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ABSTRACT 

The existence of both ill-posedness and overparameterization phenomena in the rational function model 

(RFM), makes it difficult to determine rational polynomial coefficients (RPCs). In this regard, Meta-

heuristic algorithms have been widely used. Despite the extensive efforts in this field, it is still challenging 

to find optimum structures of RFM due to the above-mentioned phenomena. The existing meta-heuristic 

methods focus on overparameterization and try to remove some unnecessary RPCs using binary particles. 

Although solving overparameterization can automatically address the ill-posedness phenomenon, meta-

heuristics do not achieve desired results by solely focusing on overparameterization. Therefore, it seems 

necessary to consider both ill-posedness and overparameterization phenomena to achieve an optimum 

structure of the RFM. Accordingly, in this study, a bi-objective particle swarm optimization (PSO) 

algorithm, namely BOPSO-RFM, is proposed to determine the optimum RFM structure. This method has 

two objective functions that should be minimized: 1) the Root Mean Square Error (RMSE) over some of 

the ground control points (GCPs), and 2) the maximum Pearson correlation coefficient between the 

columns of the design matrix, each of which corresponding to one of RPCs. While binary meta-heuristic 

algorithms mostly address the overparameterization phenomenon by considering binary particles and 

calculating the RMSE over some GCPs, the added objective function tries to address ill-posedness. 

Experiments conducted on three high-resolution datasets show that the proposed method has led to average 

improvements of 95% and 29% in terms of accuracy and RMSE values and 99% and 76% improvements 

in terms of stability, over well-known PSORFO and the state-of-the-art PSO-KFCV method, respectively. 

Moreover, the analysis of the final design matrix obtained from the final RFM structure revealed that the 

average of condition numbers corresponding to the BOPSO-RFM results had been 1.14e+9 and 7.39e+4 

times lower than those of PSORFO and PSO-KFCV. 
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1. Introduction 

  Obtaining  accurate  spatial  information  from  satellite 
images is very important for a wide range of remote sensing

applications that requires the use of appropriate models for 
mapping  between  image  and  earth  spaces.  In  this  regard, 
Rational Function Models (RFMs) are widely used in remote 
sensing communities for georeferencing of satellite images. 
These  models  use  polynomials,  usually  of  order  three,  to

apply image-to-earth mapping and vice versa. These models 

are independent of the sensor type and are also compatible 

with any coordinate and projection system (Tao &  Hu, 

2001). In addition, since there is no explicit relationship 

between the RFM parameters, known as Rational 

Polynomial Coefficients (RPCs), and sensor orbital 

information, this information will be confidential using RFM 

(Valadan Zoej et al., 2007). 

The RFMs are divided into two main categories: terrain-
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independent models and terrain-dependent models. In 

terrain-independent models, vendor-provided RPCs that are 

obtained using GPS, INS information, and stellar cameras 

mounted on the sensor (Alizadeh Naeini et al., 2017) are 

available to satellite images users. In terrain-dependent 

models, which is the main focus of this study, RPCs are 

determined using some ground control points (GCPs). 

Existing a lot of unnecessary and highly correlated RPCs, 

estimating accurate RPCs in the latter models encounters 

with two overparameterization and ill-posedness phenomena 

(Long et al., 2015; Alizadeh Moghaddam et al., 2018a; 

Gholinejad et al., 2019). Finding the optimum number of 

parameters allows for solving these two problems 

simultaneously. A wide range of regularization-based 

methods have been presented in the literature to solve these 

problems. These methods can be categorized into 𝑙2, 𝑙0, and 

𝑙1 regularized approaches.   

The 𝑙2-regularization methods try to reduce the effect of 

ill-posedness of the design matrix in determining the RPC 

coefficients. In the procedure of estimating RPCs through the 

least-squares method, the values of RPCs are enlarged 

unreasonably due to the ill-posedness of the design matrix. 

Hence, in the methods mentioned earlier, the 𝑙2 norm of 

RPCs is imposed on the main RFM problem to handle the 

enlargement of RPCs. The most important methods available 

in this category are L-curve based ridge estimation (Yuan &  

Lin, 2008), the Levenberg–Marquardt (LM) algorithm (Zhou 

et al., 2012), and a combinatorial method based on LM and 

QR factorization with element pivoting (Wu &  Ming, 2016). 

As previously mentioned, RFM contains a large number of 

unnecessary parameters. Consequently, it seems necessary to 

remove some of the RPCs to improve the RFM structure. 

Accordingly, 𝑙0 regularization based methods, which impose 

the 𝑙0 norm of RPCs to the objective function of the RFM 

problem, are proposed. Resulting in a sparse solution, the 𝑙0 

norm minimization can indirectly detect and eliminate 

unnecessary RPCs. Despite the excellent capability in 

detecting optimum RPCs, this minimization problem is a 

non-convex NP-hard one. Therefore, it cannot be solved by 

computational convex solvers. To solve this problem, one of 

the strategies presented is the replacement of the 𝑙0 norm 

with its relaxation alternative, the 𝑙1 norm, in which the 

problem is convex and has many deterministic solvers (Long 

et al., 2015). However, in order to directly achieve the 𝑙0 

regularization, there are two general categories of methods 

in the RFM literature: computational variable selection 

methods and meta-heuristic methods (Gholinejad et al., 

2019). 

 As their name implies, the methods that select 

computational variables seek to eliminate a number of RPCs 

based on computational techniques. The most important 

computational variable selection methods include direct 

removal of the third-order coefficients from an RFM 

structure (Li-ping et al., 2007), the use of scatter matrices and 

the elimination transformation to detect optimum 

coefficients (Zhang et al., 2012), the nested regression-based 

optimal selection method (Tengfei et al., 2014), t-student 

based statistical models (Alizadeh Moghaddam et al., 2017) 

and their improved versions, and finally the uncorrelated and 

statistically significant RFM (USS-RFM) methods. 

Meta-heuristic algorithms are nature-inspired methods, 

dealing with non- and multimodalconvex, nonlinear,

problems subject to linear or nonlinear constraints with 

continuous, discrete, or binary decision variables (Cuevas et 

al., 2018). These algorithms are of great attention among 

researchers in different sciences because they are capable of 

obtaining results close to a global optimum. These 

algorithms are essentially applied in problems with high 

computational complexities. Accordingly, they can be useful 

in determining optimum RPCs in the RFM structure. The 

binary version of meta-heuristic algorithms, especially 

genetic algorithm (GA) (Sastry et al., 2005) and particle 

swarm optimization (PSO) (Kennedy, 2010), are the widely 

used form in the RFM literature. A wide range of methods 

have been presented for RFM optimization based on GA 

(Valadan Zoej et al., 2007; Jannati &  Valadan Zoej, 2015; 

Jannati et al., 2017) and PSO (Yavari et al., 2013; Alizadeh 

Moghaddam et al., 2018b; Gholinejad et al., 2019) 

algorithms. 

In all of the meta- RFMheuristic methods used for

optimization, each agent contains 78 bits (equal to the 

number of RPCs in the third-order RFM problem). These bits 

are filled with zero and one values, indicating the absence 

and presence of the corresponding RPC in the RFM 

structure. Then, RPCs’ values are calculated via the least 

squares method. The cost value for that agent is determined 

by calculating the root mean squares error (RMSE) over a 

group of ground control points (GCPs), called dependent 

checkpoints (DCPs). In this way, by focusing on the over-

parameterization phenomenon, some unnecessary RPCs are 

eliminated during an iterative procedure in meta-heuristic 

algorithms. Although achieving the optimal number of RPCs 

solve the ill-posedness phenomenon automatically, focusing 

just on one of the phenomena, i.e., overparameterization, 

cannot lead to the optimal solution. Therefore, it seems 

necessary to simultaneously focus on both over-

parameterization and ill-posedness phenomena. Therefore, 

in this regard, a bi-objective PSO algorithm for RFM 

optimiza BOPSOtion, namely - been proposed.RFM, has

PSOimproved version ofis anThis method -KFCV 

 

 

       

(Gholinejad  et  al.,  2019) algorithm  based  on  MOPSO

(Coello et al., 2004). The first cost function of the proposed 
method  is  RMSE,  which  is  calculated  in  a  similar  way  to

PSO-KFCV.  The  second  cost  function  is  the  maximum 
Pearson correlation coefficient (𝑟) between the columns of

the design matrix. The second cost function alleviates the  
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problem of ill-posedness, while the use of binary particles 

reduces the effect of the overparameterization phenomenon. 

The flow diagram of the proposed method is shown in Figure 

(1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The remaining of this paper is organized as follows; the 

basis of the RFM, PSO, and MOPSO are introduced in 

section 2. In section 3, the details of the BOPSO-RFM are 

presented. Implementation and experimental results are 

described in section 4. The concluding remarks of this study 

are presented in section 5. 

2. Preliminaries 

2.1. Rational Function Model (RFM) 

  RFM is a mathematical model, consisting of two 

equations, in which image pixel coordinates are defined as 

functions of ground coordinates as follows: 
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where (𝑙‚𝑠) are normalized image coordinates, (𝑋‚𝑌‚𝑍) are 

normalized ground coordinates, and (𝑃1‚ … ‚ 𝑃4) are usually 

third-order polynomials. There are 20 coefficients in each 

polynomial and 80 RPCs in the RFM structure. Since the 

constant coefficients of the 𝑃2 and 𝑃4 are dependent, their 

values are considered to be equal to 1, and therefore there 

exist 78 RPCs in the third-order RFM. 

After linearizing equations (1) and (2) using GCPs, the 

final form of the RFM is as follows: 

l Ax e                                                                        (3) 

where 𝐴 ∈ 𝑅2𝑛×78, 𝑙 ∈ 𝑅2𝑛×1, and 𝑒 ∈ 𝑅2𝑛×1 are design 

matrix, observations vector, and residuals vector, 

respectively. Moreover, 𝑥 ∈ 𝑅78×1 is the vector of RPCs. 

RPCs are determined using the least-squares method in the 

bellow form: 

 

Figure 1. Flow diagram of the BOPSO-RFM. 
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 
1
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

                                                            (4) 

2.2. Particle Swarm Optimization (PSO) 

     PSO, which is a swarm intelligent computational 

algorithm, optimizes a problem by iteratively improving a 

candidate solution according to a cost function (Kennedy, 

2010). In order to move toward the global optimum solution, 

each particle should move according to its best memory 

(lBest), the best particle among all particles (gBest) and its 

current velocity. Mathematically, the new position of each 

particle is calculated as follows: 

1 1k k k
i i iT T V                                                              (5) 

where 𝑇𝑖
𝑘, 𝑇𝑖

𝑘+1, and 𝑉𝑖
𝑘+1 are respectively current 

position, new position, and updated velocity of the 𝑖th 

particle in the 𝑘th iteration. The 𝑉𝑖
𝑘+1 ascalculatedis

follows: 

1
1 1 2 2( ) ( )k k k k

i k i i iV V c r lBest T c r gBest T              (6) 

where 𝑐1 and 𝑐2 are two constant acceleration values, 𝑟1 

and 𝑟2 are uniform random values, and 𝜔𝑘 is the time-

varying inertia weight function calculated as: 

max
min max min

max

( )k

k k

k
   


                                    (7) 

In equation (7), 𝜔𝑚𝑖𝑛  and 𝜔𝑚𝑎𝑥  are two predefined values, 

maximum values of therespectively, for minimum and

inertia weight. Furthermore, 𝑘𝑚𝑎𝑥 is the number of iterations 

in the PSO algorithm. 

 

  

 

 

  

  
 

 

 

2.3. Multi-Objective PSO (MOPSO)

  The MOPSO algorithm is a generalized form of the PSO 
algorithm for multi-objective problems, inspired by the idea

of PESA-II (Corne et al., 2001). In the MOPSO algorithm, a 
new concept is introduced, called repository. This repository 
is an archive of non-dominant solutions; in other words, there

is no solution among the extracted ones that is better than the 
solutions in the repository. The repository is a limited size

space,  and  its  members  form  the  Pareto front  (i.e.,  is  an 
approximation of the Pareto front).

  The position and velocity updating equations for MOPSO 
particles  are  similar  to  those  of  the  PSO.  However,  the 
process  differs  for  some  of  the  parameters.  The  velocity

parameters and the constant acceleration coefficients are the 
same.  However,  the  processes  of  selecting gBest and 
updating lBest are different as well. In this algorithm, gBest

is  not  a  constant particle. Moreover,  each  of  the  particles 
chooses  one  of  the  repository  members  as gBest at  the

moment of the movement. In the MOPSO algorithm, gBest

is known as the leader.

In  MOPSO,  a  region-based  process  is  used  to  select  a

leader. Among the solutions in the repository, the solution 

that leads to more regularization and more uniform 

distribution of points on the Pareto front is more suitable than 

the other solutions. In order to find this solution, the MOPSO 

algorithm should segment the solution space into several 

regions. An inflation rate (𝛼) is usually used for determining 

the size of regions in the segmentation process. After 

segmenting the solution space, the roulette wheel selection 

algorithm (Goldberg, 1989) is used to select the leader. Since 

the roulette wheel selection approach deals with 

probabilities, a probability value must be determined for each 

solution within the repository. These probabilities are 

obtained according to the regions of the solutions using the 

Boltzmann probability function (Landau &  Lifshitz, 1980) 

as follows: 

Leader N
iP e                                                                 (8) 

where 𝑃𝑖
𝐿𝑒𝑎𝑑𝑒𝑟  is the probability value of the 𝑖th solution 

within the repository to be selected as the leader. 𝛽 and 𝑁 

are, respectively, the leader selection pressure and the 

number of members in the solution region. 

Another point about the MOPSO algorithm is the 

repository overflow.  Since the size of the repository is 

limited, some non-dominant responses should be removed 

when the repository space is full. Similarly, to determining 

the leader, the solutions that increase the regularization and 

uniform distribution of the Pareto front are preferable to be 

maintained. Therefore, their deletion probabilities should be 

lower than those of others. Then, the Boltzmann probability 

function is re-applied to calculate the deletion probabilities 

of the solutions within the repository as follows: 

Deletion N
iP e                                                                 (9) 

where 𝑃𝑖
𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 is the deletion probability of the 𝑖th 

solution and 𝛾 is the deletion selection pressure. 

For updating the lBest value, among the updated position 

of the particles and the previous lBest, the one that dominates 

another is assigned as the new lBest. If none of them are 

dominant, one of them is randomly selected as the new lBest. 

  

    

 

 

         

3. Bi-Objective PSO for RFM Optimization

  Meta-heuristic  algorithms  are  used  to  determine  the 
number  and  composition  of  RPCs  in  the  RFM  structure. 
Accordingly, binary particles with 78 bits are embedded in 
these algorithms. Each bits of the particles corresponds to an 
RPC. The particles are filled with 0 and 1 values, in which 0

means  removing  the  corresponding  RPC  from  the  RFM 
structure  and  1  means  keeping  it.  After  determining  the 
removed  RPCs,  the  design  matrix  is  formed based  on  the

remaining RPCs and some control points, called train control 
points (TCPs). Then, the remained RPCs are determined
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using equation (4). They are evaluated using the control 

points, called DCPs. DCPs are either initially separated from 

TCPs or, as in the PSO-KFCV method (Gholinejad et al., 

2019), they can be a part of the TCPs. RMSE commonly 

evaluates the particles. In other words, the obtained RMSE 

values are the costs of the particles. During an iterative 

procedure, the algorithm tends to the particle with the lowest 

cost value. Finally, some control points, called independent 

checkpoints (ICPs), are applied to the final evaluation of the 

meta-heuristic algorithm. 

In such RPC determination approaches, the main goal is to 

deal with the problem of overparameterization. However, a 

sole focus on this problem cannot lead to desirable results. 

Accordingly, this paper proposes a BOPSO-RFM method. In 

this method, the structure of the particles is the same as those 

of traditional methods. However, in the proposed method, 

two cost functions are used: 1) RMSE over DCPs, and 2) the 

maximum 𝑟 value between the design matrix columns. These 

two functions are not compatible, i.e., minimizing the first 

function dominates the minimization of the second one. 

Therefore, one has to consider these two functions separately 

in different objective functions. 

In the proposed method, for a particle, the RMSE value is 

exactly calculated as what was conducted in the PSO-KFCV. 

To calculate the second cost value, after the formation of the 

design matrix with the remaining RPCs corresponding to the 

particle, the 𝑟 values are calculated between their columns. 

The maximum 𝑟 value is considered as the second cost value. 

After completing the algorithm and forming the Pareto front, 

the non-dominant solutions are determined. In the last step 

of the algorithm, the difference between RMSE and 𝑟 values 

is not significant. Therefore, the total cost of the non-

dominant solutions is the sum of RMSE and 𝑟 values. 

Finally, among the non-dominant solutions, the solution with 

the minimum total cost is chosen as the final solution. 

4. Experimental Results 

 

 

 

 

  

In  this  study,  the  experiments  conducted  on  three  high-

resolution  datasets,  whose  details  are  provided  in  Table  1. 
These  datasets  were  acquired  by  different  high-resolution 
satellite imageries over the Isfahan province, Iran.

  The well-known PSORFO (Yavari et al., 2013) and state- 
of-the-art  PSO-KFCV (Gholinejad  et  al.,  2019) methods 
were considered as the competing methods for evaluating the 
proposed BOPSO-RFM. PSORFO was the first PSO-based 
method  presented  in  the  RFM  literature,  in  which  binary

particles were used to determine the presence or absence of 
the RPCs in the RFM structure. Before PSORFO, GA based 
methods  were  applied  for  RFM  optimization.  PSORFO 
showed the superiority of PSO against GA in both accuracy

and  the  computational  load.  Since  PSO-based  algorithms

were  significantly  sensitive  to  the  initial  values  and  GCPs 
distribution, PSO-KFCV has been recently used to improve  

Table 1. Details of Datasets used in this study. 

Data set Sensor GSD (m) No. of GCPs 

Geo-ISF GeoEye-1 0.5 70 

PL-ISF Pleiades 0.5 70 

WV-ISF WorldView-3 0.41 65 

 

Table 2. Parameters of the competing and proposed 

methods. 

Population Size 30 

V 
𝑣𝑚𝑖𝑛  -3 

𝑣𝑚𝑎𝑥 3 

𝜔 
𝜔𝑚𝑖𝑛  0.02 

𝜔𝑚𝑎𝑥  1 

Number of Iterations 200 

𝑐1 1.5 

𝑐2 1.5 

Repository Size 100 

Inflation Rate (𝛼) 0.1 

Leader Selection Pressure (𝛽) 2 

Deletion Selection Pressure (𝛾) 2 

 

 

 

 

 

    

the  accuracy  and  stability  of  the  PSO-based  algorithm.  Its 
results showed that it is more reliable than other previously 
proposed PSO-based  methods  such  as  PSORFO  and  FCA- 
PSO (Alizadeh Moghaddam et al., 2018b).

The  parameters of  the  competing  methods  are  listed  in

Table (2). A number of these parameters are applied in all

methods, but some of them are specific to the BOPSO-RFM 
method, including 𝛼, 𝛽, and 𝛾.

The  RMSE  metric  was  used  to  evaluate  the  results  of

different methods. Since the meta-heuristic algorithms have 
different  results  in  different  repetitions,  each  experimental 
method  was  executed  10  times.  The  average  RMSE  value

(Avg-RMSE) of these ten repetitions was calculated as the 
accuracy  criterion,  and  the  standard  deviation  (Std-RMSE)

was calculated as the stability criterion for each algorithm. In 
the experiments, conducted on each dataset, 10, 15 and 20 
well-distributed  GCPs  were  used  for  training  (i.e.,  as 
TPCs+DCPs)  and  the  rest  as  ICPs.  The  distributions  of 
training  GCPs,  along  with  ICPs  for  different  datasets,  are

shown  in  Figure  (2).  In  each  experiment,  80%  of  training 
GCPs have been considered as TCPs and the rest as DCPs.

  The results obtained from the implementation of different 
algorithms on different datasets are shown in Table (3). In

terms  of  accuracy,  a  focus  on  the  Avg-RMSE  values

demonstrates the poor performance of the PSORFO method. 
The PSO-KFCV and BOPSO-RFM methods reported high
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accuracies. In most cases, BOPSO-RFM reported higher 

accuracies compared to PSO-KFCV (6 out of 9 cases). In all 

cases, the BOPSO-RFM method reported less than 2 pixels. 

In cases that PSO-KFCV outperformed BOPSO-RFM, the                    

differences between their Avg-RMSE values were very low 

and almost negligible. The overall analysis of Avg-RMSE 

values shows average improvements of 95% and 29% in 

BOPSO-RFM results compared to those of the PSORFO and 

PSO-KFCV methods, respectively. 

 

 
 

Table 2. Result obtained from the implementation of different methods on different datasets. 

Data Set 
Training 

GCPs\ICPs 

Avg-RMSE Std-RMSE Condition Number 

PSORFO 
PSO-

KFCV 

BOPSO-

RFM 
PSORFO 

PSO-

KFCV 

BOPSO-

RFM 
PSORFO 

PSO-

KFCV 

BOPSO-

RFM 

 

Geo-ISF 

 

10\60 28.1096` 3.0294 1.3428 37.3389 2.2885 0.5476 1.76E+11 1.77E+11 5.82E+04 

15\55 17.3729 2.0247 1.1046 20.5941 1.0473 0.2715 4.65E+12 7.20E+09 3.37E+04 

20\50 7.7916 0.7912 0.7823 6.5033 0.1823 0.1590 6.95E+12 1.16E+06 6.66E+04 

 

PL-ISF 

 

10\60 135.5845 1.6768 1.9274 247.8914 0.5867 0.4907 4.82E+12 1.04E+11 5.59E+04 

15\55 2.1587 0.9858 1.1745 0.9658 0.1300 0.3397 5.65E+09 4.32E+09 3.93E+04 

20\50 18.7525 1.3520 1.2378 26.4801 0.5356 0.5791 3.61E+11 9.84E+06 2.86E+06 

WV-ISF 

10\55 17.4745 3.4616 1.4122 19.7434 7.3195 0.1859 2.33E+11 5.64E+08 9.38E+04 

15\50 15.0276 1.2757 0.9898 34.4586 0.7553 0.1725 4.48E+15 1.32E+06 1.15E+05 

20\45 25.4278 1.0506 1.1113 22.1870 0.2878 0.3401 6.82E+12 9.13E+05 6.43E+05 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2.  Distribution of training GCPs (TCPs+DCPs) and ICPs on Google Earth images for different datasets. 

Green markers indicate training GCPs, while red ones represent ICPs, (a) Geo-ISF data set, (b) PL-ISF 

data set and (c) WV-ISF data set. 
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From the stability viewpoint, as for accuracy analysis, 

PSORFO had poor performance compared to the other two 

methods. However, the PSO-KFCV and BOPSO-RFM 

methods both produced proper results, and in most cases, 

reported Std-RMSE values less than 1 pixel. These values 

indicate the high stability of these two methods against the 

initial values. In two cases, i.e., Geo-ISF with 10 training 

GCPs and WV-ISF with 10 training GCPs, PSO-KFCV 

reported almost high Std-RMSE values, while BOPSO-RFM 

provided Std-RMSE values less than 0.6 pixels in all cases 

indicating the high stability of this algorithm to initial values. 

Finally, a general analysis of the Std-RMSE values showed 

that BOPSO-RFM led to an average improvement of 76% 

compared to the PSO-KFCV method.  

The third part of the experiments was assigned to condition 

number analysis. A condition number, which is the ratio of 

the largest Eigenvalue of a matrix to the smallest one, is a 

parameter that represents the degree of ill-posedness of that 

matrix. The closer this value to one is, the lower the degree 

of ill-posedness will be. As shown in Table (3), the BOPSO-

RFM method succeeded in reducing the amounts of 

condition numbers of the final design matrix to a large extent. 

In other words, BOPSO-RFM successfully alleviated the ill-

posedness phenomenon compared to PSORFM and PSO-

KFCV. In general, the average of condition numbers of 

BOPSO-RFM was 1.14e+9 and 7.39e+4 times lower than 

those of PSORFO and PSO-KFCV. 

 Furthermore, Figure (3) illustrates the maximum 𝑟 values 

between the columns of the final design matrices, which 

correspond to the final solutions of the different methods. As 

shown in the figure, there were 10 repetitions per experiment. 

Same as the condition number, the maximum 𝑟 value is also 

a metric of ill-posedness of the final design matrix. As seen 

in Figure (3), in most cases, the maximum 𝑟 value for the 

BOPSO-RFM method was better than that of the other two 

competing methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4.Conclusions

 

  The  existence  of  two  overparameterization  and  ill- 
posedness  phenomena  in  the  RFM  problems  significantly 
affects the accuracy of the georeferencing process of satellite 
images.  These  two  phenomena  are  highly  dependent,  such

that  solving  an  overparameterization  problem  resolves  the

ill-posedness  phenomenon  automatically.  In  recent  years, 
meta-heuristic  algorithms,  especially  GA  and  PSO,  have     

been widely considered for finding the optimum structure of

the  RFM  method.  The  presented  methods  in  the  literature 
mainly  focus  on  solving  overparameterization  by 
considering  binary  versions  of  meta-heuristic  algorithms. 
Although these methods have been somewhat successful in

removing some unnecessary RPCs, as the condition numbers

and  maximum  correlation  analysis  of  PSORFO  and  PSO- 
KFCV have shown, the problem of ill-posedness still exists

 

      

(a) (b) (c) 

Figure 3. The maximum 𝑟 values obtained from different iterations in the experiments of a) Geo-ISF data 

set, b) PL-ISF data set, and c) WV-ISF data set. The first, second, and third rows of each column 

are dedicated to the experiments with 10, 15, and 20 GCPs, respectively. 
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in RFM problems. These two methods are considered as two 

powerful tools for RFM optimization. 

Regarding the problem mentioned above, a bi-objective 

PSO-based RFM optimization method, called BOPSO-RFM, 

was presented in this study to alleviate the ill-posedness 

phenomenon in RFM problems. As the method’s name 

implies, two objective functions were used in this method: 

RMSE over DCPs and the maximum correlation between the 

columns of the final design matrix. While the first objective 

function is common between different meta-heuristic based 

methods, the second objective function solely focuses on the 

ill-posedness to reduce the impact of this phenomenon.  

The experiments were conducted on three high-resolution 

satellite datasets from three different sensors. The condition 

numbers of the final design matrices, formed by extracted 

particles of different methods, showed that the BOPSO-RFM 

method was significantly effective in alleviating the ill-

posedness problem in the RFM optimization compared to the 

PSORFO and PSO-KFCV methods. Moreover, involving 

both overparameterization and ill-posedness phenomena, the 

BOPSO-RFM method provided higher accuracies, whose 

results were closer to the global optimum. Furthermore, the 

results demonstrated that the proposed method was more 

stable and reliable than the PSORFO and PSO-KFCV 

methods.  

Although the proposed method could somewhat overcome 

the problem of optimization in the RFM optimization and 

increase the accuracy of final results, its reported condition 

numbers were still far from the ideal condition number, i.e., 

the condition number equal to 1. Accordingly, in the future 

works, one should focus on incorporating other suitable 

objective functions or other optimization procedures into the 

RFM optimization problem to further reduce the ill-

posedness, and subsequently, increase the accuracy of the 

RFM optimization results.  
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