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ABSTRACT 

Feature selection (FS) for target detection (TD) attempts to select features that enhance the discrimination 

between the target and the image background. Moreover, TD usually suffers from background 

interference. Therefore, features that help detectors suppress the background signals and magnify the 

target signal effectively are considered more useful. Accordingly, in this paper, a supervised FS method, 

called autocorrelation-based feature selection (AFS), is proposed based on the TD concept. This method 

uses the image autocorrelation matrix and the target signature in the detection space (DS) for FS. Features 

that increase the first-norm distance between the target energy and the mean energy of the background in 

DS are selected as the optimal features. To evaluate the proposed method and to explore the impact of FS 

on the TD performance, the target detection accuracy (TDA) measure is employed. The experiment shows 

that the proposed FS method outperforms the two existing FS methods used for comparison. In fact, AFS 

achieves the maximum TDA value of 19.02% using 58 features while, compared to FS, the other methods 

achieve much lower values. Furthermore, the effect of image partitioning on the TD performance in both 

full-band and reduced-dimensionality feature spaces is investigated. The experiment results show that 

partitioning, as a way of adding local spatial information to TD, dramatically improves the TD 

performance. For experiments, the HyMap dataset is employed. 
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  Hyperspectral  imagery  (HSI)  provides  scientists  with 
various  applications  such  as  improved  classification  map

production (Landgrebe, 1999), subpixel target and anomaly 
detection (Xue, et al., 2017; Manolakis, Siracusa, & Shaw, 
2001; Chang  &  Chiang,  2002) and  spectral  unmixing

(Bioucas-Dias,  et  al.,  2012). However,  due  to  the  high 
number of spectral bands, huge data volumes are produced.

Furthermore,  much  of  the  information  supplied  by 
hyperspectral  data  is  redundant since  the  adjacent  spectral 
bands are highly correlated. Hence, many studies have been

conducted  on  reducing  the  data  dimensionality  by  feature 
selection  (FS)  and  feature  extraction  (FE)  methods.  In

general, the goal of dimensionality reduction (DR) is to 

reduce the data volume, enhance the computing process and 

the accuracy of analyses (Kuo & Landgrebe, 2004). 

In general, there are three main categories of FS methods: 

filter, wrapper, and embedded methods. The filter methods 

select features independent of the subsequent image analysis 

to be conducted, such as classification. Several filter methods 

have been developed, which use criteria such as correlation 

coefficient, entropy, mutual information, first/second 

spectral derivative, contrast, and spectral ratio (Bajcsy & 

Groves, 2004). Other methods such as fuzzy logic (Basak, 

De, & Pal, 1998), Inf-FS (Roffo, Melzi, & Cristani, 2015), 

support vector machine recursive feature elimination (SVM-

RFE), Relief-F and correlation-based feature selection (CFS) 
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have also been used for FS (Ma, et al., 2017). In another class

of filter methods, optimal features are selected based on the 
geometrical properties of bands in the prototype space (PS)

such  as  prototype  space-based  feature  selection  (PFS)  and 
maximum  tangent  discrimination  (MTD) (Mojaradi, 
Abrishami-Moghaddam, Zoej, & Duin, 2009; Ghamary Asl, 
Mobasheri, & Mojaradi, 2014).

Other than filter methods, there are wrapper FS methods.

These  methods  iteratively  select  bands  based  on  the 
classification  results.  Random  Forest  (RF)  and  SVM 
classifiers have been used as wrappers (Ma, et al., 2017). The 
genetic algorithm  has also been used as a  wrapper  method

(Raymer, Punch, Goodman, Kuhn, & Jain, 2000). In addition

to the filter and wrapper FS methods, there are embedded FS 
methods.  The  embedded  methods  are quite  similar  to  the 
wrapper methods. The difference to the wrapper methods is 
that  an  intrinsic  model  building  metric  is  used  during  the 
learning  process.  An  example  of  embedded  methods  is  L1

regularization  (LASSO) (Tibshirani,  1996).  Furthermore, 
there  is  a  new  type  of  FS  methods  called  deep  learning 
methods,  such  as  Convolutional  Neural  Network  (CNN)), 
which  are  used  for  both  FS  and  FE  to  improve  the 
classification  accuracy (Chen,  Jiang,  Li,  Jia,  &  Ghamisi,

2016).  These  methods  can  be  regarded  as  wrapper  or 
embedded.

It should be noted that the methods developed for FS/FE

are  mostly  used  for  classification.  However,  classification 
and detection are conceptually different. In fact, these targets

are  composed  of  a  small  number  of  pixels.  Moreover,  the 
targets are usually smaller than the ground sampling distance

(GSD). Hence, no spatial and statistical information can be 
practically extracted about them. Furthermore, a challenge is 
to suppress the background since it deteriorates the accuracy

of target detection (TD). In this regard, features that further 
discriminate the targets from the background are regarded as 
optimal.  Therefore,  new  DR  methods  are  required  to  be 
developed for TD.

Filter FS methods, supervised and unsupervised, aimed at

improving  TD  have  been  recently  developed.  In  an

unsupervised  manner,  In (Cao,  Wu,  Tao,  &  Jiao,  2016)

regarded  the  bands  that  produce  better  edge  maps  as  more 
informative.  A  band  search  strategy  based  on  the  Particle 
Swarm Optimization (PSO) along with a supervised target-

background  separation  ratio  is  proposed  by (Xu,  Du,  & 
Younan,  2017) to  improve  TD.  Some  other  supervised  FS 
methods  use  band  clustering  and  ranking.  For  instance,  in 
clustering-based  band  selection  (CBS) (Datta,  Ghosh,  & 
Ghosh,  2013),  band  clustering  is  conducted  using  the

density-based  spatial  clustering  of  applications  with  the

noise (DBSCAN) algorithm (Ester, Kriegel, Sander, & Xu, 
1996).  Variable-number  variable-band  selection  (VNVBS)

(Wang  &  Chang,  2007) uses  the  concept  of  orthogonal

subspace projection (OSP) to select the bands containing the 

most discriminatory information. 

Constrained energy minimization (CEM)-based 

constrained band selection (CCBS) (Chang & Wang, 2006) 

also exploits the CEM detector to select the bands. In this 

unsupervised filter method, each band vector is treated as the 

desired target vector and all of the remaining band vectors 

are regarded as undesired. The output of the FIR filter is used 

as the FS criterion. Constrained band subset selection 

(CBSS) (Yu, Song, & Chang, 2018) is another unsupervised 

FS method very similar to CCBS. The difference is that 

CBSS constrains multiple bands as a band subset as opposed 

to CCBS which constrains a single band as a singleton set. In 

band add-on (BAO), a decomposition of the spectral angle 

mapper (SAM) is presented to select optimal bands based on 

the angular separation (Keshava, 2004). (Du, 2003) proposes 

an unsupervised method that selects optimal features using 

the skewness or kurtosis concept. The highly correlated 

features are removed using the divergence of bands. 

In contrast, there are wrapper FS methods designed for TD. 

Curve area and genetic theory (CAGT) (Wang, Huang, Liu, 

& Wang, September 2014) use the genetic algorithm as the 

search strategy to find the optimal feature subset. The 

receiver operating characteristics (ROC) (Fawcett, 2006) 

area under curve (AUC) is used as the supervised criterion to 

evaluate each band subset. Furthermore, there are embedded 

FS methods designed for TD. A supervised sparsity-based 

method called LASSO-based band selection (LBS) has been 

developed to select different band subsets based on the CEM 

detector (Du, Ren, & Chang, 2003; Sun, Geng, & Ji, 2015). 

The band subset minimizing the finite impulse response 

(FIR) filter in CEM is selected as optimal. 

An ideal FS method is one that helps target detectors 

discriminate the target and the image background more 

effectively. Therefore, developing an FS method based on 

the TD concept would help select more discriminative bands. 

In this regard, the proposed supervised method called 

autocorrelation-based feature selection (AFS) innovatively 

utilizes the image autocorrelation matrix as well as the target 

signature to simultaneously include the target and the 

background separation information in the FS process. This 

contradicts many unsupervised FS methods that rely only on 

the background information and many supervised methods 

that use only the target information and limited background 

information. The other innovative feature of this method is 

that it introduces the detection space (DS) to select optimal 

features. Indeed, the performance of an FS method depends 

on both the FS criterion and efficient space for data 

representation. Therefore, it must be emphasized that AFS 

has two key characteristics, i.e., (1) it implements a 

geometrical FS criterion in DS and (2) exploits the target and 

the background information together as opposed to almost all 

of the existing FS methods. 
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This paper is organized as follows. In Section 2, the 

datasets used for experiments are introduced. Then, three 

existing TD-based FS methods, i.e., BAO, LBS, and SKBS 

are briefly introduced for comparison. Furthermore, the 

concept behind the proposed FS method is explained 

completely followed by the explanation of the evaluation 

measures. Section 3 presents the experiments, results, and 

discussions in detail. The CEM detector is employed tor 

detection. Finally, the conclusion is presented in Section 4. 

2. Data and Methods 

2.1. Hyperspectral Data 

The HyMap dataset was collected in July 2006 in Cooke 

City, Montana, USA (Snyder, et al). The GSD of the image 

is approximately 3 meters. The data contains 126 spectral 

bands in the VNIR-SWIR range. Water absorption and low 

signal-to-noise bands were removed, leaving 112 bands. 

Civilian vehicles and small fabric panels are used as targets. 

The locations of the ground truth objects or targets are shown 

in circles in Figure 1. Zoomed views of the target locations 

can be seen in Figure 2. The details of the number, size, and 

type of targets are given in Table 1. The HyMap dataset and 

all the information regarding the ground truth given in Figure 

1, Figure 2 and Table 1 are available online at (Target 

Detection Blind Test). 

 
Figure 1. Part of the HyMap color image of Cook City, 

Montana, USA 

    

Figure 2.  Zoomed views of the fabric panels (left) and 

vehicles (right) used as targets in the HyMap dataset 

It must be added that the ground truth samples consist of 

pure and mixed pixels as well as guard pixels that separate 

the target panels from the surrounding areas. In our 

experiments, the guard pixels were removed from the targets 

list. Furthermore, for targets F1 and F2, the spectra of the 

pure pixels were given as input to target detectors. F3 and F4 

are arranged in two sizes. Therefore, they are considered as 

F3a, F3b, F4a, F4b. F3a and F4a have central pure pixels, but 

F3b and F4b only consist of mixed pixels. As a result, for 

F3a and F4a, pure pixels and, for F3b and F4b, mixed pixels 

are used as the target spectra. For targets V1, V2 and V3, 

only mixed pixels were available, which were used 

inevitably as the input to the detectors. Meanwhile, the 

geometriHyMap dataset is cally and radiometrically 

reflectancedemonstratevaluespixeltheandcorrected,

spectra. 

Table 1. Details of the fabric panels and vehicles used as 

targets in the HyMap Dataset 

Names Materials and Sizes Number of Pixels 

F1 3m Red Cotton Panel 9 

F2 3m Yellow Nylon Panel 9 

F3a 2m Blue Cotton Panel 9 

F3b 1m Blue Cotton Panel 1 

F4a 2m Red Nylon Panel 9 

F4b 1m Red Nylon Panel 1 

V1 1993 Chevy Blazer 1 

V2 1997 Toyota T100 1 

V3 1985 Subaru GL Wagon 1 

Figure 3 shows the reflectance spectra of the targets. As 

seen, most of the targets have spectral responses similar to 

those of the background vegetation. This implies a 

challenging condition to separate targets from the 

background. 

 

 

  

Figure 3.  The reflectance spectra of targets in the HyMap

data

2.2. BAO

This supervised  method is developed based on the SAM

concept,  where  bands  producing  the  maximum  angles 
between the target and a reference signature are selected as 
optimal.  The  image  mean  vector  is  used  as  the  reference 
signature.  FS  starts  from  an  initial  band  subset,  and  the 
remaining bands are added one by one to the initial subset.

The bands that minimize the cost function are the ones which 
maximize  the  discrimination  between  the  target  and  the

background (Keshava, 2004).
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This method suffers from the fact that it neglects the 

background information. Indeed, the image mean vector is 

not a good representative for the background, especially in a 

case such as TD where subtle spectral information is required 

to separate the target and the background. 

2.3. LBS 

This method operates in a supervised manner based on the 

TD concept, where the difference between the target 

abundance map in the full dimension and the abundance map 

produced by the selected bands is used as the criterion for 

FS. The CEM vector in the reduced dimension is estimated 

using the linear regression model with L1 regularization 

(LASSO). The indices of the non-zero elements in the 

estimated CEM vector are interpreted as the optimal band 

numbers (Du, Ren, & Chang, 2003; Sun, Geng, & Ji, 2015). 

This method uses a potentially convincing FS criterion in 

terms of TD. However, the proposed criterion is 

mathematically complex to be solved and, unfortunately, 

does not precisely yield the desired solution, i.e., the number 

of bands selected is not the same as the number of bands 

intended to be selected. In other words, the method cannot 

select the desired number of bands given as input to the 

algorithm. 

2.4. SKBS 

Skewness-based band selection (SKBS) is an unsupervised 

FS method that uses the skewness or kurtosis or a 

combination of these two statistical parameters to select the 

optimal features. This method sorts the spectral bands based 

on these parameters. It is assumed that the bands with greater 

skewness or kurtosis values contain more useful information. 

Then, the sorted bands are analyzed in pairs using the 

divergence concept. This step is used to remove the bands 

that are very similar or highly correlated (Du, 2003). 

Although this FS method is conceptually simple and can 

be easily implemented, it does not take into account the target 

information. It only attempts to extract information on the 

background. Therefore, SKBS may not be able to select 

informative bands specifically helpful for TD. 

2.5. The Proposed Autocorrelation-based Feature Selection 

(AFS) Algorithm 

Feature Selection (FS) based on the target detection (TD) 

concept can help select more discriminative bands by using 

a projection vector consisting of the image autocorrelation 

matrix and the target signature. Moreover, it must be 

emphasized that using an appropriate space for the 

representation of bands and employing an effective criterion 

developed specifically for TD-based FS can lead to more 

informative bands to be selected. In this regard, the proposed 

FS method is presented as follows. 

Conceptually, TD generally occurs in two steps. In the first 

step, the target signal is magnified prior to background 

suppression. Then, in the second step, the background is 

suppressed by projecting the image into a new subspace. 

Based on this concept, in order to develop the 

autocorrelation-based feature selection (AFS) method, we 

introduced a new vector called the ‘TD projector’ defined as 

follows: 

 1

1 1L L L L



  k R d  (1) 

where k is the TD projector, L is the number of spectral 

bands, d is the desired target signature and R-1 is the inverse 

of the image autocorrelation matrix R: 

 
1

1 N T

L L i iiN
 
 R r r  (2) 

where N is the number of image pixels and ri is an (L×1)-

dimensional image pixel vector. 

The TD projector in equation (1) is embedded in the CEM 

and adaptive matched filter (AMF) detectors. Since the 

background suppression is accompanied by the target energy 

being reduced, the first term is introduced by multiplying the 

image pixel vectors by d. This term magnifies the target 

energy, which helps increase the probability of the target to 

be detected. 

In the second term, the image pixels are transferred into the 

subspace spanned by R-1. It must be emphasized that in the 

TD concept, R is regarded as the mean energy or power of 

the image. Hence, in this step, the approximately largest 

amount of the image background energy is suppressed.  

Two points must be noted here. The first point is that the 

TD projector is defined based on the detection concept. 

Therefore, the values of the image pixel vectors, after being 

multiplied in an element-wise fashion by equation (1) and 

projected into a new subspace, change from reflectance or 

radiance into new values. Hence, we name this new subspace 

as the Detection Space (DS) hereafter, and the FS criterion 

for AFS will be implemented in this space. The second point 

is that since the TD projector uses the target signature, and 

the AFS method is also defined using this projector; 

therefore, the FS process is conducted in a supervised 

manner. 

One other important point in equation (1) is that the inverse 

of the sample autocorrelation matrix plays a key role in 

suppressing the image background. In fact, in R, each 

diagonal element 𝑖 can be regarded as the mean energy of the 

𝑖𝑡ℎ band in the original feature space. Therefore, R-1 in k 

minimizes the energy of individual bands. In this regard, if 

one does an element-wise product of k and the diagonal in R, 

the product can be considered as the mean value of the 

background in different bands in DS. Furthermore, the 

detectors such as CEM use the second power of k to suppress 

R; hence, we also used the second power of k in order to be 

consistent with the TD concept: 

  1  L diag s R  (3) 

 ^2

1 ( *)L e k s  (4) 
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where s is the vector containing the diagonal elements of R 

and e is the mean energy of the image bands in DS. The 

asterisk in equation (4) is used to denote the element-wise 

multiplication of vectors. k˄2 also means the element-wise 

second power. Likewise, the target can be multiplied by the 

projector: 

 
1 *L t k d  (5) 

where t indicates the target values in each band in DS. The 

signs of the values in t are not important as they only denote 

the direction of autocorrelation. Therefore, the absolute 

values of t are employed in equation (5). Since R is a positive 

matrix, e also has positive elements in equation (4). 

Theoretically, target detectors exploit the distance between 

the target and the background pixels in DS to conduct the 

detection process. Therefore, the higher the difference 

between the absolute values of t and e, the higher the 

discrimination between the target and the background. 

Hence, the FS criterion is defined as follows: 

 
1L  a t e  (6) 

where a is the vector representing the separability between 

the target and the background. Indeed, 𝑎𝑖 means the first-

norm distance between the target and the background in the 

ith feature. Features that yield the biggest values for ai are 

regarded as optimal since they provide the highest amount of 

separability between the target and the background in DS. 

To further clarify the FS criterion, Figure 4 displays the 𝑎𝑖 

values for all features or the difference in absolute values 

between t and e in the full-dimensional DS, i.e., 𝐿 original 

features. As it is seen, the sixth feature (f6) provides the 

greatest absolute distance between the target and the 

background. Therefore, it can be selected as the first optimal 

feature in the full-dimensional DS. However, our analysis 

demonstrated that feature selection based on a backward 

elimination strategy, i.e., removing the features with the 

minimum 𝑎𝑖 values in equation (6), which are the least 

discriminative ones, leads to better results. Therefore, we 

used the backward strategy for selecting features by AFS. 

The steps of the AFS method are as follows: 

1) For target dL×1, the TD projector kL×1 in equation (1) is 

computed using the autocorrelation matrix RL×L defined 

in equation (2). 

2) eL×1 and tL×1 are computed based on equations (4) and 

(5). 

3) For feature (fi), the ai is computed as follows: 

 
i i ia t e   (7) 

       This step is conducted for all of the features. 

4) Using a backward elimination strategy, the feature (fu) 

with the minimum au value is removed from the original 

set of features f={f1,f2,…,fL}: 

  argmin  ,   1, ,  ;1 
i

u ia i L u L    
f

f  (8) 

 
Figure 4. The absolute values of the difference between t and 

e in all features obtained by the autocorrelation-based feature 

selection (AFS) method in the full-dimensional detection 

space (DS). (f6) is the first optimal feature. 

5) d and R are updated by removing the feature (fu)  

determined in step 4. 

6) k is updated in the reduced-dimensionality DS using the 

new d and R. 

7) The vector a is computed for all of the new features in 

the reduced-dimensionality DS using the updated set of 

features fʹ. It must be emphasized that the two feature 

sets f and fʹ are different in both the number of features 

and the features themselves. 

Steps 3 to 7 are repeated until a stop criterion is satisfied, 

e.g., x < L features are left. These features have the maximum 

a values in equation (7) and thus provide the highest amount 

of discrimination between the target and the background. The 

𝑥 remaining features are then used for TD. Furthermore, x 

can be determined based on the application or the user’s 

needs. For example, it can be set when the number of FAs 

for a given feature subset is minimum compared with that of 

other subsets. Apart from FA, other criteria such as the 

number of truly detected targets or true positives (TPs) can 

also be employed to stop the FS process. 

Therefore, it must be emphasized that AFS introduces a 

new space based on the TD concept in which the 

discriminative features can be selected based on a simple 

geometric criterion, i.e., the first-norm distance between the 

target and the background in DS.  

Furthermore, as mentioned previously, it must be noticed 

that unsupervised FS methods only rely on the background 

data to select optimal features ignoring the target information 

while a few existing supervised FS methods mainly focus on 

the target information ignoring the background. In contrast, 

AFS simultaneously employs the full information regarding 

the target and the background separation using the general 

TD concept to select features without directly resorting to the 

detector feature vector. It does so by simultaneously 
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exploiting the autocorrelation matrix as well as the target 

signature. 

Moreover, it must be also emphasized that many target 

signatures are spectrally mixed at the subpixel level, which 

can be detected only using subtle spectral information; 

hence, only a supervised TD-oriented approach to FS leads 

to better results. 

2.6. Evaluation Measure: Target Detection Accuracy (TDA) 

In this research, the focus is on both FA and true positive 

(TP) pixels by simultaneously minimizing FAs and 

maximizing TPs. Hence, after the FS process is terminated, 

subsets containing different numbers of selected features are 

employed to conduct TD by the CEM and AMF detectors. 

To do so, the number of features in the optimal feature subset 

increases progressively from 10 to 70. Then, we introduced 

the following equation to be applied to the detection 

abundance image in order to obtain the best FAs and TPs for 

each subset: 

 ,

, ,

,

100,   10, ,70
i t

i t max

t i t

TP
TDA i

n FA
   


   (9) 

where TDAi,t,max is the maximum target detection accuracy 

(TDA) obtained for target 𝑡 using the subset containing 𝑖 

optimal features, 𝑇𝑃𝑖,𝑡 is the number of true positive pixels, 

FAi,t is the number of false alarm pixels, and 𝑛𝑡 is the number 

of target pixels. Ideally, when FAi,t = 0 and TPi,t = nt, i.e., all 

target pixels are detected with no FAs, then, TDAi,t,max = 100. 

In the worst case, when TPi,t = 0, i.e., the detector cannot 

detect any target pixels, TDAi,t,max = 0. To be specific, in order 

to determine FAi,t and TPi,t, a threshold must be used to 

convert a detection abundance map to a binary classification 

map. In this regard, for each target in each selected feature 

subset, a full range of thresholds from the minimum 

abundance to the maximum abundance in the detection map 

is used for the conversion. For each threshold, FAs and TPs 

are counted and TDAi,t is calculated. The threshold giving the 

maximum value, i.e., TDAi,t,max or the best trade-off between 

FAs and TPs, is used to produce the classification map. Then, 

the FAi,t and TPi,t values corresponding to TDAi,t,max are 

regarded as the best result accomplished by a detector using 

the ith feature subset for target 𝑡 based on equation (9). 

It must be mentioned that equation (9) is designed so that 

both FAs and TPs are considered to evaluate the effect of 

different feature subsets produced by the FS methods. It must 

be also emphasized that, for each feature subset, the best FA 

and TP values are obtained for each target separately. Then, 

for each feature subset, the sum of best FAs and TPs of all 

targets are given as the final result achieved by a detector 

using an FS method: 

 
,1

,1

  ,  1, ,

  ,  1, ,

g

i i tt

g

i i tt

TFA FA i L

TTP TP i L





  

  




 (10) 

In equation (10), TFAi is the total number of FAs regarding 

all targets, FAi,t is the best FA obtained for target t in equation 

(9), TTPi is the total number of TPs considering all targets, 

TPi,t is the best TP gained for target 𝑡 in equation (9) and g is 

the number of targets. i is the selected feature subset. 

In order to have a better comparison of the effect of FS 

methods on TD, both FAs and TPs are considered as the 

measure of performance. In this regard, the TFA and TTP 

values obtained by equation (10) are used to determine the 

best TDA for each feature subset regarding all targets as 

follows: 

 100,   1, ,i
i

i

TTP
TDA i L

NT TFA
   


 (11) 

where TFAi and TTPi are obtained for the ith feature subset 

by equation (10), NT is the total number of pixels for all 

targets and TDAi is the best TDA obtained for all of the 

targets using the 𝑖𝑡ℎ feature subset. 

 

 

  

  

 

 

2.7. Evaluation Measure: Computing Speed (CS)

  Finally, the time taken by the proposed FS method and the 
other  FS  methods  to  select  optimal  features  are  compared

with each other.

3. Results and Discussions

3.1. Feature Selection: TDA Curves

Figure 5 displays  the  performance  of  CEM  using  the

proposed  AFS  method  for  the  HyMap  dataset  in  terms  of 
TDA.  The TDA  values  are  displayed  as  curves.  The  black 
horizontal  line  shows  the  full-band  TDA  value.  FB  in  the

figure’s legend stands for ‘full-band.’ Meanwhile, it must be 
noted that, in general, the detection accuracy values are low 
compared  with  the  traditional  measures  often  employed  in 
classification  studies  such  as  the  overall  accuracy  and  the 
kappa coefficient. This is because the number of target pixels

is usually much lower than that of FA pixels. Therefore, the 
values  obtained  by  equation  (11)  are  mostly  influenced  by 
the number of FAs.

  Figure 5 shows that the proposed AFS method has a better 
performance  in  all  selected  feature  subsets  compared  with

BAO,  LBS,  and  SKBS.  Therefore,  regarding  this 
experiment,  it  must  be  pointed  out  that  the  CEM  detector 
using AFS performed much better compared when employed 
with other FS methods. The TDA values achieved by AFS 
were much higher than those of other methods in all feature

subsets,  especially  in  ones  containing  only  a  few  features. 
The  maximum  TDA  obtained  by  AFS  was  about  19.02% 
with  58  features.  Furthermore,  AFS  also  succeeded  in 
generating  TDA  values  higher  than  those  of  the  full-band 
detection from subset 53 to subset 63. CEM did not obtain

results better than the full-band detection using BAO, LBS, 
and SKBS.
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Figure 5.  The best target detection accuracy (TDA) obtained 

by the CEM detector using four feature selection (FS) 

methods for the HyMap dataset. The black horizontal line 

indicates the full-band (FB) result for comparison with FS-

based results. 

   In order to further compare the detection performance of 
CEM  using  the  proposed  FS  method,  the  detection  values

produced  by  CEM  using  the  AFS,  LBS,  BAO  and  SKBS 
methods  for  the  first  target  (F1)  are  displayed  in Figure 6. 
The  x-axis  displays  the  pixel  numbers,  and  the  y-axis 
indicates the abundance values. The black vertical lines show 
the  location  of  the  target  pixels.  The  abundance  values

demonstrated are obtained using 58 features. This number of 
features  corresponds  to  the  maximum  TDA  value 
accomplished by CEM using AFS in Figure 5. As Figure 6(a)

shows, CEM has produced higher values for the target pixels 
using  the  features  selected  by  AFS.  In Figure 6(a-c),  the

target abundance values are lower. Higher target abundance 
values  produce  a  higher  number  of  TP  pixels.  Hence,  a 
higher  number  of  TP  pixels  that  is  combined  with  a  low 
number of FA pixels results in higher TDA values (equation

(9)). This is  the reason AFS has produced maximum TDA

value using 58 optimal features in Figure 5.

  

  
Figure 6. Pixel abundances of the detection map of the first target in the HyMap dataset obtained by CEM using 58 features. These 

features correspond to the maximum TDA value achieved by AFS. The FS methods are (a) AFS, (b) LBS, (c) BAO and (d) SKBS. 

The black vertical bars indicate the position of target pixels. AFS has help CEM gain higher values for the target pixels. 

Therefore, it must be emphasized that AFS introduces a 

new space for FS. In contrast, BAO, LBS, SKBS, and other 

existing FS methods reviewed in the introduction section use 

the traditional feature as well as the spectral and prototype 
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spaces. The proposed DS in this research is based on the 

detection concept and is hence better suited for TD. 

Therefore, the appropriate space employed to represent and 

analyze the features is the superiority of our proposed FS 

method. The other factor that differentiates AFS from the 

existing FS methods is the FS criterion. However, as our 

experiments show, the first step of defining the appropriate 

space in which the FS cost function is applied is more 

important. Other FS methods also possess acceptable FS 

criteria, but the space in which features are selected is not 

entirely suitable for TD. Moreover, one significant advantage 

of our research is that we have also compared our TD results 

with the full-band detection accuracy. This is an issue less 

noticed in other studies. 

3.2. Feature Selection: CS  

In this experiment, the amounts of time spent by the 

proposed FS method along with other FS methods to select 

and rank the complete set of optimal features are displayed 

as computing speeds (CS) in Table 2. The proposed AFS 

method consumed much less time compared with LBS and 

SKBS. In contrast, BAO performed FS is a slightly shorter 

time compared with AFS. The reason is that it only uses the 

target and the image mean vectors to conduct FS. However, 

the performance of BAO is much weaker than that of AFS in 

terms of FA and TDA.  

Table 2. The time in seconds spent by the feature selection 

(FS) methods to select optimal features in the HyMap dataset. 

Existing FS Methods Proposed FS Method 

LBS BAO SKBS AFS 

55 4 19 8 

3.3. Full-Band Image Partitioning 

It must be noticed that the image autocorrelation matrix R 

in CEM plays a significant role in suppressing the image 

background. Traditionally, this matrix is built globally using 

all image pixels. In this way, only the global spectral 

characteristics of the background are considered. However, 

subtle local spectral characteristics of the background are 

ignored. Therefore, locally modeling the image background 

can help better suppress it and consequently improve the TD 

performance. 

In this regard, in this experiment, we intend to investigate 

the effect of image partitioning - as a way of localizing the 

image background - on TD. Particularly, the effect of the 

number and size of the partitions on the CEM performance 

in terms of both FA and TDA is studied. In order to divide 

the image into partitions, the MATLAB code starts with the 

original image and then, in each iteration 𝑖, the image is 

 divided  into 𝑛 = 𝑖2 partitions.  The  loop  continues  for  ten

                      times.  Therefore,  the  number  of  partitions  equals

1, 4, 9, 16, …, 100. Obviously, as the number of partitions 
increases, the sizes of partitions decrease. In each iteration,

TD is conducted in each partition locally. Then, the global 

abundance map is produced by stitching partitions together. 

Finally, a global binary classification is run using the 

threshold determined by the maximum TDA.  

Figure 7 demonstrates the total number of FA pixels 

generated by CEM for all targets in the full-band HyMap 

dataset. The first iteration (𝑖 = 1), shows the result (n = 1, 

FA = 140) for the original unpartitioned image. As the 

number of partitions increases or as the size of partitions 

reduces, the number of FAs decreases. This indicates that 

using a local R instead of a global R has a direct positive 

impact of the TD performance. Furthermore, Figure 8 

displays the TDA values obtained by CEM with different 

numbers of partitions for the HyMap dataset. The first value 

(n = 1, TDA = 17.13 %) shows the result for the original 

unpartitioned dataset. It is seen that the TDA value increases 

sharply as the number of partitions increases. This also 

proves the constructive influence of local background 

modeling on the TD accuracy. 

 
Figure 7. The number of false alarm (FA) pixels generated 

by the CEM detector versus the number of image partitions 

for the full-band HyMap dataset. 

 
  

 

Figure 8. Target detection accuracy (TDA) achieved by the

CEM detector versus the number of image partitions for the 
full-band HyMap dataset. 
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3.4. Feature Selection and Image Partitioning 

Generally, in DR, whether FS or FE, some spectral 

information is lost. This reduction in data dimensionality can 

lead to some improvement in TD performance (Figure 5), 

since several of the highly correlated and redundant features 

are removed, and a subset of the most informative features 

are selected. In Figure 5, in some of the feature subsets, TDA 

values higher than the full-band result are obtained by CEM 

using features selected by AFS. However, in other feature 

subsets, especially the ones containing a few features, the 

TDA values are much lower than the full-band result. 

Therefore, we intend to demonstrate that adding spatial 

information to spectral information can lead to increased 

spatialthis addedwords,In otherinformation content.

information can compensate the reduced spectral 

information specifically in the subsets containing only a few 

optimal features and improve TD accuracy. 

 

Figure 9. The number of false alarm (FA) pixels generated 

by the CEM detector using AFS versus the number of 

offor different numbersfeatures displayedoptimal

partitions. 𝑛 indicates the number of partitions. The 

horizontal dashed line demonstrates the FA value for the full-

band image without partitioning. 

In this regard, in this experiment, we combined image 

partitioning, as a way of extracting spatial information on the 

image background, with FS. Figure 9 displays the total 

number of FA pixels generated by CEM using the optimal 

features selected by AFS. The horizontal dashed line 

demonstrates the FA value for the full-band image without 

partitioning (n = 1). Four FA curves are shown 

corresponding to four different numbers of partitions              

(n = 1, 4, 16 and 81). n = 1 means the unpartitioned image. 

In each curve, as the number of features increases, the 

number of FA pixels decreases. Moreover, a comparison of 

the curves indicates that as the number of partitions 

increases, the number of FA pixels further decreases. This 

proves that image partitioning adds useful spatial 

information to FS so that the TD performance improves 

substantially in the reduced-dimensionality feature space. 

One crucial point to be noticed is that CEM, using the full-

band partitioned image, gains the minimum FA value of a 

single pixel with 81 partitions as seen in Figure 7. 

Furthermore, CEM, using AFS along with image 

partitioning, also yields the minimum FA value of a single 

pixel. This is shown in Figure 9 in a box saying that the full-

band partitioning-based FA value is achieved using 51 

optimal features with 81 partitions. This means that in the 

reduced-dimensionality image with 81 partitions, CEM, with 

the help of AFS, has achieved the result equal to that of the 

full-band image, also with 81 partitions, using only 45 % of 

the original features. In other words, AFS has accomplished 

a noticeable reduction in data volume without losing 

accuracy. Moreover, the result is much better in comparison 

with that of the full-band unpartitioned TD displayed by the 

dashed horizontal line. 

Finally, in order to give an overall view of the information 

displayed in Figure 9, it must be mentioned that these 

comparisons are demonstrated: the FA value generated by 

the full-band unpartitioned TD (dashed horizontal line, n = 

1), FA values generated in the reduced-dimensionality 

partitioned TD (n = 4, 16, 81) using different numbers of 

features and FA values generated in the reduced-

dimensionality unpartitioned TD (n = 1) using different 

numbers of features. The arrow compares the minimum FA 

value of the reduced-dimensionality partitioned TD with that 

of the full-band partitioned TD (both FAs equal one pixel). 

 

  

  

 

 

 

Figure 10. The target detection accuracy (TDA) achieved by

the CEM detector using AFS versus the number of optimal 
features  displayed  for  different  numbers  of  partitions. n

indicates the number of partitions. The horizontal dashed line 
demonstrates the TDA value for the full-band image without 
partitioning.

  Figure 10 demonstrates the TDA values achieved by CEM 
using the optimal features selected by AFS for the HyMap 
dataset with different numbers of partitions (n = 1, 4, 16 and

81). n  =  1 means  the  unpartitioned  image.  The  horizontal 
dashed  line  demonstrates  the  TDA  value  for  the  full-band
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image without partitioning n = 1. As it is seen, in each curve, 

the TDA values increase as the number of selected features 

increases. Moreover, as the number of partitions increases, 

the TDA value further increases. With a high number of 

partitions, i.e., (n = 81), the TDA values increase sharply 

with a considerable difference compared with low numbers 

of partitions, i.e., (n = 4 and 16). This shows the noticeable 

impact of local spatial information added to spectral 

information in improving the TD performance. Besides, the 

effect of partitioning in the feature subsets containing a low 

number of features compared with the full-band 

line,unpartitioned TD (dashed horizontal 𝑛 = 1 and)

unpartitioned reduced-dimensionality TD (n = 1) is 

extraordinary. One last point about Figure 10 is that CEM 

has achieved a superior maximum TDA value of 95.24 % in 

the image with 81 partitions using only 55 optimal features, 

selected by AFS, or only 49 % of the original features. This 

TDA value equals the maximum value achieved by CEM in 

the full-band partitioned image with 81 partitions (Figure 8). 

Therefore, AFS provides CEM with a considerable amount 

of reduction in the data size as well as maintaining the TD 

accuracy. 

4. Conclusions
 

In this research, a new feature selection method called AFS 

aimed at improving TD in hyperspectral imagery was 

proposed. For TD, CEM was employed as the detector. AFS 

was developed based on the image autocorrelation matrix 

and the target signature in DS. Three existing TD-oriented 

FS methods, BAO, LBS, and SKBS, were used for 

wasmeasurethe TDAcomparisons. For evaluation,

proposed and utilized with the HyMap dataset. As the 

experiment showed, AFS-based CEM achieved higher TDA 

values using different feature subsets compared with the 

processes in which BAO, LBS, and SKBS were used for FS. 

CEM, using AFS, also obtained TDA values higher than that 

of the full-band TD in some feature subsets. In fact, in 

contrast to existing FS methods, AFS introduced a new 

space, called DS, for feature selection, which was 

specifically defined for TD. This new space and the 

implementation of the proposed FS criterion in this space 

helped CEM achieve higher detection accuracy values 

compared with the process that used other spaces and criteria 

for FS. 

Moreover, the effect of image partitioning was 

investigated on the TD accuracy using the full-band HyMap 

dataset. It was observed that as the number of partitions 

increased, the FA values decreased and, in contrast, the TDA 

complementarytheconsiderably. Also,values increased

effect  of  local  spatial  information  on  the  reduced-

dimensionality TD performance was explored, an issue that 
has  not been  much  studied  beforehand.  Accordingly,

partitioning was combined with AFS using four numbers of

partitions. It was observed that partitioning helped AFS 

achieve TDA values much higher than those of the full-band 

unpartitioned TD and reduced-dimensionality unpartitioned 

TD. Finally, it must be emphasized that the main 

achievement of this experiment was that AFS-based CEM 

managed to achieve a considerable data reduction volume of 

about 55 % and 51 %, regarding the FA and TDA values 

while maintaining the minimum FA and maximum TDA 

values achieved by the full-dimensional partitioned TD. 
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