاه همدید کرمان و مشهد به ترتیب در حد فاصل سالهای 1984 تا 2005 و 1980 تا 2004 مورد بررسی قرار گرفت. متغیرهای میانگین دما، میانگین کمبود فشار بخار آب اشباع، دمای کمینه، دمای بیشینه، ساعت آفتابی، رطوبت نسبی، دمای نقطه شبنم، فشار بخار ساعتی، دید افقی و محتوی بخار آب جو به عنوان ورودی روشهای پیشپردازش انتخاب شدند. با توجه به نتایج بهدست آمده در ایستگاه کرمان، مدل ENT-MLP با ریشه میانگین مربعات خطای برابر36/38 (Mj/m2) و ضریب تبیین 93/0 R2= بهترین عملکرد را داشته است. همچنین در ایستگاه مشهد مدل PCA-MLP با ریشه میانگین مربعات خطای برابر75/79 (Mj/m2) و ضریب تبیین 77/0 R2= بهترین عملکرد را داشته است. به طور کلی هر دو روش پیشپردازش تحلیل مؤلفه اصلی (PCA) و تئوری آنتروپی (EN) برای تعیین ورودی مدلهای تخمینگر به منظور تخمین تابش خورشیدی روش مناسبی تشخیص داده شدند. | ||
کلیدواژهها | ||
پیش پردازش دادهها؛ تابش خورشیدی؛ تحلیل مؤلفه اصلی؛ تئوری آنتروپی؛ شبکه عصبی مصنوعی | ||
عنوان مقاله [English] | ||
Determination of Input Variables to Estimate Solar Radiation Using Entropy Theory and Principal Component Analysis | ||
نویسندگان [English] | ||
Babak Mohammadi1؛ Zahra Aghashariatmadari2؛ roozbeh moazenzadeh3 | ||
1Irrigation & Reclamation Engrg. Dept. University of Tehran Karaj, Iran. | ||
2Assistant Prof., Irrigation & Reclamation Engrg. Dept. University of Tehran Karaj, Iran. Tel/Fax:+98-263-2241119 | ||
3Assistant professor, Soil and Water Department, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran | ||
چکیده [English] | ||
Solar radiation arriving to the land surface is one of the major variables that is used in projects and hydrological, agricultural, meteorological and climatic models. In this study, the functionality of the principal component analysis (PCA) and the entropy theory (EN) for determination of inputs to multilevel perceptron artificial neural network (MLP), artificial neural network, radial basis function (RBF), support vector machine (SVM)and genetic programming (GEP), was investigated for estimation of solar radiation at two stations (Kerman and Mashhad) during 1984-2005 and 1980-2004 periods, respectively. The average temperature, mean water deficit pressure, minimum temperature, maximum temperature, sunshine, relative humidity, dew point temperature, hourly vapor pressure, horizontal visibility and water content were selected as inputs of pre-processing methods. The obtained results in Kerman station showed that the ENT-MLP model with RMSE=38.36 (Mj /m2) and R2 = 0.93 have had the best performance. Also in Mashhad station, PCA-MLP model with RMSE=79.75 (Mj / m2) and R2 = 0.77 had the best performance. In general, the both pre-processing principal component analysis and entropy theory were recognized as the proper methods for determination of estimating models input to estimate solar radiation. | ||
کلیدواژهها [English] | ||
Data Preprocessing, Solar radiation, Principal component analysis, Entropy Theory, Artificial Neural Network | ||
مراجع | ||
Aghashariatmadary, Z. (2011). Evaluation of model for estimating total solar radiation at horizontal surfaces based on meteorological data, with emphasis on the performance of the angstrom model over iran. Ph. D. dissertation, University of Tehran. College of Agriculture and Natural Resources. (In Farsi). Angstrom, A. 1924. Solar and terrestrial radiation. Quart .J. Roy. Met, 50: 121-125. Ball RA, Purcell LC, Carey SK (2004) Evaluation of solar radiation prediction models in North America. Agronomy Journal 96:391–397 Azadeh, A., Maghsoudi, A. and Sohrabkhani, S. 2009. An integrated artificial neural networks approach for predicting global radiation. Energy Conversion and Management, 50: 1497–1505. Azeez MAA (2011) Artificial neural network estimation of global solar radiation using meteorological parameters in Gusau, Nigeria. Artificial Applied Science Research 3(2):586–95 Biazar, S.M. (2017) Input variables determination using Gamma test and Entropy theory for daily evaporation prediction. Thesis is approved for the degree of Master of Science in Water Resources. Department of Water Engineering, Faculty of Agriculture, University of Tabriz. September 2017. (In Farsi) Chen JL, Li GS, Wu SJ (2013) Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration. Energy Conversion and Management 75:311–318 Dawson, C.W., Abrahart, R.J., Shamseldin, A.Y. and R.L. Wibly. 2006, Flood estimation at ungauged sites using artificial neural networks. Journal of Hydrology. 319 (1-4): 391-409. Ferreira, C. 2001. Gene expression programming: a new adaptive algorithm for solvingproblems. Complex Systems, Vol.13(2): 87–129. Hargreaves, G.H., and Samani, Z.A. 1982. Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering ASCE, 108: 223-230. Harmancioglu, N. B. 1984. Entropy concept as used in determination of optimum sampling intervals. Proc. of Hydrosoft 84, International Conf. on Hydraulic Engineering Software, September 10-14, 1984. Portoroz, Yugoslavia, pp. 6-99 and 6-110. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M. and L. Fernandez. 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research 34(3): 807–816. Jahani, B., and Mohammadi, B. 2018. A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran. Theor Appl Climatol (2018). https://doi.org/10.1007/s00704-018-2666-3 Kamali, S., Aghasariatmadari, Z. (2018). Evaluation of the effects of atmospheric pollutants on the performance of Angestrom- Prescott equation in estimating solar radiation (Case Study: Karaj). Iranian Journal of Soil and Water Research, 48(5), 1053-1061. doi: 10.22059/ ijswr. 2018. 233499. 667682 Khalili and Rezai Sadr. (1997). Estimation of solar radiation in iran, based on climate data. Journal of Geographical Research 84: 15-35. (In Farsi). Lazzus JA, Ponce AAP, Marin J (2011) Estimation of global solar radiation over the city of La Serena (Chile) using a neural network. Applied Solar Energy 47(1):66–73 Long H, Zhang Z, Su Y (2014) Analysis of daily solar power prediction with data-driven approaches. Applied Energy 126:29–37 Mohammadi, B. (2017) Daily Evaporation prediction based on a hybridization of Artificial Neural Network and firefly Optimization Algorithm. Thesis is approved for the degree of Master of Science in Water Resources. Department of Water Engineering, Faculty of Agriculture, University of Tabriz. July 2017. (In Farsi) Mohammadi, B. Emamgholizadeh, S. (2017) Using principal component analysis to inputs the effective rainfall estimates based on entries to help support vector machine and artificial neural network. Journal of Rainwater Catchment Systems. 2017; 4 (4) ,67-75. (In Farsi) Mohammadi, B. Ghorbani, M A. (2016) Gamma test application in input preprocessing for time series modeling of rainfall. Journal of Rainwater Catchment Systems. 2016; 4 (3) ,61-72. (In Farsi) Mohammadi B, Moazenzadeh R. (2017) Uncertainty analysis of artificial neural network models and support vector machine in rainfall estimation. Journal of Rainwater Catchment Systems. 2017; 5 (1) :43-50. (In Farsi) Noori, R., Karbassi, A. and M. Sabahi. 2010. Evaluation of PCA and gamma testtechniques on ANN operation for weekly solid waste prediction. Journal of Environmental Management. 91(3): 767-771. 20. Singh, VP. and CY. Xu. 1997. Evaluation and generalization of 13 mass transfer equations for determining free water evaporation. Hydrological Process. 11:311–324 Pai, P.F. and Hong, W.C., 2007. A recurrent support vector regression model in rainfall forecasting. Hydrological Processes: An International Journal, 21(6), pp.819-827 Rahimikhoob A. 2010. Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew. Energy. 35, 2131-2135. Remesan, R. Shamim, M.A. and Han, D. (2008). Model data selection using gamma test for daily solar radiation estimation. Hydrological Processes, 22, 4301-4309. Redy, K.S., and Ranjan, M. 2003. Solar resource estimation using artificial neural networks and comparison with other correlation models. J. Energy Conversion and Management, 44: 2519-2530. Sabziparvar A.A., and Shetaee H. 2007. Estimation of global solar radiation in arid and semi-arid climates of East and West Iran, Energy 32: 649–655. Shamshirband S, Mohammadi K, Chen HL, Narayana Samy G, Petković D, Ma C.(2015) Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran. J Atmos Solar-Terrestrial Phys. 2015;134:109-117. doi:10.1016/j.jastp.2015.09.014 Soltani, S., and Morid, M. (2005). Comparative estimation of global solar radiation using Hargeavessamani and artificial neural network methodologies, Journal of Science of Agriculture, 15: 69-77. (In Farsi) Skeiker K. 2006. Correlation of global solar radiation with common geographical and meteorological parameters for Damascus province, Syria, Energy Conversion and Management, Mgmt, 47: 331-345. Tymvios, F. S., Jacovides, C. P., Michaelides, S. C., and Scouteli, C. 2005. Comparative study of Angstrom and artificial neural network methodologies in estimating global solar radiation. J. Solar Energy, 78: 752-762. Xu, H. Xu, C. Y, Sælthun, N. R. Xu, Y. Zhou, B and Chen, H. 2015. Entropy theory based multi-criteria resampling of rain gauge networks for hydrological modelling – A case study of humid area in southern China. Journal of Hydrology. 525, 138-151. | ||
آمار تعداد مشاهده مقاله: 471 تعداد دریافت فایل اصل مقاله: 429 |