تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,413 |
تعداد دریافت فایل اصل مقاله | 97,231,520 |
تخمین پارامترهای هیدرولیکی سفرههای تحت فشار با استفاده از الگوریتم دسته ماهیهای مصنوعی | ||
تحقیقات آب و خاک ایران | ||
مقاله 20، دوره 51، شماره 1، فروردین 1399، صفحه 271-279 اصل مقاله (1.06 M) | ||
نوع مقاله: یادداشت تحقیقاتی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2019.268802.668045 | ||
نویسندگان | ||
سمیه جنت رستمی* 1؛ مینا حبیب پناه2؛ مهسا شیخکاظمی3 | ||
1استادیار گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران. | ||
2دانشجوی کارشناسی ارشد گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
3دانش آموخته کارشناسی گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
در مدیریت و برنامهریزی منابع آب زیرزمینی تهیه مدل ریاضی ضروری است. در تهیه مدلهای ریاضی آب زیرزمینی، تعیین مقادیر پارامترهای هیدرولیکی آبخوان نقش مهمی را ایفا میکند، بنابراین انتخاب روشی مناسب برای تعیین این مقادیر مهم و ضروری است. تاکنون روشهای متفاوتی برای تخمین پارامترهای هیدرولیکی آبخوان با استفاده از نتایج اندازهگیریهای آزمایش پمپاژ مطرح شده است. در این تحقیق، روش بهینهسازی الگوریتم دسته ماهیهای مصنوعی برای تخمین پارامترهای هیدرولیکی سه آبخوان تحتفشار با روش گرافیکی و الگوریتم GA مورد ارزیابی قرار گرفت. الگوریتم دسته ماهیهای مصنوعی (AFSA) یکی از الگوریتمهای هوش جمعی است که از رفتارهای اجتماعی دسته ماهیها در طبیعت الهام گرفته شده است. مقایسه نتایج بدست آمده در این روش و روش گرافیکی و GA نشان داد که AFSA همانند GA روشی مناسب برای تخمین پارامترهای هیدرولیکی آبخوان است و عملکرد بهتری نسبت به روش گرافیکی دارد. با توجه به اینکه این الگوریتم به انتخاب مقادیر اولیه متغیر تصمیم برای شروع حل حساس نیست، میتواند نسبت به GA، راه حل مناسبتری برای تخمین پارامترهای آبخوانهایی باشد که خصوصیات زمینشناسی آن ناشناخته است. | ||
کلیدواژهها | ||
آزمایش پمپاژ؛ الگوریتم دسته ماهیهای مصنوعی؛ بهینهسازی؛ پارامترهای هیدرولیکی | ||
عنوان مقاله [English] | ||
Estimation of Hydraulic Parameters of Confined Aquifers by Artificial Fish Swarm Algorithm | ||
نویسندگان [English] | ||
Somaye Janatrostami1؛ Mina Habib Panah2؛ Mahsa Sheikh Kazemi3 | ||
1Assistant Professor, Department of Water Engineering, College of Agricultural Sciences, University of Guilan, Rasht, Guilan. | ||
2M.Sc. Student of Water Engineering Department, College of Agricultural Sciences, University of Guilan, Rasht, Iran. | ||
3B.S. Graduate of Water Engineering Department, College of Agricultural Sciences, University of Guilan, Rasht, Iran. | ||
چکیده [English] | ||
Groundwater modeling is essential in aquifer management and planning. Determination of hydraulic parameters in aquifer plays a key role in groundwater modeling, therefore choosing a suitable method for determination these parameters is very important. So far, various methods have been developed to estimate hydraulic parameters of aquifers using in situ pump test measurments. In this research, Artificial Fish Swarm Algorithm (AFSA) was evaluated for estimation of the hydraulic conductivity and storage coefficient parameters in three confined aquifers, using graphic method and Genetic Algorithm (GA). AFSA is one of the algorithms inspired both from the nature and swarm intelligence algorithms. The results obtained by AFSA, graphic method and GA were compared and it was found that the AFSA similar to GA is a proper method for estimation of aquifer hydraulic coefficients and it has a better performace as compared to the graphic method. As, AFSA is not sensitive to initial values of decision variables, it could be useful for estimation parameters of aquifers in which geological characteristics are unknown. | ||
کلیدواژهها [English] | ||
Artificial Fish Swarm Algorithm, Hydraulic Parameters, Pumping Well, Optimization | ||
مراجع | ||
Asghari Moghaddam, A. Norani, V. and Kord, M. (2008). Estimation of Hydraulic Parameters of Confined Aquifers Using Genetic Algorithm Optimization Technique. Iran-Water resources Research, 3(3), 30-41. (In Farsi) Abbaspour, K.C. Van Genuchter, M.T. Schulin, R. and Schlappi, E. (1997). A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters. Water Resources Research, 33(8), 1879-1892. Bateni, S.M. Mortazavi-Naeini, M. Ataie-Ashtiani, B. Jenga, D.S. and Khanbilvardifi, R. (2015). Evaluation of methods for estimating aquifer hydraulic parameters. Applied Soft Computing, 28, 541-549. Batu, V. (1998). Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. John wiley & sons, inc., 728p. Carrera, J. and Neuman, S.P. (1986) Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. Water Resources Research, 22(2), 199-210. Cooley, R.L. (1977) A method of estimating parameters and assessing reliability for models of steady state ground water flow 1. Theory and numerical properties. Water Resources Research, 13(2), 318-324. Dagan, G. and Rubin, Y. (1988) Stochastic identification of recharge, transmissivity, and storativity in aquifer transient flow: A quasi-steady approach. Water Resources Research, 24(10), 1698- 1710. Freeze, A.R. and Cherry, J.A. (1979) Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey, 603p. Hantush, M.S. (1959) Non steady flow to flow wells in leaky aquifers. Journal of Geophysical Research, 64(8),1043-1052. Jha, M. Kumar, A. Nanda, G. and Bhatt, G. (2006) Evaluation of traditional and non-traditional optimization techniques for determining well parameters from step-drawdown test data. Journal of Hydrology Engineerung, 11, 617–630. Kruseman, G.P. and De Ridder, N.A. (1983) Analysis and evaluation of pumping test data. ILRT, Wageningen, Netherlands, 200p. Li, L.X. Shao, Z.J. and Qian, J.X. (2002) An Optimizing Method based on Autonomous Animals: Fish Swarm Algorithm. Proceedings of Systems Engineering Theory & Practice. Lin, G.F. and Chen, G.R. (2006) An improved neural network approach to the determination of aquifer parameters. Journal of Hydrology, 316(1-4), 281-289. Neuman S.P. (1972) Theory of flow in unconfined aquifers considering delay response of the water table. Water Resources Research, 8, 1031-1045. Theis C.V. (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of well using groundwater storage. American Geophysical Union, 16, 519-524. Todd, D.K. and Mays, L.W. (2005) Groundwater hydrology. Wiley, International edition, 636p. Tseng, P.H. and Lee, T.C. (1998) Numerical evaluation of exponential integral: Theis well function approximation. Journal of Hydrology, 205, 38-51. Yazdani, D. Akbarzadeh-Totonchi, M.R. Nasiri, B. and Meybodi, M.R. (2012) A new artificial fish swarm algorithm for dynamic optimization problems. p. 472-479. IEEE World Congress on Computational Intelligence. June, 10-15, 2012. Brisbane, Australia. Cheng, M. and Xiang, M. (2017) Parameter estimation of a composite production function model based on improved artificial fish swarm algorithm and model application. Communications in Statistics - Simulation and Computation, 10, 8218-8232. Sérgio, L.F. and Steffen, V. (2014) Fish swarm optimization algorithm applied to engineering system design. Latin American Journal of Solids and Structures, 11, 143-156. | ||
آمار تعداد مشاهده مقاله: 626 تعداد دریافت فایل اصل مقاله: 371 |