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1. Introduction 

Modeling and identification of Shape Memory Alloy (SMA) 

actuators for practical applications have attracted researchers due 

to some challenges. The chief difficulty in modeling and 

identification of these kinds of actuators is that they suffer from 

nonlinear saturated hysteretic behavior in forward and reverse 
transformation phases. Furthermore, there have been excessive 

challenges in controlling of SMA actuators during the recent 

years. Hysteresis behavior may result in steady state errors and 

limit cycle problems when conventional controllers are employed 

for trajectory control [1]. Furthermore, although feedback 

methods like Proportional–Integral (PI) control with 
appropriately tuned gains can provide adequate performance for 

slowly varying reference signals, they are not suitable for 

oscillatory motions about the reference trajectory with fast 

varying reference signals [2]. 

In hysteresis, the value of the output of the system depends 

not only on the current input, but also on the previous inputs 
and/or the initial value. Actually, at any available point in the 

input-output diagram, there are several curves that may represent 

the future behavior of the system. The behavior of the curve is a 

function of the sequence of past maximum or minimum values of 

the input [3-6]. This kind of nonlinearity might cause 

performance degradation specifically in positioning applications. 
If this phenomenon is ignored, it will increase the inaccuracy in 

open loop control and degrades the tracking performance of the 

actuator [7]. Consequently, obtaining accurate mathematical 

models of these systems is a complex task [8-10]. Based on these 
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explanations, recent studies on control of SMA actuators have 

been led to use methods that are nonlinear.  

There are numerous hysteresis mathematical models such as 

Preisach, Krasnosel’skii–Pokrovskii (KP), Prandtl–Ishlinskii (P-

I), Duhem, Bouc–Wen, and Maxwell-Slip which are fully 

presented and analyzed according to their applications in 
modeling, control and identification of dynamical systems in Ref 

[7].  

Preisach is one of the most popular operator-based models to 

predict the hysteresis behavior of nonlinear systems such as 

shape memory alloys [11] and magnetorheological fluids [12]. 

Duhem model, a rate-independent hysteresis model, was used for 
conducting polymer actuators by Wang et al. in Ref [13], and 

was experimentally identified and combined with the linear 

dynamics of the actuator. Also, the inversed form of the model 

was obtained and employed to control the displacement of the tri-

layer actuators without having any external feedback. 

Identification process was carried out using an inverse neural 
network model. It was shown that the position tracking errors are 

diminished by more than 50% by integration of the hysteresis 

inverse model into an inversion-based feedforward controller.  

In Ref [14], the application of a generalized play operator was 

investigated in formulating a generalized Prandtl–Ishlinskii (GPI) 

model. Their presented model can characterize symmetric and 
asymmetric hysteresis properties with output saturation. To 

describe asymmetric and saturated output–input hysteresis loops, 

the generalized play operator uses different envelope functions 

under increasing and decreasing inputs. The validity of their 

presented generalized model to characterize symmetric and 

asymmetric hysteresis properties was verified by comparing the 
model outputs with the measured major and minor hysteresis 

loops of various types of actuator such as SMA, 

magnetostrictive, and piezoceramic actuators. The modeling 

results show that the presented GPI model is capable of 

predicting the hysteresis loops of various smart actuators with the 

output saturation. 

According to Sayyaadi et al. [15], the hysteresis of SMA 
actuators can efficiently be compensated by using the inverse of 

the phenomenological hysteresis models. In their work, the tip 

deflection of a large deflection flexible beam actuated by a SMA 

wire was controlled using a feedforward–feedback controller. 

The GPI inverse model was employed in feedforward part of the 
control system whereas a conventional proportional–integral (PI) 

feedback controller was added to the feedforward controller to 

improve the precision together with removing the steady state 

error in the process of position control. In another similar work, 

Zakerzadeh and Sayyaadi [16] used the GPI hysteresis model for 

modeling the hysteresis of SMA actuator. Using inverse of the 
GPI hysteresis model as a feedforward controller, they also 

implemented the position regulation control of the actuator. This 

work was carried out in a way that the proposed hysteresis model 

maps SMA temperature into position. To control the length of an 

SMA wire, different methods have been used. Due to hysteresis 

behavior of these materials, PID controllers are not appropriate 
solely [17]. Therefore, the combination of different controllers 

such as fuzzy and PID controller can be used. Ahn and Nguyen 

implemented this control method on SMA actuators [18]. Also, 

in [19-21], this technique has been implemented on different 

structures. Ahn and Nguyen implemented an optimized PID 

control method for SMA actuators by using genetic algorithm 
and the Preisach hysteresis model [17]. 

In the present research, it is experimentally shown that the 

GPI hysteresis model developed by Al Janaideh et al. in [14, 22-

24] has a potent capability to predict hysteresis of SMA actuator. 

Also, the result of [25] demonstrates that amid the 

phenomenological hysteresis models such as Preisach model and 

Krasnoselskii–Pokrovskii model, the GPI is capable of modeling 
the behavior of SMA actuators in a more accurate way. 

Additionally, the issue of tracking minor hysteresis loops because 

of considerable nonlinear behavior of the system has been 

addressed and studied in this paper since this problem has not 

been investigated in many papers. Furthermore, according to the 

result of our previous paper [26], rotation of a morphing wing 
mechanism has considerable sensitivity to the voltage that is 

applied to the SMA. Thus, in this work, the control tracking has 

been applied for a morphing wing mechanism actuated by one 

SMA wire. The main contribution of this work is to use P-I 

model and design a fuzzy controller based on this hysteresis 

model. The controller is designed using the identified P-I model 
and then is implemented on the experimental setup. In other 

words, only the model is used to design a controller without any 

need to have the experimental setup. This process of designing a 

controller would lead to saving much amount of time. 

In this paper, first the GPI model developed by Al Janaideh et 

al. [22] is presented so as to predict the hysteresis behavior of a 
SMA wire actuator. After proposing the hysteresis model, an 

identification process based on Genetic Algorithm (GA) is 

presented. An optimization algorithm is also proposed in Section 

IV. GPI model is trained by some experimental data collected 

from a test setup consisting of a morphing wing mechanism 

actuated by SMA wire. The parameters of the GPI model are 
identified with the purpose of adapting the model response to the 

real hysteretic nonlinearity. The accuracy of the obtained GPI 

model with known parameters in modeling nonlinear hysteric 

behavior of first order ascending curves and higher order minor 

loops is validated. To verify the efficiency of the presented GA-

based hysteresis model, a fuzzy-PID controller is implemented 
on closed-loop controller that uses a hysteresis model constructed 

from the proposed hysteresis model and some tracking control 

results are presented in Section VI. For square and sinusoidal 

waveform trajectories, the tracking control experiments are 

carried out. The results show small tracking errors in each case 

indicating proper identification of P-I model, and, designing a 
fuzzy-PID controller based on the model. 

2. Generalized Prandtl-Ishlinskii Model 

The classical P-I model characterizes the hysteretic behavior 
of materials using the classical stop (or play) operator with a 

density function. This operator is a continuous rate-dependent 

operator that determines the width of the hysteresis operator and 

is characterized by the input u and the threshold w. Further 

details about it can be found in [5, 27]. Assume that Cm[0,T] is 

the space of the piecewise monotone continuous functions and 
the input u(t)∈Cm[0,T] is monotone on each of the sub-intervals 

[ti,t(i+1)], where t0<t1<⋯<ti<t(i+1)<⋯<tN=T. So, the output of the 

generalized P-I model, ygeneralized, can be derived as follows [14]: 

0
( ) ( ) [ ]( )

W

generalized wy t D w H u t dw   (1) 

where D(w) is an integrable positive density function, w 
represents the positive threshold as 

w0<w1<⋯<wi<w(i+1)<⋯<wN=W, and Hw[u] is the generalized 

play hysteresis operator which can analytically be written as: 
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where fw(u,z)=max{γl(u)-r,min(γr(u)-w,z)}. For practical 

applications that use a finite number of generalized hysteresis 

play operators, Eq. (1) would be written as [14]: 

0

(k) ( ) [ ](k)
i

N

generalized w

i

y D w H u


  (3) 

Based on Eqs. (1) and (3), the output of GPI model is a 

function of shape of the envelope, density and threshold 

functions. The hysteresis loop of a specific material generally 

defines the shapes of these functions. Moreover, whether such 
material has asymmetric hysteresis loops or not can affect the 

shape of these functions, and the output of these functions is a 

function of their parameters. Therefore, these parameters need to 

be obtained based on some experimental data of the actuator for 

properly modeling the behavior of these kinds of materials. 

Because of several appropriate properties of hyperbolic tangent 
functions [14], in this work, the following functions are chosen 

for the envelope functions of the generalized play operator: 

1 2 3 4( ) tanh( )   r u P P u P P  (4) 

5 6 7 8( ) tanh( )   l u P Pu P P  (5) 

Additionally, the density and threshold functions are selected 

as follows [14]: 

10

9 ( 0,1,..., )kP w

kp Pe k N


   (6) 

11 ( 0,1,..., )kw P k k N   (7) 

The 11 coefficients, including P1, P2, . . . , P11, need to be 
identified for implementation of the GPI model. This process 

which is called training process can be carried out using input–

output experimental data. In this work, the implementation of 

training process is accomplished with the MATLAB optimization 

Toolbox. The goal is to minimize the error between the predicted 

values from the P-I model and the values collected from 
experimental test setup. Experimental test setup with a SMA wire 

actuator is used to obtain the experimental data. The following 

section will explain more details about this experimental setup. 

 

3. Morphing Wing Experimental Test Setup 

Morphing wing is a wing capable of changing its shape at 

different flight conditions. As birds can change the shape of their 

wings in order to enhance flight performance, an aircraft wing 

can also have different shapes for different flight conditions. 

Therefore, there is a continues research to develop a wing 
capable of morphing like birds’ wing, and several concepts and 

designs have been presented so far [28, 29]. Incorporating smart 

materials and structures into the design and fabrication of 

morphing wings, the interest in the morphing structures have 

been increased [30]. Shape memory alloy (SMA) actuators are 

one of the most common smart materials which are being used in 
these wings due to some their appropriate properties such as their 

high power to mass ratio, frictionless actuation, silence, and the 

simplicity of their mechanisms [31, 32]. 

The experimental setup that is used in this research consists of 

a mechanism which is suitable for applications related to 

morphing wing which is shown in Figure 1. In other words, a 

wing can use this mechanism to change its shape at different 
flight conditions in order to increase its efficiency [33].Universal 

joints are employed to connect SMA wire actuators to two 

airfoils allowing revolutions in two different directions. Two 

separate DOFs are achieved using two SMA wires, and the 

mechanism is capable of providing the sweep and gull degrees of 

freedom that are shown in Figure 2b and c respectively. Also, 
two springs are used causing the mechanism to come back to its 

initial position when the SMA actuators are not active since most 

of SMA actuators act in one direction (usually in tension). 

Placing the mechanism between adjacent sections results in 

having large deformations and that would be a suitable design for 

morphing wing applications since it improves speed range and 
maneuverability of the aircraft. Gull and sweep modes can be 

achieved using this mechanism in a wing. Position sensors are 

embedded in the joints of the mechanism. Two directions of 

rotation can be generated independently using the SMA 

actuators. However, only one of these motions is used to prove 

the concept of the presented modeling strategy. 

As shown in Figure 3, a morphing wing mechanism test setup 

and its components are used to study the ability of the GPI model 

in modeling the behavior of the presented mechanism actuated by 

a SMA wire. This test setup is also used to investigate the 

performance of control structure. Figure 4 shows the schematic 

interconnection of the experimental setup components. The setup 
which is used to obtain experimental data consists of a test-bed 

(the morphing wing mechanism actuated by SMA wire and a 

potentiometer), a PC with a Windows-based operating system, a 

data acquisition system, essential electronic circuits (bridge 

circuitry) and a DC power supply. 

 

a) 

 

b) 

  

Figure 1. (a) Two degree of freedom SMA Actuated Morphing Mechanism, (b) 

Displaced shapes of the mechanism [26]. 

 
 

 

a) 
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b) 

 

c) 

 

Figure 2.  (a) Assemblage of different sections to achieve large 

deformations, (b) Deformed wing (gull), (c) Deformed wing (Sweep )[26]. 

 
 

Table 1 presents the main specifications of the SMA wire 

actuator used in the proposed mechanism. The SMA actuator is 

made of Nitinol (Ni-Ti) alloy that has great electrical and 
mechanical properties, long fatigue life, and high corrosion 

resistance. The morphing wing mechanism is developed with a 

Flexinol actuator wire manufactured by Dynalloy Inc. This Ni–Ti 

SMA actuator wire is a one-way high temperature (90◦C) shape 

memory with 0.01 inch diameter. Table 2 lists the specifications 

of the presented setup from that the experimental data is obtained 
to validate the results of P-I model as well as control system. 

 

 

 

Figure 3.  A View of the experimental test setup 

 

Figure 4.  Schematic of the components of the experimental setup. 

 

Table 1. SMA Specifications 

Parameter Definition Value Unit 

dw Diameter 0.01 In 

ρ Density 6.45 g/cm3 

Mf Martensite final temperature 43.9 ᵒC 

Ms Martensite start temperature 48.4 ᵒC 

Af Austenite final temperature 68 ᵒC 

As Austenite start temperature 73.75 ᵒC 

 

Table 2. Components of the Experimental Setup 

Test-Bed 

Morphing wing mechanism with 0.01-inch 
NiTi Flexinol wire & potentiometer pair, 

A test-stand 

Data Acquisition 
National Instrument, SCB-68 Noise 
Rejecting, Shielded I/O, Connector Block 

PC 

Hardware Core2 Duo 2 GHz CPU, 2GB RAM 

Software Windows 7, LabVIEW 

Circuits 

Bridge circuitry with instrumentation 
amplifying and anti-aliasing filter, 

Voltage-controlled current amplifier circuit 

4. Identification and Validation Processes 

A slow decaying ramp signal shown in Figure 5 is the input to 

SMA wire. This input voltage is used to train the model and to 

identify the 11 unknown parameters of the GPI model. This input 

voltage is applied to the SMA wire and increases from a 
minimum value (i.e. zero) up to a value lower than maximum 

voltage and higher than some lower voltages which results to 

some First Order Descending (FOD) reversal curves attached to 

the ascending branch of the major loop. 642 data set containing 
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the major loop and 10 first order descending reversal curves 

attached to the major loop is used for the training process of the 
GPI model. The switching values of these curves are chosen as: 

[3.5, 3.1, 3, 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, and 2.2] (volt). The 

input voltage to the current amplifiers of SMA actuator is 

illustrated in Figure 5. The change in the mechanism rotation is 

negligible for input voltage values less than 2.2 (volt). The 

experimental data used for the training process is shown in 
Figure 5(b). 
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Figure 5.  (a) Applied input voltage used for the training process, (b) 

Experimental data used for the training process. 

 

The FOD curves have numerous advantages. For instance, 

compared to higher order transition curves, it is less hard to find 

FOD curves with experiments. Another advantage of FOD curves 
is that the measurements of these curves start from a well-defined 

state, namely the state of negative or positive saturation [5]. It is 

worthwhile to state that the input voltage is applied to the 

amplifiers of SMA actuators after the first cycle of SMA heating 

and cooling. 

In this stage, an offline system identification problem should 
be solved. Unknown parameters of P-I model are considered as 

vector Θ. A least-square loss function for the prediction-error is a 

natural minimization objective for system identification, stated as 

the following optimization problem: 

    
2

exp

1

min ( ) ( );




   
T

PI

n k n a k

k

J y t y x t  (8) 

including the noisy experimental scalar measurement yn
exp at 

the instant time tk and its estimated value obtained through 

simulation. The simulation is implemented with unknown 

parameter values set to Θ, assuming specific initial conditions for 

the states. In both the experiment and the simulation, a specific 
identification signal u which is depicted in Figure 5 is applied to 

the system as input.  

There are many different ways to solve this optimization 

problem in hysteresis materials. Kao and Fung [34] utilized 
modified particle swarm optimization (MPSO) to identify the 

parameters of Scott–Russell mechanism which is driven by a 

piezoelectric element. A hysteresis modeling method that 

employs Genetic Algorithm (GA) was presented in [5] to obtain 

the optimized modeling parameters. Kwok et al. [35] suggested 

an asymmetric Bouc–Wen model for characterization of 
hysteresis in a magnetorheological fluid damper with the use of 

GA. A new genetic algorithm with adaptive crossover and 

mutation stage is developed to optimize the parameters of the 

model. Other techniques such as neuro-fuzzy [36-38] and particle 

swarm optimization [39] can also be used to identify the 

unknown parameters of the GPI model. In our study, GA is 
utilized for identification of the unknown parameters of P-I 

hysteresis model. The specifications of the GA implemented for 

the current system identification problem are listed in Table 3. 

While motivated by targeting at the SMA-actuated morphing 

mechanism, the optimization problem formulated above, as well 

as all the solution methodology discussed hereafter in this 
section, applies to the comprehensive scope of nonlinear system 

identification. In gradient-based methods to this generic problem, 

gradients are obtained by numerically perturbing unknown 

quantities and measuring their effects on the prediction 

(modeling) error. This information is then used to find directions 

to search the design variables space. These approaches, although 
theoretically simple and extensively studied, can be very 

challenging and inefficient in practice [40]. Actually, handling 

the design constraints of the problem and the nonlinear hysteretic 

behavior of SMA might take substantial effort and the algorithms 

might easily get entrapped in local minima rather than 

converging to the global optimum. Extensive search, on the other 
hand, although having a great chance of convergence to the 

global minimum (provided that a fine grid is used to search the 

design space), is inefficient and mostly requires an excessive 

computational cost. To resolve these drawbacks, evolutionary 

algorithms exploit heuristics and soft-computing intelligence. 

Among these, the genetic algorithm (GA) has been chosen in this 
study due to its flexibility and benefits. Inspired by the way that 

nature selects better solutions and evolves its species, GA applies 

analogous concepts and mechanisms (including selection, 

crossover, mutation and elitism) to a population of solutions in 

order to evolve them and promisingly converge to a near global 

optimum. Genetic algorithms are well-established in the 
literature. More details on GA operators and concepts of their 

implementation, and some applications in engineering problems 

can be found in [41]. The whole process which is used in the 

identification process can be observed in Figure 6. 

To identify the 11 unknown parameters of the GPI model, 

MATLAB optimization Toolbox is used. The identification 
process is implemented for minimizing the error between 

predicted output of the GPI model and the data obtained from the 

experimental test setup. The values of identified parameters are 
reported in Table 4. The P-I model, unlike other hysteresis 

modeling strategies, does not have exact output even for the 
training data. Therefore, Figure 7 compares the experimental data 
and the output of the GPI model for the actuation voltage input of 

Figure 5. According to this figure, the GPI model with selected 
envelope, threshold, and density functions with their identified 

parameters in Table 4 is capable of effectively characterizing the 

behavior of the SMA wire actuator. Of course, there are only 

some minor differences for some data. To show the accuracy of 
modeling in a better way, the maximum, mean and mean squared 

values of the absolute error are reported in Table 5. As the 

maximum rotation angle of the setup achieved by the SMA wire 
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actuation is 16.3 degree, the maximum modeling error in this 

case is about 9.33% of the maximum output. Additionally, the 

number of the generalized play operators, i.e. N, which was used 

in the modeling process, is chosen as 20. 

Table 3. Specifications of the GA Implemented for System 

Identification 

Value/Setting GA/Operation options 

15 Population Size 

50 Generations 

Stochastic uniform Type 

Selection 

Ranking based on J(Θ) Fitness 

Scattered Type 

Cross-over 

0.05 Prob. 

0.05 Mutation Prob. 

0.2 Migration Fraction 

2 Elite Count 

 

 

Figure 6. System identification process by GA 

 

Table 4. Parameters of GPI Model Identified by GA 

P1 3.3784 P2 1.6268 P3 -3.7776 

P4 1.5592 P5 3.7571 P6 1.7893 

P7 -4.090 P8 -1.154 P9 0.5657 

P10 0.3016 P11 0.1378   
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Figure 7.  Comparison between the rotations of the mechanism predicted by 

the GPI model and the experimental test data - training process 

Table 5. System Modeling Error - Training Process 

Mean of Absolute 

Error 

Max of Absolute 

Error 

Mean of Squared 

Error 

0.21 deg 1.52 deg 0.11 deg 

 

Majority of the current phenomenological hysteresis models 
have difficulty in modeling higher order hysteresis minor loops. 

For appraising the capability of GPI model in these situations, as 

the validation process, an input voltage profile shown in Figure 8 

is used to actuate the SMA actuator. 
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Figure 8.  The input voltage applied in the validation process 

Figure 9 shows the comparison between the prediction of the 

higher order hysteresis minor loops by the presented GPI model 

and the data obtained from the experimental setup. Figure 10 
depicts the absolute error of the modeling process in time 

domain. Furthermore, Table 6 gives maximum, mean and mean 

square values of the absolute error. 

According to Figure 9 and Table 6, the GPI model has 

acceptable accuracy in modeling and predicting the higher order 

hysteresis minor loops mainly in cases that it has been only 
trained with some first order hysteresis reversal curves attached 

to the major loop. 
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Figure 9.  Comparison between the rotations of the mechanism predicted by 

the GPI model and the experimental test data in the validation process 
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Figure 10.  Absolute error between the output of GPI model and experimental 

test data - validation process 

 

Table 6. System Modeling Error - Validation Process 

Mean of Absolute 
Error 

Max of Absolute 
Error 

Mean of Squared 
Error 

0.46 deg 1.79 deg 0.38 deg 

 

5. Fuzzy-PID controller 

The control strategy for nonlinear hysteresis systems has been 

reported in literature for extensive ranges of application from 

piezoelectric actuations, micro-sliding friction, 
magnetorheological and magnetic damper, nanopositioning 

systems, SMA wires to medical devices with tendon-sheath 

mechanisms [15]. Altogether, one can classify two main 

approaches for such compensator, namely (i) open-loop control 

with no feedback from the output and (ii) close-loop control with 

availability of output feedback. In the second method, feedback 
signal clears out the error between the input and output signals 

and system’s behavior remains unaffected to the external noises; 

Because of this reason, in this paper, a close-loop controller with 

angular position feedback is used. 

In order to control the position of the morphing wing, self-

tuning Fuzzy-PID controller is implemented on the SMA wire 
actuator. The nonlinear hysteresis behavior in smart actuators like 

the current mechanism may cause differences and difficulties 

while controlling a same test-bed in different environmental 

conditions. Therefore, in the systems with hysteresis behavior, 

PID controllers can only be used for a specific situation. 

Changing the environmental or initial condition or goal position 

would cause a problem if the PID gains remain constant while 

these gains can be tuned using Fuzzy method. Using fuzzy rules, 
PID controller gains would be determined based on system 

behavior and error value.  

5.1. Fuzzy – PID structure 

There are two different methods for defining a Fuzzy-PID 

controller and both methods contain two different layers. In the 

first method, a fuzzy controller is the first layer and a PID 

controller acts as a supervisor in the second layer. In the second 

method, the method used in the current study, PID controller acts 
as the main controller and the fuzzy controller is the supervisor. 

In this method, PID parameters are tuned using the fuzzy 

controller. By considering error and derivative of error values, 

the fuzzy controller selects appropriate values for PID gains, so 

by this self-tuning fuzzy PID controller, morphing wing 

mechanism can have adaptable behavior to different input 
signals. In this method, PID parameters are tuned using the fuzzy 

controller. Using a two-layered controlling method can increase 

stability and improve performance of the controller. The 

schematic structure of the second method which has been used in 

this paper can be seen in Figure 11. 

 

Figure 11.  The schematic structure of the PID-fuzzy controller used in the 

current study 

In order to calculate the controller parameters, first KpMin, 

KpMax, KdMax, and KdMin should be determined such that Kp∈[KpMin , 

KpMax,] and Kd∈[KdMin , KdMax,]. In order to simplify the procedure, 
Kp and Kd need to be normalized to [0,1] range using Eq.(9). 

Three parameters a, Kpp, and Kdd are being calculated by the 

fuzzy system. Therefore, PID gains would be obtained by Eq.(9) 

and Eq.(10). 

,
j jMin

jj

jMax jMin

K K
K j p d

K K


 


  (9) 

2 / ( )i p dK K aK  (10) 

Finally, the output of the fuzzy-PID controller is computed by 

using a classic PID controller mapping equation as follows: 

( ) ( )i
p d

K
G s K sK

s
    (11) 

The required maximum and minimum values for each gain 
can be seen in Table 7. It is noteworthy to mention that the 

designing process of the fuzzy-PID controller, i.e. evaluating 

controller parameters and choosing membership functions, is 

accomplished in simulation environment in MATLAB using P-I 

model presented in the paper. In the next step, all controller 

parameters are tuned by implementing the controller to the 
experimental setup. All the parameters in Table 7 are obtained by 

trial and error process in the simulation and optimization in the 

experimental tests. 
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Table 7. The Requested Maximum and Minimum for Kp and 

Kd 

 Min Max 

Kp 0.5 2 

Kd 0 0.01 

 

5.2. Fuzzifing the fuzzy controller inputs 

The inputs of fuzzy controller are error and it’s derivative. The 

inputs need to be defined in fuzzy structure. Therefore, 7 

triangular membership functions have been considered for each 
input. Five membership functions namely negative big (NB), 

negative medium (NM), negative small (NS), zero (ZE), positive 

small (PS), positive medium (PM) and positive big (PB) are used 

for inputs and outputs. The error and error’s derivative 

membership functions can be seen in Figure 12. 
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Figure 12.  (a) Membership function for the error, (b) Membership function 

for the derivative of error 

 

It should be notified that the error and error’s derivative range 

are considered experimentally based on system behavior.  

5.3. Defuzzifing the fuzzy controller outputs 

The fuzzy controller’s outputs are normalized PID parameters, 

Kpp, Kdd and a. For each output, several triangular membership 

functions have been considered. Also, membership function type 

and amplitude have been considered experimentally. Figure 13 

shows membership functions for fuzzy output of Kdd, Kdd, and a. 
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Figure 13.  (a) Fuzzy output membership function for Kdd, (b) Fuzzy 

output membership function for Kpp, (c) Fuzzy output membership 

function for a. 

 

5.4. Fuzzy rules 

In order to use fuzzy controller properly, the following rules 

have been considered in Tables 8 to 10. It should be noticed that 

these rules have been chosen considering PID controller behavior 

and non-linear behavior of SMA wire in the simulation 

environment and using the GPI model. 

Table 8. Kp Related Fuzzy Rules 

e ed NB NM NS ZE PS PM PB 

NB BZ BS BM BB BM BS BZ 

NM SB BZ BS BM BS BZ SB 

NS SM SB BZ BS BZ SB SM 

ZE SS SM SB BZ SB SM SS 

PS SM SB BZ BS BZ SB SM 

PM SB BZ BS BM BS BZ SB 

PB BZ BS BM BB BM BS BZ 
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Table 9. Kd Related Fuzzy Rules 

e ed NB NM NS ZE PS PM PB 

NB SB SM SS SZ SS SM SB 

NM BS BZ SB SM SB BZ BS 

NS BM BS BZ SB BZ BS BM 

ZE BB BM BS BZ BS BM BB 

PS BM BS BZ SB BZ BS BM 

PM BS BZ SB SM SB BZ BS 

PB SB SM SS SZ SS SM SB 

 

Table 10. “A” Related Fuzzy Rules 

e ed NB NM NS ZE PS PM PB 

NB S S S S S S S 

NM MS MS S S S MS MS 

NS M MS MS S MS MS M 

ZE B M MS MS MS M B 

PS M MS MS S MS MS M 

PM MS MS S S S MS MS 

PB S S S S S S S 

 

6. Results and Discussions 

In this section, an experimental test is implemented to 
evaluate the performance of the fuzzy PID controller by applying 

three traditional signals to the system. Figure 14(a) illustrates 

tracking performance of the controller for a repeated sinusoidal 

trajectory with a frequency of 0.01 Hz and amplitude of 6 

degrees. The absolute error between the desired and actual output 

of the system is presented in Figure 14(b). The error at the 
beginning of every period is due to inherent behavior of the 

system. Figure 14(c) shows the voltage that is applied to the 

system. Since the SMA wire used in the experimental setup has 

negligible strain in voltages under approximately 1.4 volts, after 

the controller exceeds this voltage, it can perfectly track the 

desired trajectory. Due to the slow response time of the SMA 
actuators, the controller performance is better in low frequencies. 
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Figure 14.  Performance of the control system in tracking a sinusoidal 

reference command with a fixed amplitude: (a) Tracking control, (b) 

Absolute of tracking error (c) Applied voltage to the amplifiers of SMA 

actuators. 
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Figure 15.  Performance of the control system in tracking a step input 

with a fixed amplitude: (a) Tracking control, (b) Absolute of tracking 

error (c) Applied voltage to the amplifiers of SMA actuators 

 

Figure 15(a) shows the tracking performance of the controller 

for a repeated step trajectory with amplitude of 12 degrees. As 

can be seen from Figure 15(b), the steady state error is near zero. 

Applied voltage to the system is also illustrated in Figure 15(c). 

A decreasing sine wave is also applied as a command to the 
system to investigate the robustness of the fuzzy PID controller 

to different amplitudes as well as tracking minor hysteresis loops. 

Figure 16 represents the effectiveness of the controller regarding 

the mentioned problem. 

In the tests with smooth inputs such as sinusoidal or decaying 

sinusoidal, angle changes occur gradually which is coincident 
with natural behavior of SMA wires. Therefore, suitable 

adaptation occurs during each cycle. However, in low voltages 

less accordance can be seen due to lower temperature of wires. 

Therefore, in the starting part of decaying sinusoidal period, 

bigger errors are obtained. On the other hand, an overshoot and 

bigger error may happen for the step inputs as a result of sudden 
changes in the voltage. In general, smooth inputs have more 

accurate and compatible response on SMA wires. 
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Figure 16.  Performance of the control system in tracking a decaying 

sinusoidal command: (a)Tracking control, (b) Absolute of tracking error  

(c) Applied voltage to amplifiers of SMA actuators 

7. Conclusion 

In this work, a morphing wing mechanism actuated by shape 

memory alloy wires modeled by the generalized Prandtl–

Ishlinskii model. The model was employed to predict asymmetric 

nonlinear hysteresis behavior of Shape Memory Alloy (SMA) 
actuator. Unknown parameters of the generalized Prandtl-

Ishlinskii model were identified using the experimental data of 

the morphing wing mechanism. The identification process was 

done using a genetic algorithm and then the model was validated 

with a different set of experimental data. After validating the 

model, it was used as a plant in order to design a fuzzy-PID 
controller to control the presented mechanism actuated by a SMA 

actuator. The developed control system is capable of tracking 

square and sinusoidal trajectories with low tracking error. The 

presented control system can be implemented for other hysteresis 

materials due to the results of this work. Moreover, it is capable 

of being used in online applications, and results to appropriate 
tracking error for trajectory with hysteresis loops. 

Furthermore, the control issue for SMA actuator was studied. 

The fuzzy-PID controller was developed and successfully applied 

to the real time position control of a SMA actuator. The 

controller was designed based on the P-I model. If there was not 

such a model, the process of designing a controller based on the 
experimental setup would be difficult. Based on the experimental 

results, the self-tuning fuzzy-PID controller was capable to 

adaptively achieve appropriate tracking for various references. 

Thus, the developed controller can be applied to a hysteresis 

system in order to improve the control performance and decrease 

the hysteresis effect of SMA actuators. 
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