تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,108 |
تعداد دریافت فایل اصل مقاله | 97,206,677 |
پپیشبینی و ارزیابی ارتباط دبی رودخانه در ایستگاههای هیدرومتریک متوالی با استفاده از روشهای ترکیبی GPR-EEMD (مطالعه موردی: رودخانه هوستونیک) | ||
تحقیقات آب و خاک ایران | ||
مقاله 7، دوره 50، شماره 10، اسفند 1398، صفحه 2473-2485 اصل مقاله (1.37 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2019.280337.668195 | ||
نویسندگان | ||
کیومرث روشنگر* 1؛ معصومه چمنی2 | ||
1دانشیار گروه آب، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران | ||
2دانشجوی کارشناسی ارشد، گروه آب، دانشکده عمران، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
پیشبینی دقیق دبی در رودخانهها، از مهمترین مؤلّفههای فرآیندهای هیدرولوژیکی و هیدرولیکی در مدیریت منابع آب، به ویژه در اتّخاذ تدابیر مناسب در مواقع خشکسالی و بروز سیلاب است. در این تحقیق از تابع موجک و تجزیۀ مد تجربی یکپارچه که از ابزارهای محاسبات نرم محسوب می شوند، جهت استخراج ویژگیهای سری زمانی استفاده گردیده و کارایی مدلهای موجک- گوسین (DWT- GPR) و تجزیۀ مد تجربی یکپارچه- گوسین (EEMD- GPR) برای پیشبینی دبی بین سه ایستگاه متوالی رودخانه هوستونیک، واقع در آمریکا مورد بررسی قرار گرفته است. برای این منظور در گام اول، مقدار دبی ایستگاه پاییندست، توسط ایستگاههای بالادست با استفاده از مدل رگرسیون فرایند گاوسی پیشبینی شده است. سپس سریهای زمانی دبی و اشل توسط تبدیل موجک و تجزیۀ مد تجربی یکپارچه به زیرسریهایی تجزیه گشته و این زیرسریها جهت شبیهسازی رابطه دبی- اشل وارد مدل رگرسیون فرایند گاوسی شدند. همچنین تأثیر هر یک از زیرسریهای روش تجزیۀ مد تجربی یکپارچه (Residual and IMFs) در نتایج پیشبینی، بررسی گردید. مشاهده گردید که ناکارآمدترین زیرسری در تجزیۀ مد تجربی یکپارجه، زیرسری باقیمانده (Residual) میباشد. نتایچ حاکی از آن است که روشهای ترکیبی موجک (DWT- GPR) و تجزیۀ مد تجربی یکپارچه (EEMD- GPR) تا حدود زیادی باعث بهبود نتایج گردیدند. به عنوان نمونه،برای مرحله آزمون مدل برتر پیشبینی دبی ایستگاه دوم، مدل تلفیقی تجزیه مد تجربی یکپارچه- گوسین 74/0DC= را به 80/0DC= و مدل تلفیقی موجک- گوسین 74/0DC= را به 83/0DC= ارتقاء داد. | ||
کلیدواژهها | ||
دبی رودخانه؛ تجزیۀ مد تجربی یکپارچه؛ تبدیل موجک گسسته؛ رگرسیون فرایند گاوسی؛ ایستگاه های متوالی | ||
عنوان مقاله [English] | ||
Prediction of River Discharge and Assessment its Relationship at Consecutive Hydrometric Stations Using GPR-EEMD Combined Techniques (Case Study: Housatonic River) | ||
نویسندگان [English] | ||
kiyoumars roushangar1؛ masoume chamani2 | ||
1Associated Professor, Department of Water Engineering, Faculty of civil, Tabria Univercity, Tabriz, Iran. | ||
2M. Sc. Student, Department of water resources engineering, Faculty of civil, Tabria Univercity, Tabriz, Iran. | ||
چکیده [English] | ||
Accurate forecasting of river flow is one of the most important factors in surface water resources management, especially during flood and drought periods. In this research, the wavelet function and the ensemble empirical mode decomposition (EEMD), which are considered as soft computing tools, were used to derive the time series features, and the efficiency of the wavelet- Gaussian and the ensemble empirical mode decomposition-Gaussian models for predicting the discharge between the three consecutive stations located in the Housatonic river have been investigated. For this purpose, in the first step, the discharge of downstream stations is predicted by upstream stations using the Gaussian process regression model. Then, the discharge-stage time series was broken up by wavelet transform and ensemble empirical mode decomposition into cages, and these subclasses were introduced into the Gaussian process regression modeling to simulate the discharge-stage relationship. Also, the effect of each of the sub-series of ensemble empirical mode decomposition model (Residual and IMFs) was studied to improve predictive outcomes. It was observed that the most inefficient subseries in the ensemble empirical mode decomposition model is the residual subseries. The results indicate that wavelet compound techniques (DWT-GPR) and ensemble empirical mode decomposition (EEMD-GPR) have improved the results to a certain extent. As an example, for the test stage, the best prediction model of the second station, the combined model of ensemble empirical mode decomposition-Gaussian upgraded determination coefficient (DC) from 0.74 to 0.80 and the combined model of wavelet-Gaussian upgraded DC from 0.74 to 0.83. | ||
کلیدواژهها [English] | ||
discharge, Ensemble empirical mode decomposition, Discrete Wavelet Transform, Gaussian process regression, Sequential stations | ||
مراجع | ||
Adarsh, S. VishnuPriya, M. S. Narayanan, S. Smruthi, M. S. George, P. & Benjie, N. M. (2016), Trend analysis of sediment flux time series from tropical river basins in India using non-parametric tests and multiscale decomposition. Modeling Earth Systems and Environment, 2(4), 187. Adnan, R. M. Yuan, X. Kisi, O. & Yuan, Y. (2017). Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 29(1), 286-294. Alizadeh, M. J. Kavianpour, M. R. Kisi, O. & Nourani, V. (2017). A new approach for simulating and forecasting the rainfall-runoff process within the next two months. Journal of Hydrology, 548, 588–597. Amirat, Y. Benbouzidb, MEH. Wang, T. Bacha, K and Feld, G. (2018), EEMD-based notch filter for induction machine bearing faults detection, Applied Acoustics, 133: 202–209. Aussem, A. Campbell, J. and Murtagh, F. (1998), Wavelet-based feature extraction and decomposition strategies for financial forecasting, Journal of Computational Finance, 6 (2): 5–12. Behzadi, M. Asghari, K. Aazi, M and Palhang, M. (2009), Generalization performance of support vector machines and neural networks in runoff modeling, Expert Systems with Applications, 36: 7624-7629. Danandeh Mehr, A. Kahya, E and Olyaie, E.(2013), Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique, Journal of Hydrology, 505: 240-249. Farajzadeh, J and Alizadeh, F. (2018), A hybrid linear–nonlinear approach to predict the monthly rainfall over the Urmia Lake watershed using wavelet-SARIMAX-LSSVM conjugated model, Journal of Hydroinformatics, 20 (1): 246–262. Kisi, O. and Cobaner, M. (2009), Modeling river stage-discharge relationship using different neural network computing techniques, 37 (2): 160-169. Kisi, O. and Cimen, M. (2011), A wavelet-support vector machine conjunction model for monthly stream flow forecasting, Journal of Hydrology, 399: 132 –140. Kisi O. and Shiri J. (2011), Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models, Water Resource management, 25: 3135 –3152. Modaresi, F. Araghinejad, S. & Ebrahimi, K. (2017). A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasting in Linear and Nonlinear Conditions. Water Resources Management, 1-16. Roushangar, K. Mehrabani, F. V. and Alami, M. (2013), Forecasting daily stream flows of vaniar river using Genetic Programming and Neural Networks approaches, J. Civil Eng, Urban,3 (4): 197- 200. Roushangar, K. Alizadeh, F. and Adamowski, J. (2018), Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscaleentropy approach, Environmental Research, 165: 176–192. Seyam, M. Othman, F. & El-Shafie, A. (2017). Prediction of Stream Flow in Humid Tropical Rivers by Support Vector Machines. In MATEC Web of Conferences (Vol. 111, p. 01007). EDP Sciences. Tiwari, M. K. & Adamowski, J. F. (2014), Medium-term urban water demand forecasting with limited data using an ensemble wavelet–bootstrap machine-learning approach. Journal of Water Resources Planning and Management, 141(2): 04014053. Wu, Z. Huang, NE. (2004), A study of the characteristics of white noise using the empirical mode decomposition method, Proc RS Lond 460A: 1597–1611. Wu, Z. and Huang, N. E. (2009), Ensemble empirical mode decomposition: a noise-assisted data analysis method, Advances in Adaptive Data Analysis, 104 (38): 14889–14894. | ||
آمار تعداد مشاهده مقاله: 615 تعداد دریافت فایل اصل مقاله: 440 |