تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,285 |
تعداد دریافت فایل اصل مقاله | 97,232,754 |
تحلیل عدم قطعیت پارامترهای نفوذ مدل شبیهسازی آبیاری جویچهای WinSRFR با روش مونت کارلو | ||
تحقیقات آب و خاک ایران | ||
مقاله 18، دوره 50، شماره 4، شهریور 1398، صفحه 1007-991 اصل مقاله (1.64 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.261848.667966 | ||
نویسندگان | ||
فاطمه سروش* 1؛ حسین ریاحی2 | ||
1گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ولی عصر | ||
2استادیار، علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان | ||
چکیده | ||
پارامترهای نفوذ مورد استفاده در مدلهای شبیهساز آبیاری سطحی بهطور مستقیم قابل اندازهگیری نیستند و تعیین آنها مشکل بوده و با عدم قطعیت همراه است. بنابراین باید پس از واسنجی پارامترهای مدل، عدم قطعیت ناشی از وجود خطا در مدل را بررسی نموده و راهکارهایی برای کاهش و کنترل عدم قطعیت نتایج ارائه گردد. به همین دلیل در این مطالعه از رویکرد شبیهسازی مونت کارلو استفاده شده است. امروزه فرآیند شبیهسازی مونت کارلو بهعنوان روشی برای تعیین یکپارچه و همزمان انواع مختلف عدم قطعیت با توابع هدف گوناگون استفاده میشود. به این منظور این تحقیق با هدف تحلیل عدم قطعیت نتایج شبیهسازی هیدروگراف رواناب خروجی و منحنی پیشروی مدلسازی شده توسط نرمافزار WinSRFR در آبیاری جویچهای، با توسعه رویکرد تحلیل پسین ضرایب نفوذ و شبیهسازی ۱۰۰۰ نمونه مونت کارلو انجام شد. نتایج نشاندهنده عدم قطعیت بالا (پهنای باند اطمینان بزرگتر از 4) در گزینش اولیه پارامترهای نفوذ آبیاری جویچهای است. برای جداسازی شبیهسازیهای کارآمد و غیرکارآمد شاخص نش-ساتکلیف مورد استفاده قرار گرفت و آستانه قابلپذیرش شاخص تعیین شد. با اعمال معیار شبیهسازیهای کارآمد شناسایی شدند و برای تحلیل عدم قطعیت هدفمند در مدل مورد استفاده قرار گرفتند. تحلیل عدم قطعیت مدل بر مبنای کرانهای عدم قطعیت 5% و 95% خطای شبیهسازیهای کارآمد انجام شد. در این حالت پهنای باند عدم قطعیت (d-factor) دو متغیر پاسخ کمتر از یک بود که نشاندهنده لزوم توجه دقیق در فرآیند واسنجی مدل برای کاهش عدم قطعیت خروجیها است. نتایج تحلیل عدم قطعیت نشان داد که با کاربرد روش مونت کارلو، عدم قطعیت پارامترهای مدل به طور قابلتوجهی کاهش یافت و استفاده از این روش در مدلسازی و مدیریت سیستمهای آبیاری جویچهای توصیه میشود. | ||
کلیدواژهها | ||
تخمین پارامتر؛ آبنمود رواناب خروجی؛ منحنی پیشروی؛ عدم قطعیت | ||
عنوان مقاله [English] | ||
Uncertainty Analysis of Infiltration Parameters of WinSRFR Furrow Irrigation Simulation Model with Monte Carlo Method | ||
نویسندگان [English] | ||
Fatemeh Soroush1؛ Hossien Riahi Madvar2 | ||
1Assistant Professor, Department of Water Engineering, College of Agriculture, Vali- Asr University of Rafsanjan, Iran | ||
2Assistant Professor, Department of Water Engineering, College of Agriculture, Vali- Asr University of Rafsanjan, Iran | ||
چکیده [English] | ||
The infiltration parameters, used in the surface irrigation simulation models, are not measured directly and their estimations are difficult and uncertain. Therefore, after calibration of model parameters, the uncertainty due to error in the model and the strategies should be considered to reduce and control the uncertainty of the results. For this reason, Monte Carlo simulation approach has been used in this study. Nowadays, the Monte Carlo simulation approach is used as a simultaneous and integrated approach to identify different types of uncertainty with various objective functions. Therefore, this research was conducted to analyze the uncertainty of the simulation results of the runoff hydrograph and the advance trajectory modeled by the WinSRFR software by developing the posterior analysis of the infiltration equation parameters and simulation of 1000 Monte Carlo samples. The results of the analysis indicated a high degree of uncertainty (bandwidth over 4) in initial selection of furrow irrigation infiltration parameters, Nash-Sutcliff criteria was considered to district behavioral and non-behavioral simulations and the acceptable threshold value for NSE criteria defined as NSE>0.9. By applying NSE>0.9, the behavioral simulations were detected and used for uncertainty analysis of the model. The uncertainty analysis of the model was performed based on 5% and 95% confidence levels of behavioral simulations errors. In this case, the uncertainty band width (d-factor) of two response variables was less than one indicating a good calibration result. The results of uncertainty analysis showed that the uncertainty of model parameters wasconsiderably decreased with application of Monte Carlo method. Therefore, the use of this method in the modeling and management of surface irrigation systems is recommended. | ||
کلیدواژهها [English] | ||
Parameter Estimation, Outflow runoff hydrograph, Advance trajectory, Uncertainty | ||
مراجع | ||
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., and Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, 333(2-4), 413-430. Afshar, V. (2015). Effect of polyacrylamide application on run-off, erosion and nutrient losses in common and alternative furrows irrigation. MS Thesis, Bu Ali-Sina University, Hamedan, Iran. Akbari, M., Gheysari, M., Mostafazadeh-Fard, B. and Shayannejad, M. (2018). Surface irrigation simulation-optimization model based on meta-heuristic algorithms. Agricultural Water Management, 201, 46-57. Arabi, H., (2017). Evaluation and comparison of three methods of infiltration management in furrow irrigation. MS Thesis, Bu Ali-Sina University, Hamedan, Iran. Azad, N., Rezaerdinejad, V., Besharat, S.; Behmanesh, J. and Ashraf Sadraddini, A. (2017). Optimization of surge irrigation system based on irrigation and furrow geometric variables using SIRMOD model. Journal of Water and Irrigation Management, 7(1), 151-166. (In Farsi) Bates, B. C., and Townley, L. R. (1988). Nonlinear, discrete flood event models, 3. Analysis of prediction uncertainty. Journal of Hydrology, 99, 91–101. Bautista, E. (2016). Effect of infiltration modeling approach on operational solutions for furrow irrigation. Journal of Irrigation and Drainage Engineering,142(12). https://doi.org/10.1061/(ASCE)IR.1943-4774.0001090 Bautista, E., Clemmens, A. J., Strelkoff, T. S. and Niblack, M., (2009a). Analysis of surface irrigation systems with WinSRFR—Example application. Agricultural Water Management, 96, 1162–1169. Bautista, E., Clemmens, A. J., Strelkoff, T. S., and Schlegel, J. L. (2009b). Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management, 96, 1146–1154. Bautista, E., Clemmens, A.J., and Strelkoff, T.S. (2009c). Structured application of the two-point method for the estimation of surface irrigation parameters. Journal of Irrigation and Drainage Engineering, 135(5), 566–578. Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320, 18–36, 2006. Bhavsar, P. N., and Patel, J. N. (2018). Event-based rainfall–run-off modeling and uncertainty analysis for lower Tapi Basin, India. ISH Journal of Hydraulic Engineering, 1-10. Clemmens, A. J., Dedrick, A. R. and Strand. R. J., (1995). BASIN—a computer program for the design of level-basin irrigation systems, version 2.0, WCL Report 19. USDA-ARS U.S. Water Conservation Laboratory, Phoenix, AZ. Cahoon, J. (1998). Kostiakov infiltration parameters from kinematic wave model. Journal of irrigation and drainage engineering, 124(2), 127-130. DeGroot, M. H. (1986). Probability and statistics, 2nd Ed., Addison-Wesley, Reading, Massachusetts. Dybowski, R. (1997). Assigning confidence intervals to neural network predictions Technical report, Division of Infection (St Thomas’ Hospital), King’s College London, UK, 2 March 1997, available at http://www.umds.ac.uk/microbio/richard/nnci.pdf. Esfandiari, M. and Maheshwari, B., (2000). Sensitivity of a furrow irrigation model to input parameters. International Agricultural Engineering Journal, 9(3):117-128 Gallagher, M. and Doherty, J., 2007. Parameter estimation and uncertainty analysis for a watershed model. Environmental Modelling and Software, 22(7): 1000-1020. Ghahremannejad, M., Boroomandnasab, S. and Sheini Dashtegol, A. (2016). Determining the optimum values of the design parameters for furrow irrigation with WinSRFR 3.1 model (Case study: sugarcane fields of southern Ahvaz). Water and Soil Science, 26(1-1): 117-130. (In Farsi) Gholami Sefidkouhi, M. A. and Koulaian, A. (2014). Field evaluation and sensitivity analysis of the SIRMOD model in furrow irrigation. Iranian Journal of Irrigation and Drainage, 8(3): 473-483. (In Farsi) Gillies, M. H. (2008) Managing the effect of infiltration variability on surface irrigation. PhD Thesis, University of Southern Queensland, Toowoomba, Australia. Gupta, H. V. (2005, December). Transforming Information into Models: A Discussion of Uncertainty and Its Treatment. In AGU Fall Meeting Abstracts. American Geophysical Union, Fall Meeting 2005, abstract id. H11E-01. Heidari, A., B. Saghfian and R. Maknoon. (2005). Flood Hydrograph Simulation with Uncertainty in Rainfall - Runoff Parameters. jame. 23 (2) :93-111 URL: http://jame.iut.ac.ir/article-1-321-fa.html Heydari, N. and Abbasi, F., (2016). Optimization of design and management parameters of border irrigation: A case study of Ramshir irrigation and Drainage network, Journal of Applied Research in Irrigation and Drainage Structures Engineering, 17(66): 55-70. Jacquin, A. P., and Shamseldin, A. Y. (2007). Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modeling. Water Resources Research, W04425. Khoi, D. N., and Thom, V. T. (2015). Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam. Global Ecology and Conservation, 4, 538-548. Khorammi, M., and Ghahraman, B. (2017). Analyzing the Effect of Uncertainty of Soil Parameters on Soil Moisture Profile Uncertainty using Fuzzy Set Theory. Iran-water resources research Journal. 13(1):126-138. Marcé, R., Comerma, M., García, J. C., and Armengol, J. (2004). A neuro‐fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time‐varying human impact. Limnology and Oceanography: Methods, 2(11), 342-355. McClymont, D. J., Raine, S. R. and Smith, R. J. (1996). The prediction of furrow irrigation performance using the surface irrigation model SIRMOD, Irrigation Australia Conference and Exhibition, May 14-17, Adelaide, Convention and Exhibition Centre South Australia, 10p. Moradzadeh, M., Boroomandnasab, S., Lalehzari, R. and Bahrami, M., (2013). Performance evaluation and sensitivity analysis of various models of SIRMOD software in furrow irrigation design. Water Engineering, 6(18), 63-73. (In Farsi). Nash, J. E., and Sutcliffe, J. V., (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290. Nie, W., Fei, L., and Ma, X. (2014). Impact of infiltration parameters and Manning roughness on the advance trajectory and irrigation performance for closed-end furrows. Spanish Journal of Agricultural Research, 12(4), 1180-1191. Rezaverdinejad, R., Ahmadi, H., Hemmati, M. and Ebrahimian, H. (2016). Evaluation and comparison of different approaches of infiltration parameters estimation under different furrow irrigation systems and inflow regimes, Journal of Science and Technology of Agriculture and Natural Resources. Water and Soil Science, 20(76): 161-176. (In Farsi) Riahi-Madvar, H., Ayyoubzadeh, S., Namin, M., and Seifi, A. (2011). Uncertainty analysis of quasi-two-dimensional flow simulation in compound channels with overbank flows. Journal of Hydrology and Hydromechanics, 59(3), 171-183. Riahi-Madvar, H., Khashaei, A., Seifi, A. (2017). Accuracy and uncertainty analysis of artificial neural network in predicting saffron yield in the south Khorasan province based on meteorological data. Saffron agronomy and technology Journal, 17(3), 255-271. DOI: 10.22048/jsat.2017.31901.1100 (In Farsi) Salahou, M. K., Jiao, X., and Lü, H. (2018). Border irrigation performance with distance-based cut-off. Agricultural Water Management, 201, 27-37. Sayari, S., Rahimpour, M. and Zounemat Kermani, M. (2016). Evaluation of furrow irrigation for different inflow hydrographs. Journal of Water and Irrigation Management, 5(2): 191-202. (In Farsi) Shafiei, M., Ansari, H., Davari, K., and Ghahreman, B. 2013. Calibration and uncertainty analysis of a semi-distributed model of soil water in a semi-arid region. Water and Soil Science Journal 17 (44): 137- 49. (In Persian with English Summary). Soroush, F. (2012). Numerical simulation and evaluation of fertigation and hydraulic performance of meandering furrow irrigation. PhD Thesis, Isfahan University of Technology, Isfahan, Iran. Soroush, F., Akhavan, S., and Afshar, V. (2015). Effect of polyacrylamide application on soil erosion in conventional and alternate furrow irrigation. Iranian Journal of Irrigation and Drainage, 9(1): 152-162. (In Farsi) Strelkoff, T. S. and Clemmens, A. J. (2007). Hydraulics of surface systems. Design and operation of farm irrigation systems, G. Hoffman and R. G. Evans, eds., American Society of Agricultural and Biological Engineers, St. Joseph, MI. Strelkoff, T. S., Clemmens, A. J. and Schmidt, B. V. (1998). SRFR, Version 3.31—A model for simulating surface irrigation in borders, basins and furrows. US Department of Agriculture Agricultural Research Service, U.S. Water Conservation Laboratory, Phoenix, AZ Strelkoff, T. S., Clemmens, A. J., Schmidt, B. V. and Slosky, E. J. (1996). BORDER—A Design and Management Aid for Sloping Border Irrigation Systems. WCL Report 21. US Department of Agriculture Agricultural Research Service, U.S. Water Conservation Laboratory, Phoenix, AZ. Taghizadeh, Z., Verdinejad, V. R., Ebrahimian, H. and Khanmohammadi, N. (2013). Field evaluation and analysis of surface irrigation system with WinSRFR (Case Study Furrow Irrigation), Journal of Water and Soil, 26(6), 1450-1459. (In Farsi). Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. Tibshirani, R. (1996). A comparison of some error estimates for neural network models. Neural Computation, 8(1), 152-163. Valipour, M. and Montazar, A. A. (2012). Sensitive analysis of optimized infiltration parameters in SWDC model. Advances in Environmental Biology, 2574-2582. Walker, W. R. (2005). Multilevel calibration of furrow infiltration and roughness. Journal of Irrigation and Drainage Engineering, 131(2), 129–136. Walker, W. R. and Skogerboe, G. V. (1987). Surface irrigation: Theory and Practice. Prentice Hall, Englewood Cliffs, New Jersey. 386p. Walker, W. R., and Kasilingam, B. (2004). Another look at wetted perimeter along irrigated furrows—Modeling implications. Proceedings of World Water and Environmental Resources Congress (EWRI/ASCE), ASCE, Reston, Va. Walker, W.R. and Humpheys, A. S. (1983). Kinematic wave furrow irrigation model. Journal of Irrigation and Drainage Engineering, 109: 377-392. Zerihun, D., Feyen, J. and Reddy, J. M. (1996). Sensitivity Analysis of Furrow-Irrigation Performance Parameters, ASCE, Journal of Irrigation and Drainage Engineering, 122(1): 49-57. | ||
آمار تعداد مشاهده مقاله: 711 تعداد دریافت فایل اصل مقاله: 664 |