تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,511,940 |
تعداد دریافت فایل اصل مقاله | 98,774,491 |
شناسایی سریع مناطق آسیبدیده پس از وقوع زلزله با استفاده از تصاویر ماهوارهای Sentinel-2 (مطالعۀ موردی: زلزلۀ سرپل ذهاب) | ||
مدیریت مخاطرات محیطی | ||
مقاله 3، دوره 6، شماره 2، تیر 1398، صفحه 131-148 اصل مقاله (1.26 M) | ||
نوع مقاله: پژوهشی کاربردی | ||
شناسه دیجیتال (DOI): 10.22059/jhsci.2019.284544.487 | ||
نویسندگان | ||
میلاد جانعلی پور* 1؛ نادیا عباس زاده طهرانی1؛ حکمت اله محمد خانلو2؛ الهه خصالی3؛ حمید عنایتی4 | ||
1استادیار، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری | ||
2کارشناس ارشد ژئودزی، دانشگاه آزاد شاهرود، سمنان، شاهرود | ||
3دانشجوی دکتری سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی | ||
4کارشناس ارشد فتوگرامتری، دانشگاه صنعتی خواجه نصیرالدین طوسی | ||
چکیده | ||
شناسایی سریع مناطق آسیبدیده پس از وقوع زلزله بهمنظور تولید نقشۀ آسیب، اهمیت زیادی در زمینۀ امداد و نجات دارد. در چند سال گذشته استفاده از تصاویر ماهوارهای برای تولید نقشۀ تخریب بهدلیل سرعت زیاد، پوشش وسیع از منطقه و هزینۀ اندک بسیار مورد توجه محققان قرار گرفته است. در این پژوهش، یک روش شناسایی سریع مناطق آسیبدیده مبتنی بر روشهای شناسایی تغییرات ارائه خواهد شد که دربارۀ زلزلۀ سال 1396 سرپل ذهاب اجرا میشود. بهمنظور اعتبارسنجی این روش، ابتدا نتایج روش شناسایی تغییرات ارزیابی شد که خروجیها نشاندهندۀ صحت زیاد روش در شناسایی مناطق تغییریافتهاند. از طرف دیگر، نتایج روش شناسایی آسیب که در زلزلۀ سرپل ذهاب اجرا شده با نقشههای آسیب تولیدشده توسط سازمان فضایی اروپا اعتبارسنجی شد که نتایج حاکی از صحت 84 درصدی در شناسایی مناطق آسیبدیده است. با بهکارگیری روش پیشنهادی، نقشۀ آسیب برای شهر سرپل ذهاب بسیار سریع و در مدت کمتر از سی دقیقه تولید شد. | ||
کلیدواژهها | ||
زلزله؛ سرپل ذهاب؛ سنجش از دور؛ شناسایی سریع آسیب؛ Sentinel-2 | ||
عنوان مقاله [English] | ||
Rapid Damage Mapping after an Earthquake using Sentinel-2 Images (Case Study: Sarpol-e Zahab) | ||
نویسندگان [English] | ||
Milad Janalipour1؛ Nadia Abbaszadeh Tehrani1؛ Hekmatollah Mohammad Khanlu2؛ Elahe Khesali3؛ hamid enayati4 | ||
1Assiatant Professor, Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran | ||
2Islamic Azad University, Shahrood, Sharood, Semnan, Iran | ||
3PhD Student, Islamic Azad University, Shahrood, Sharood, Semnan, Iran | ||
4Msc, Photogrammetry,K.N. Toosi University of Technology, Tehran, Iran | ||
چکیده [English] | ||
Rapid damage mapping after an earthquake in order to produce damage map is important for relief and rescue operations. Recently, the use of remote sensing images for producing damage maps is considered due to their synoptic view and low cost. In this research, a rapid damage mapping approach according to change detection is proposed, which is applied to the 2018 Sarepol-e Zahab earthquake. In order to assess results, outcomes of the change detection were evaluated using ground truth, which show high accuracy in detecting change areas. On the other hand, our damage map was evaluated using damage map produced by the European Space Agency (ESA), which outcomes depict our proposed method can detect damage areas by an overall accuracy of 84 %. Using the proposed method, damage map of the Sarepol-e Zahab was generated less than 30 minutes. Introduction Remote sensing is a useful science and technology for different applications, especially disaster management. Remote sensing can be used to produce building damage maps after the earthquake. Recently, researchers used remote sensing data for producing building damage maps [1-4]. However, the used approaches are based on training samples. Preparing training samples is a time consuming task. For this reason, scientists would like to develop rapid damage mapping. Tiede et al. proposed a method to map damage areas of the Haiti earthquake using a shadow analysis approach. The proposed approach can produce damage areas after 12 hours [5]. The main goal of this paper is to develop a rapid damage mapping approach based on pre- and post-event images in Sarpol-e Zahab. The developed method benefits from decision making approaches to make a rapid map. Methodology The proposed method is done in four steps according to Figure 1. In the first step, some essential pre-processing tasks including georeferencing and radiometric correction are performed. In the second step, difference image is produced and some textural features are extracted from it. In the third step, change and unchanged areas are identified using three change detection approaches. Finally, TOPSIS decision making approach is employed to make a damage map. Fig. 1. Workflow of the proposed method Results Since the proposed method is based on change detection, we applied it to two data sets. Results of change detection over two case studies present in Figure 2. According to validation results, the proposed approach can detect changed and unchanged areas with about 95 % accuracy. Nearest neaghbour of Region 1 Nearest neaghbour of Region 2 Spectral angle mapper of Region 1 Spectral angle mapper of Region 2 Maximum likelihoo of Region 1 Maximum likelihoo of Region 2 Fig. 2. Results of change detection approaches over two study areas Using pre- and post-event Sentinel-2 images and our proposed approach, damage map of Sarpol-e Zahab was produced. Figure 3 shows pre- and post-event Sentinel-2 images and damage map of the study area. Fig. 3. Pre- and post-event Sentinel-2 images and damage map of the study area The accuracy of our damage detection approach is assessed using damage map produced by European space agency (ESA). Table 1 depicts the confusion matrix regarding the accuracy of our proposed method. Based on this table, the overall accuracy of our proposed approach is about 70 %. Table 1. the confusion matrix of our proposed approach Overall acc. (%) User acc. (%) Producer acc. (%) Damaged Undamged 68.26 43.85 68.84 18468 14442 Undamaged 85.77 680.6 39355 6527 Damaged Conclusion In this paper, a rapid damage mapping approach is proposed to detect damage areas from Sarpol-e Zahab earthquake. The proposed method is based on change detection and unsupervised. From the perspective of change detection, our proposed approach is robust. To assess the capability of the proposed method, it was applied in Sarpol-e Zahab earthquake. Using pre- and post-event Sentinel-2 images, the proposed approach can detect damaged areas with an accuracy of 80 %. | ||
کلیدواژهها [English] | ||
Rapid damage mapping, Sentinel-2, earthquake, remote sensing, Sarpol-e Zahab | ||
مراجع | ||
[1] Bezdek, James C; Ehrlich, Robert; & Full, William. )1984(. “FCM: The fuzzy c-means clustering algorithm”, Computers & Geosciences, 10 (2-3), pp:191-203.
[2] Eguchi, Ronald T; Huyck, Charles K; Ghosh, Shubharoop; & Adams, Beverley J. (2008). “The Application of Remote Sensing Technologies for Disaster Management”, Paper presented at the The 14th World Conference on Earthquake Engineering.
[3] Estrada, Miguel; Masayuki, Kohiyama; Matsuoka, Masashi; & Yamazaki, Fumio (2001), “Detection of Damage Due to the 2001 El Salvador Earthquake Using Landsat Images”, Paper presented at the Proceedings of the 22nd Asian Conference on Remote Sensing,.
[4] Gharechelou, Saeid; & Tateishi, Ryutaro (2017). “Rapid Monitoring of Earthquane Damages Using Optical and Sar Data”, World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering11, no. 9 (2017), pp: 873-879.
[5] Goshtasby, A Ardeshir (2005). 2-D and 3-D Image Registration: For Medical, Remote Sensing, and Industrial Applications, John Wiley & Sons,.
[6] Janalipour, Milad; Mohammadzadeh Ali; Mohammad Khanlu, H.; Khesali, E.; & Enayati, H. (2019). “Sensitivity Analysis on Parameters of Three Conventional and one new Remote Sensing Radiometric Correction Methods in order to Produce Accurate Change Ma”, Journal of Geomatics Science and Technology, 8 (3), pp:33-43.
[7] Janalipour, Milad; & Mohammadzadeh, Ali (2015). “Building damage detection using object-based image analysis and ANFIS from high-resolution image (Case study: BAM earthquake, Iran)”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (5), pp:1937-1945.
[8] Janalipour, Milad; & Mohammadzadeh, Ali (2018). “Evaluation of Effectiveness of Three Fuzzy Systems and Three Texture Extraction Methods for Building Damage Detection from Post-Event Lidar Data”, International journal of digital earth11, no. 12, pp: 1241-1268.
[9] Janalipour, Milad; & Mohammadzadeh, Ali (2019). “A Novel and Automatic Framework for Producing Building Damage Map Using Post-Event Lidar Data”, International Journal of Disaster Risk Reduction, 101238.
[10] Janalipour, Milad; Mohammadzadeh, Ali; Valadan Zoeg, Mohammad Javad; & Amirkhani, Said (2015). “Buildings Damage Determination After The Earthquake By Using Anfis Model and Remote Sensing Imagery”.
[11] Khanbani, Sara; Mohammadzadeh, Ali; & Janalipour Milad (2018). “Global and Local Change Detection Using K-Means Clustering Improved by Particle Swarm Optimization”, Journal of Geomatics Science and Technology 7, no. 3, pp: 75-88.
[12] Kohiyama, Masayuki; & Yamazaki, Fumio (2005). “Damage Detection for 2003 Bam, Iran, Earthquake Using Terra-Aster Satellite Imagery”, Earthquake Spectra21, no. S1, pp: 267-274.
[13] Li, Qiaoliang, Guoyou Wang; Liu, Jianguo; & Chen, Shaobo (2009). “Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration”, IEEE Geoscience and Remote Sensing Letters 6, no. 2, pp: 287-291.
[14] Pickup, Geoff, & Foran, Barney (1987). “The Use of Spectral and Spatial Variability to Monitor Cover Change on Inert Landscapes”, Remote Sensing of Environment 23, no. 2, pp: 351-363.
[15] Plank, Simon (2014). “Rapid Damage Assessment by Means of Multi-Temporal Sar—a Comprehensive Review and Outlook to Sentinel-1”, Remote Sensing 6, no. 6, pp: 4870-4906.
[16] Richards, John A.; & Xiuping, Jia (2006). Remote Sensing Digital Image Analysis-Hardback, Springer, Berlin/Heidelberg.
[17] Ruiz, LA; Fdez-Sarría, A.; & Recio Jorge. (2004). “Texture Feature Extraction for Classification of Remote Sensing Data Using Wavelet Decomposition: A Comparative Study”, Paper presented at the 20th ISPRS Congress.
[18] Seyedain, SA.; Valadan Zoej Mohammad Javad, Maghsoudi, Y. & Janalipour, Milad (2015). “Improving the Classification Accuracy Using Combination of Target Detection Algorithms in Hyperspectral Images”, Journal of Geomatics Science and Technology 4, no. 4, pp: 161-74.
[19] Sharma, Mona; & Singh, Sameer (2001). “Evaluation of Texture Methods for Image Analysis”, Paper presented at the Intelligent Information Systems Conference, The Seventh Australian and New Zealand 2001.
[20] Šimić Milas; Prabha Rupasinghe, Anita; Balenović, Ivan; & Grosevski, Pece. (2015). “Assessment of Forest Damage in Croatia Using Landsat-8 Oli Images”, SEEFOR (South-east European forestry) 6, no. 2, pp: 159-169.
[21] Singh, Ashbindu. "Review Article Digital Change Detection Techniques Using Remotely-Sensed Data." International journal of remote sensing 10, no. 6 (1989): 989-1003.
[22] Tiede, Dirk, Lang, Stefan; Füreder, Petra; Hölbling, Daniel; Hoffmann, Christian; & Zeil, Peter (2011). “Automated Damage Indication for Rapid Geospatial Reporting”, Photogrammetric Engineering & Remote Sensing 77, no. 9 (2011), pp: 933-942.
[23] Torrione, Peter A; Morton, Kenneth D.; Sakaguchi, Ryan; & Collins, Leslie M. (2014). “Histograms of Oriented Gradients for Landmine Detection in Ground-Penetrating Radar Data”, IEEE Transactions on Geoscience and Remote Sensing 52, no. 3, pp: 1539-1550.
[24] Triantaphyllou, Evangelos (2000). “Multi-Criteria Decision Making Methods”, In Multi-Criteria Decision Making Methods: A Comparative Study. Springer, pp: 5-21.
[25] Varesi, Atefeh; Mohammadzadeh, Ali; & Janalipour Milad (2017). Presentation of a Method for Detecting Urban Growth Using Spectral-Spatial Variation Indicators and Remote Sensing Data.
[26] Witmer, Frank DW (2008). “Detecting War‐Induced Abandoned Agricultural Land in Northeast Bosnia Using Multispectral, Multitemporal Landsat Tm Imagery”, International Journal of Remote Sensing 29, no. 13, pp: 3805-3831.
[27] Yang, Chenghai; Everitt, James H.; & Bradford, Joe M.. (2008). “Yield Estimation from Hyperspectral Imagery Using Spectral Angle Mapper (Sam)”, Transactions of the ASABE 51, no. 2, pp: 729-737.
[28] Yang, Xiajun; & Lo, CP (2000). “Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images”, Photogrammetric Engineering and Remote Sensing 66, no. 8, pp: 967-980.
[29] Yusuf, Yalkun; Matsuoka, Masashi; & Yamazaki, Fumio (2001). “Damage Detection from Landsat-7 Satellite Images for the 2001 Gujarat, India Earthquake”, Paper presented at the Proceedings of the 22nd Asian Conference on Remote Sensing. | ||
آمار تعداد مشاهده مقاله: 1,071 تعداد دریافت فایل اصل مقاله: 549 |