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ABSTRACT 

Floods are among the most common natural disasters that impose severe financial and human losses every 

year. Therefore, it is necessary to prepare susceptibility and vulnerability maps for comprehensive flood 

management to reduce their destructive effects. This study is trying to provide a flood susceptibility 

mapping in Jahrom (Fars Province) using a combination of frequency ratio (FR) and adaptive neuro-fuzzy 

inference system (ANFIS) and compare their accuracy. Totally, 51 flood locations areas were identified, 

35 locations of which were randomly selected to model flood susceptibility and the remaining 16 locations 

were used to validate the models. Nine flood conditioning factors namely: slope degree, plan curvature, 

altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land 

cover, rainfall, and lithology were selected, and the corresponding maps were prepared using ArcGIS. 

After preparing the flood susceptibility maps using these methods, the relative operating characteristic 

(ROC) curve was used to evaluate the results. The area under the curve (AUC) obtained from the ROC 

curve indicated the accuracy of 89% and 91.2% for the ensembles of FR and ANFIS-FR models, 

respectively. These results can be useful for managers, researchers, and designers in managing flood 

vulnerable areas and reducing their damages. 
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1. Introduction 

Natural disasters such as landslip, earthquakes, and 

floods annually cause a lot of financial and financial losses 

all over the world (Tierney et al., 2002). Floods are one of 

the natural disasters whose imposed damage is not countable 

(Du et al., 2013; Lyu et al., 2018). Floods cause severe 

damage to transportation, cultural heritage, environmental 

ecosystems, economy, and human life (Yu & Larsen, 2013). 

Although it is impossible to prevent the occurrence of floods, 

it is possible to predict these catastrophic events, and to some 

extent, control those using appropriate methods and analyses 

(Cloke & Pappenberger, 2009; Farina et al., 2018). Also, the 

necessary measures to prevent floods and mitigate its adverse 

effects seem inevitable (Alvarado-Aguilar et al., 2012; Dang 

et al., 2011; Huang et al., 2008), one of which is the 

development of flood susceptibility mapping (Bubeck et al., 

2012). According to Norouzi & Taslimi (2012), in Iran, 

floods and their imposing damage are increasing every year, 

increased by 250insofar the last decade’s damage has

percent. Accordingly, the occurrence of flood-related 

disasters is expected to increase because of the lack of 

urbanization, increasing deforestation, and continuous 

rainfall due to climate change in susceptible areas. The 

adverse effects of floods necessities the identification of 

flood-prone areas (Tehrany et al., 2015). Creating a flood 

susceptibility map as an undeniable need is the first step in 

preventing and managing future floods (Wu et al., 2010; 

Saidi et al., 2019). Growing access to satellite data, remote 

sensing, and business intelligence has increased the use of 

geographic information system (GIS) to prepare flood 

susceptibility mapping. Artificial neural networks (ANN) 

(Kia et al., 2012), analytical hierarchy process (AHP) (Chen 

et al., 2011), frequency ratio (FR) (Lee et al., 2012), logistic 

regression (LR) (Pradhan, 2010), and fuzzy logic (Pierdicca 
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et al., 2010) can be mentioned as some of the methods used 

to generate GIS-based flood susceptibility maps. Today, 

powerful machine learning methods, such as adaptive neuro-

fuzzy (Mukerji et al., 2009), genetic algorithm (Chau et al., 

2005), decision tree (DT), and support vector machine 

(SVM) (Adeli & Hung, 1994) have replaced traditional 

methods.  Many of these methods have been rarely used in 

flood modeling, while they are highly able to cope with other 

natural disasters such as landslides (Pradhan, 2013; Yilmaz, 

2010; Tien Bui et al., 2019). The mentioned models, when 

applied alone, have weaknesses and limitations in modeling. 

For instance, ANFIS (or other similar data mining and 

machine learning methods) has to deal with inconsistent 

input values. It also should cope with input error values due 

to the type of inputs in which the weight of each class of 

criteria is estimated through this method. As the case study, 

the Jahrom town is suffering from extreme seasonal floods 

that have always damaged the city. The purpose of this study 

is to prepare a flood susceptibility map for the Jahrom town 

by an ensemble of frequency ratio and adaptive neuro-fuzzy 

inference system. 

2. Study area 

The Jahrom Basin, with an area of about 5,737 Km2, is 

located in the Jahrom county in the Southern Fars Province. 

The region is situated within 28° 17' to 29° 8' N latitudes and 

54° 4' to 52° 45' E longitudes (Figure 1), with maximum and 

minimum elevations of 766 m and 3,166 m respectively. The 

natural landscape of this area is highly mountainous. 

Approximately one-fifth of the county comprises open fields 

and the rest are highlands. The average elevation of the area 

is about 1,050 m, and the highest point corresponds to the 

Safidar summit located between Khafr and Simakan with an 

elevation of 3,170 m. The lowest point with a height of about 

766 m is located in Simakan. January is the coldest month in 

the area with an average temperature of about 10 °C and July 

is the warmest month with an average temperature of about 

33 °C. 
 

3. Materials and methods 

3.1. Flood inventory map 

     The primary sources of flooding in the study area are 

torrential rains, changes in land use, especially in farmlands, 

as well as the lack of necessary measures to prevent floods. 

The most devastating floods in the region in the last decade 

happened in 2010 and 2017. The information on these floods 

was obtained from the Jahrom Department of Natural 

Resources. The 2017 flood caused extensive financial losses 

and casualties due to prolonged and intense rainfalls that 

lasted seven days. Among these damaged, three people were 

dead, several bridges were destroyed, and a village 

thoroughly drowned underwater in the path of the flood.  

 

Flood dispersion maps are considered as an effective factor 

in flood prediction. In the Jahrom town, a total of 51 flood 

occurrences were recorded by the Fars Regional Water 

Company from 2011 to 2017, 35 of which (70%) were 

randomly selected to prepare flood susceptibility maps and 

the remaining16 locations (30%) were used for model 

validation (Pourtaghi et al., 2014). The annual frequency of 

floods is shown in Figure 2, with the highest occurrence in 

2017 with 12 occurrences. 
 

 3.2 Flood conditioning factor 

One of the essential elements in the preparation of a flood 

susceptibility map is determining the factors influencing the 

flood (Kia et al., 2012). In this research, nine factors 

including slope degree, altitude, plan curvature, rainfall, 

distance from river, land use/land cover, lithology, SPI, and 

TWI were used  (Tehrany et al., 2015; Tien Bui et al., 2019). 

ArcGIS 10 and QGIS 2.16.1 packages were used to provide 

information layers. First, a digital elevation model (DEM) 

with a resolution of 30*30 m was prepared from ASTER 

images, and accordingly, three factors including slope 

degree, altitude, and plan curvature were directly extracted 

from the DEM using ArcGIS. The topographic elevation is 

an effective factor in flood studies. It is almost impossible to 

face flooding in high elevated regions. Low-lying areas have 

high potential for flood occurrence. Water flows from 

hillsides of the mountains and joins in lower terrains in the 

rivers that will eventually cause flooding (Tehrany et al., 

2015).Water-related factors such as SPI and TWI were also 

calculated from the DEM in QGIS following Eqs. (1) and (2) 

(Moore et al., 1991; Jaafari et al., 2014; Nampak et al., 2014). 

ln( )sA
TWI


                                                                     (1) 

tan     sSPI A           (2) 

where, As and β denote the area of a specific basin (m2⁄m) 

and the slope degree, respectively. The TWI factor shows the 

cumulative flow of a specific watershed in response to the 

pull of gravity which tends to lead the water to areas with 

lower slope angles (Moore et al., 1991). The distance from 

the river is another major factor that has a significant impact 

on the dimension and extent of the flood (Rahmati et al., 

2016).Land use plays an essential role in the flooding process 

that directly or indirectly affects other hydrological processes 

such as permeability, evapotranspiration, and runoff 

production (Pourghasemi et al., 2012). The land use map of 

the area was provided by the Natural Resources Department 

of Fars Province at a scale of 1:100,000. In general, 

rangeland, farmlands, and low-density forests are the 

dominant land covers in the study area. Residential areas, 

which are built mainly by impermeable surfaces, have 

increased runoffs and river flooding (Rahmati et al., 2016). 
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Figure 1. Floods distribution map of the study area 

 

 

 

Figure 2.  Annual frequency of floods 
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Also, the areas with low-density vegetation cover are 

prone to flooding due to the positive relationship between the 

permeability and the cover density. In general, lithological 

features of the region plays a significant role in the 

preparation of a flood susceptibility map because many of 

lithological units are active in hydrological processes 

(Miller, 1990). The region with resistant rocks or semi-

permeable units has a less developed drainage system, thus 

lower ability of flood absorption (Srivastava et al., 2014). 

The lithology layer was prepared from the 1:100000 

geological map of the area. Alluvial units (Qft2) form the 

dominant lithological units in the study area. The information 

layers of flood conditioning factors are shown in Figure 3. 

Table 1 presents the characteristics of the lithology layer. 

 

Table 1. The description of lithological formations in the study area 

Code Lithology Geological age 

Qft2 Low-level piedmont fan, valley terrace deposit Cenozoic 

EOas-ja Undivided Asmari and Jahrom Formation Cenozoic 

Kgu 
Bluish grey marl and shale with subordinate thin-bedded 

argillaceous -limestone 
Mesozoic 

PeEsa Pale red marl, marlstone,  limestone, gypsum and dolomite Cenozoic 

Kepd-gu Massive fossiliferous limestone Cenozoic 

Plbk Conglomerate locally with sandstone Cenozoic 

MuPlaj Sandstone (brown to gray), red marl, siltstone Cenozoic 

Kbgp Bangestan Group: mainly limestone and shale Mesozoic 

OMr 
Red, grey, and green silty marls interbedded with subordinate 

silty limestone and minor sandstone ribs 
Cenozoic 

pC-Ch 

Rock salt, gypsum & blocks of contorted masses of sedimentary 

material such as black laminated fetid limestone, brown cherty 

dolomite, red sandstone & variegated shale in association with 

igneous rocks such as diabase, basalt, rhyolite, and trachyte 

Paleozoic 

Ktb Massive, shelly, cliff-forming partly anhydrite-bearing limestone Mesozoic 

OMas Jointed limestone with intercalation of shale Cenozoic 

Mmn 
Low weathering gray marls alternating with bands of more 

resistant shelly limestone 
Cenozoic 

JKkgp 

Undivided Khami Group, consist of massive thin-bedded 

limestone comprising the following formations: Surmeh, Hith 

Anhydrite, Fahlian, Gadvan, and Dariyan 

Mesozoic 

  
Figure 3. Effective measures on floods in the study area: (a) curvature, (b) lithology, (c) altitude, (d) land use, (e) rainfall,  

(f) distance from river, (g) slope degree, (h) SPI, (i) TWI 
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 Figure 3. Effective measures on floods in the study area: (a) curvature, (b) lithology, (c) altitude, (d) land use, (e) rainfall,  

(f) distance from river, (g) slope degree, (h) SPI, (i) TWI 



Razavi-Termeh &  Sadeghi-Niaraki, 2019 

 

69 
 

 

3.3. Models  

3.3.1. Frequency ratio (FR) model 

The FR model, as a bivariate statistical model, can be 

used as a simple spatial tool to calculate the probabilistic 

relationship between independent and dependent variables, 

which includes several categorized maps (Oh et al., 2011). 

This method was used to prepare a groundwater potential 

mapping map by Ozdemir (2011). The FR value of 

occurrence probability for a phenomenon is in the presence 

of a specific property. The FR approach is based on the 

observed relationship between the distribution of flood and 

flood conditioning factors. The FR of each layer is calculated 

from each criterion according to Eq. (3). 

A
BFR

C
D

                                                                            (3) 

 In this equation, A is the number of pixels with floods 

for each factor, B is the total number of floods in the study 

area, C is the number of pixels per layer of each factor, and 

D is the total number of pixels in the study area, FR is the 

frequency ratio from the layer for each factor. 

3.3.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Although fuzzy models cannot be trained, they have the 

knowledge and ability to display complex processes by 

applying the IF-THEN concepts and rules. Besides, if the 

number of input variables in the description of a problem is 

high, choosing the membership functions and IF-THEN rules 

fit in the fuzzy model is very difficult, and the phase-setting 

phase of the fuzzy model will be endless (Bui et al., 2012). 

In this method, the learning algorithm automatically selects 

the appropriate parameters for membership functions in the 

fuzzy model. Although neural networks are capable of 

learning, they are not able to describe the systems; therefore, 

an adaptive neuro-fuzzy inference system is used (Polat & 

Gunes, 2006). Among other abilities of the model, which will 

broadly outperform the fuzzy model, it is also self-contained. 

In general, ANFIS uses a hybrid learning principle that 

leastgradient and thecombines the - method tosquares

determine the parameters (Wang & Elhang, 2008). The 

ANFIS structure presented in this study is shown in Figure 4 

(Bui et al., 2012). 

According to Figure 4, the layers in an ANFIS model are 

defined as follows. For layer 1, each node contains adaptive 

variable nodes [Eqs. (4) and (5)]: 

 1 ,i iO A x                                                                            (4) 

 1 ,i iO B y                                                                            (5) 

where, x and y are the input nodes, A and B are the linguistic 

variables, and 𝜇𝐴𝑖(𝑥)  and 𝜇𝐵𝑖(𝑦) are membership functions 

for that node. 

Layer 2 contains fixed nodes denoted as ᴫ in Figure 4. Every 

node has the role as a “fuzzy AND’ operation, that used for 

firing strength calculation of the rules as the output layer. The 

output of each node is the product of all input signals to that 

node [Eq. (6)]: 

   2 ,     ,  1,2i i i iO W A x B y i                                          (6) 

where, 𝑊𝑖  is the output for each node. 

The third layer encompasses a set of fixed nodes showed as 

an N symbol in Figure 4. The nodes in this layer are in fact, 

the normalized outputs of layer 2 referred to as the normal 

firepower [Eq. (7)]: 

¯

3 ,  ,  1,2
1 2

i
i l

w
O w i

w w
  


                                                              (7) 

 

Each node in layer 4 is associated with a node function [Eq. 

(8)]: 

4 ,   (   )l li i i i iO w f w p x q y r                                                      (8) 

 

where, 𝑤𝑙  is the normalized firepower of layer 3 and 𝑝𝑖, 𝑞𝑖 , 

and 𝑟𝑖  are node parameters. The parameters of this layer can 

be interpreted as the result parameters. 

The fifth layer contains a single node denoted as ∑ which is 

the sum of the fourth layer output values and shows the final 

result of the ANFIS model, which is shown as follows: [Eq. 

(9)]: 

5 ,  /  , 1,2li i i i iO w f w f w i                                           (9) 

 

4. Results and discussion 

The results of the spatial interaction between flood 

occurrence and related conditioning factors using the FR 

model is summarized in Table 2. The percentage of each 

class is obtained by dividing the number of pixels in each 

class by the total number of pixels of that factor. An analysis 

of the frequency ratio between flood and plan curvature 

showed that the flat class has the highest frequency ratio 

(1.10) and then the concave class has a value of 1.03. The 

results regarding the altitude factor showed that the highest 

frequency ratio belonged to 1,000-1,400 m class (1.48), 

followed by 0-1,000 m class (1.21). The first 300 meters 

from the rivers had the highest frequency ratio (2.30). The 

results regarding slope degree showed that more than 50% of 

flood events occurred within the range 0-18 degrees with a 

frequency ratio of 3.06. As for the rainfall factor, the range 

304-344 mm had the highest frequency ratio (2.03), followed 

by the range 344-374 mm (1.42). Regarding the results of 

land use/land cover factor, residential areas and water bodies 

had the highest frequency ratio with respective values of 

29.15 and 20.82. The highest frequency ratio for lithological 

formations related to Qft2 (1.78), followed by Mmn (1.43) 

and OMr (1.03) formations, respectively. As for SPI factor, 

the highest frequency ratio related to the range of 300-400 
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(1.45), followed by the range of 0-100 (1.31). TWI results 

showed that the highest frequency ratio belonged to the 

values ≥8 (3.7), where about 45% of flood events occurred 

in this category. After assigning weights to the factor classes, 

the flood susceptibility map was prepared using ArcGIS. The 

resulted map was classified into five susceptibility categories 

namely very low, low, medium, high, and very high 

susceptibility (Figure 5). 

 

Figure 4. The structure of ANFIS model 

Table 2. The spatial relationship between flood conditioning factors and flood locations using the FR method 

FR Percentage of 

floods 

No. of 

floods 

Percentage of 

domain 

No. of pixels in 

domain 

Class 

 

1.03 

1.10 

0.42 

 

11.42 

82.86 

5.72 

 

4 

29 

2 

 

11.05 

75.27 

13.68 

 

32431 

220921 

40119 

Plan curvature 

Concave 

Flat 

Convex 

 

1.22 

1.49 

0.64 

0.00 

0.46 

 

8.58 

71.42 

17.14 

0 

2.86 

 

3 

25 

6 

0 

1 

 

7.04 

48.07 

26.8 

11.91 

6.18 

 

20699 

141216 

78627 

35008 

18158 

Altitude (m) 

0-1000 

1000-1400 

1400-1800 

1800-2200 

> 2200 

 

2.30 

0.70 

0.53 

0.97 

0.41 

 

54.29 

14.28 

8.58 

11.42 

11.43 

 

19 

5 

3 

4 

4 

 

23.58 

20.42 

16.1 

11.8 

28.1 

 

69266 

59982 

47281 

34629 

82550 

Distance from river (m) 

0-300 

300-600 

600-900 

900-1200 

>1200 

 

3.06 

0.82 

0.34 

0.87 

0.30 

 

54.28 

14.29 

5.71 

17.14 

8.58 

 

19 

5 

2 

6 

3 

 

17.74 

17.38 

16.77 

19.68 

28.43 

 

52055 

51030 

49192 

57751 

83443 

Slope angle 

0-18 

18-35 

35-52 

52-68 

>68 

 

0.62 

2.03 

1.43 

0.37 

0.56 

0.00 

 

17.14 

54.28 

14.29 

8.57 

5.72 

0 

 

6 

19 

5 

3 

2 

0 

 

27.71 

26.7 

10.02 

23.05 

10.16 

2.36 

 

81339 

78364 

29379 

67643 

29824 

6911 

Rainfall (mm) 

0-304 

304-344 

344-374 

374-405 

405-445 

>445 

 

1.03 

0.94 

0.00 

0.35 

29.15 

20.82 

 

11.43 

42.85 

0 

14.29 

17.14 

14.29 

 

4 

15 

0 

5 

6 

5 

 

11.07 

45.54 

0.77 

41.34 

0.59 

0.69 

 

32513 

133759 

2253 

121441 

1727 

2015 

Land use/land cover 

Agriculture 

Pasture 

Bare land 

Forest 

Urban 

Water body 
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Table 2. The spatial relationship between flood conditioning factors and flood locations using the FR method (Continued) 

FR Percentage of 

floods 

No. of 

floods 

Percentage of 

domain 

No. of pixels in 

domain 

Class 

 

1.78 

0.82 

0.00 

0.00 

0.00 

0.78 

0.44 

0.00 

1.03 

0.00 

0.00 

0.00 

1.43 

0.00 

 

51.42 

20.02 

0 

0 

0 

5.71 

5.71 

0 

8.57 

0 

0 

0 

8.57 

0 

 

 

18 

7 

0 

0 

0 

2 

2 

0 

3 

0 

0 

0 

3 

0 

 

28.9 

24.43 

1.286 

2.2 

0.85 

7.3 

12.8 

3.8 

8.3 

0.08 

0.33 

3.65 

5.98 

0.094 

 

84940 

71756 

3419 

6445 

2493 

21492 

37827 

11186 

24365 

238 

968 

10735 

17567 

277 

Lithology 

Qft2 

EOas-ja 

Kgu 

PeEsa 

Kepd-gu 

Plbk 

MuPlaj 

Kbgp 

OMr 

pC-Ch 

Ktb 

OMas 

Mmn 

JKkgp 

 

1.31 

1.03 

0.32 

1.46 

0.56 

 

60 

14.28 

2.85 

8.58 

14.29 

 

21 

5 

1 

3 

5 

 

45.68 

13.85 

9.02 

5.89 

25.56 

 

134167 

40692 

26518 

17255 

75076 

 

SPI 

0-100 

100-200 

200-300 

300-400 

>400 

 

0.30 

0.57 

0.80 

0.89 

3.70 

 

2.85 

31.45 

17.14 

2.85 

45.71 

 

1 

11 

6 

1 

16 

 

9.5 

53.58 

21.34 

3.24 

12.34 

 

27913 

157391 

62694 

9468 

36242 

TWI 

0-2 

2-4 

4-6 

6-8 

>8 

 

 

After normalizing the FR values (Table 2), these weights 

were introduced into the MATLAB application for the 

implementation of the adaptive fuzzy inference system. In 

this step, a c-mean clustering fuzzy inference system with a 

Gaussian function, genfis2, and a hybrid back-propagation 

algorithm was used to optimize and train the model. The 

results of training and test data related to the ANFIS model 

are shown in Figure 6. The RMSE value for ANFIS-FR 

model is 0.32.  After the model was trained and finalized, the 

generalized region was extended over the entire area, and the 

final file was transmitted to MATLAB's text format into 

ArcGIS to provide the flood susceptibility map. Finally, the 

flood susceptibility map was prepared in the GIS 

environment and was divided into five very low to very high 

levels. Flood susceptibility map using this method is shown 

in Figure 7. An example of the training dataset is presented 

in Table 3. 

Table 3. An example of the training dataset  

TWI SPI Slope Distance to 

river 

Rainfall Land use Altitude Lithology Plan curvature 

3.70 1.31 3.06 2.32 0.562 1.03 1.4858 1.77 1.10 

0.58 1.31 0.8715 0.69946 0.562 0.34 0.462 0.817 1.03 

0.30 0.55 0.301 2.30 0 0.34 0.4621 0.818 1.100 

0.58 0.55 0.3013 0.40 0 0.34 0.462 0.81 1.1 

0.58 1.31 0.821 2.30 0.37 20.82 1.48 1.43 1.1 

3.70 1.31 3.06 2.301 2.03 20.82 1.485 1.77 1.105 

0.58 1.313 0.301 0.532 0 0.345 0 0.81 1.1 

0.80 0.5581 0.301 0.699 0.37 0.3455 0 0.81 1.034 
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Figure 5. Flood susceptibility map of the study area using the FR model 

 
(І) 

 
 (ІІ) 

 

Figure 6. ANFIS-FR models І) Train data ІІ) Test data: (a) target and output values, (b) MSE and RMSE values, and 

(c) Frequency errors 
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Figure 7. Flood susceptibility map of the study area using ANFIS-FR model 

5. Validation  

After preparing the final map of the two methods, the 

final map is divided into five very low to very high classes. 

In order to evaluate the prepared maps and their accuracy, it 

is not possible to use floods used in modeling because the use 

of these floods in the evaluation process does not accurately 

reflect the accuracy of the model. Also, the performance of 

the model should be assessed with the datasets that are not 

used for modeling (Komac, 2006). In order to solve this 

problem, several flood locations in the study area were used 

for modeling, and some of them were used to evaluate the 

model (70% and 30%, respectively) (Constantin et al., 2011). 

Then, the accuracy of the maps was confirmed using the 

ROC curve. The ROC curve is a graphical representation of 

the equilibrium between the negative and positive error rates 

for any potential value of the cutoff errors. The relative 

operating index is a curve who’s vertical and horizontal 

components are calculated from Eqs. 10 and 11, respectively, 

derived from the confusion matrix with the definition of the 

threshold between zero and one. The values of the true 

positive percentage and the false positive percentage of the 

graph are calculated according to the following Equations 

(Komac, 2006): 

 

 

 

 

 

1
TN

X
TN FP

 
    

                                                                           (10) 

TP
Y

TP+FN

 
  
 

                                                                           (11) 

The area under the ROC curve, called AUC, represents 

the system's predictive value by describing its ability to 

correctly estimate the occurrence of an event (flood) and 

non-occurrence (flood non-occurrence). The ideal model is 

the highest area under the curve, whose AUC values vary 

from 0.5-1. If a model cannot estimate the flood event better 

than the probability (random), then its AUC is 0.5. When the 

area under the ROC curve is 1, it represents the best precision 

of the susceptibility map provided. Qualitative-quantitative 

correlation below the curve and estimation assessment is as 

follows (0.9-1 excellent, 0.8-0.9, very good, 0.7-0.8 good, 

0.6-0.7 moderate, 0.5-0.6 poor) (Zhu & Wang, 2009). The 

results of the evaluation indicate an accuracy of 89% for the 

FR model and an accuracy of 91.2% for the ensemble of 

ANFIS-FR model. The ROC diagram of the FR and ANFIS-

FR models is shown in Figure 8. The results show good 

accuracy of ensemble ANFIS-FR compared to the FR model. 
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Figure 8. ROC curve related to FR and ANFIS-FR models

6. Conclusion 

Floods are one of the most devastating natural disasters 

all over the world. Therefore, it is essential to prepare flood 

susceptibility maps for integrated management of watersheds 

in sustainable development. The need for a precise method 

to identify areas susceptible to flooding has led to the use of 

two models in this research to select the best regional model. 

In this research, flood susceptibility mapping was performed 

using the FR and ANFIS-FR models. Initially, a flood 

inventory map containing 51 flood occurrence locations was 

prepared for the Jahrom town. Then, nine factors influencing 

the floods including slope degree, altitude, plan curvature, 

rainfall, distance from river, land use/land cover, lithology, 

SPI, and TWI were used. Afterward, using the flood location 

and the factors affecting the flooding process, the final 

weights of the model were obtained, and a map was prepared   

using ArcGIS. Then, in order to implement the ANFIS 

method, normalized data of the FR model was used, and the 

model was implemented using MATLAB 2017b. In order to 

provide a flood susceptibility map, the outputs of this method 

were transmitted to ArcGIS to prepare the final map. The 

ROC curve and the AUC value were used to validate the 

models. For this purpose, out of 51 flood locations, 35 

locations (70%) were used as the training data and 16 

locations (30%) were used for the validation. The results 

obtained from the FR and ANFIS-FR models indicate an 

accuracy of 89% and 91.2% respectively for these two 

models. The results of these two methods for preparing a 

flood susceptibility map demonstrate the high accuracy of 

combined methods compared to the FR model. The results of 

the present research can be of great help to the government, 

planners, and engineers in preventing and reducing the 

occurrence of flood.
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