تعداد نشریات | 161 |
تعداد شمارهها | 6,476 |
تعداد مقالات | 70,004 |
تعداد مشاهده مقاله | 122,887,386 |
تعداد دریافت فایل اصل مقاله | 96,094,971 |
بررسی ژنوتیپهای برنج ایرانی و خارجی از نظر خصوصیات فیزیکوشیمیایی دانه و نشانگرهای ریزماهواره | ||
علوم گیاهان زراعی ایران | ||
مقاله 12، دوره 50، شماره 2، تیر 1398، صفحه 133-158 اصل مقاله (708 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijfcs.2018.246833.654414 | ||
نویسندگان | ||
هانیه بابائی رئوف1؛ عاطفه صبوری* 2؛ مهرزاد اله قلی پور3 | ||
1گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه گیلان | ||
2گروه تولید و ژنتیک گیاهی. استادیار ژنتیک و به نژادی گیاهی، دانشکده کشاورزی دانشگاه گیلان | ||
3موسسه تخقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران. | ||
چکیده | ||
بهبود خصوصیات پخت و خوراک برنج یکی از مهمترین اهداف برنامههای بهنژادی برنج است. در این راستا داشتن اطلاعات کافی از تنوع ژنتیکی به منظور انتخاب والدین مناسب ضروری است. در مطالعه حاضر تعداد 53 ژنوتیپ برنج ایرانی و خارجی از لحاظ ویژگیهای کیفی دانه شامل طول، عرض، شکل دانه، میزان آمیلوز، دمای ژلاتینی شدن، خصوصیات چسبندگی و همچنین با استفاده از پنج ژن و تعداد 20 نشانگر ریزماهواره مرتبط با صفات فیزیکوشیمیایی دانه برنج، مورد بررسی قرار گرفتند. بر اساس نتایج تجزیه خوشهای، ژنوتیپها به سه گروه تقسیم شدند. تعداد نه ژنوتیپ بومی به همراه 14 ژنوتیپ خارجی در گروه آمیلوز متوسط با خصوصیات چسبندگی در محدودۀ قابل قبول (برای ژنوتیپهایی با کیفیت پخت و خوراک مناسب) قرار گرفتند و 13 ژنوتیپ ایرانی به همراه هشت ژنوتیپ خارجی در گروه با میزان آمیلوز بالا قرار داشتند. همچنین تجزیه دادههای مولکولی نشان داد که نشانگرهای ریزماهواره به همراه ژنهای مورد استفاده قادرند به نحو مطلوبی ژنوتیپهای خارجی و ایرانی و همچنین تا حدی ژنوتیپها را از لحاظ کیفیت دانه تفکیک نمایند. نتایج بیانگر وجود تنوع قابل توجه در بین ژنوتیپها از لحاظ کیفیت دانه و نواحی ژنومی مورد مطالعه بود که میتوان از آن برای بهبود صفات کیفی بهره برد. | ||
کلیدواژهها | ||
تجزیه خوشهای؛ کیفیت پخت و خوراک؛ نشانگرهای ریزماهواره | ||
عنوان مقاله [English] | ||
Evaluation of Iranian and Foreign Rice Genotypes Based on Grain Physicochemical Properties and Microsatellite Markers | ||
نویسندگان [English] | ||
Haniyeh Babaei Raouf1؛ Atefeh Sabouri2؛ Mehrzad Allahgholipour3 | ||
1Dep. of Genetic and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan respectively. | ||
2Assistant Prof. of Genetic and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan | ||
3Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran | ||
چکیده [English] | ||
Improving rice cooking and eating properties is one of the most important goals in rice breeding programs. Having enough knowledge around genetic diversity for selecting suitable parents is necessary for these goals. In this study, 53 Iranian and foreign rice genotypes were studied in terms of grain qualitative properties including length, width, length to width ratio, amylose content, gelatinization temperature and pasting properties, as well as five genes and 20 microsatellite markers related to rice grain physicochemical traits. According to the results of cluster analysis, genotypes were divided into three groups. Nine of native rice genotypes, as well as 14 foreign genotypes were in intermediate amylose group with pasting properties in the range of genotypes with good cooking and eating quality and 13 improved Iranian cultivars and eight foreign genotypes were in high amylose group. Also, the results of the molecular analysis indicated, microsatellite markers and used genes can be able to distinguish Iranian and foreign genotypes and also distinguish genotypes according to their grain quality partly. The results indicated a significant variation among genotypes according to grain quality and genomic regions associated with these traits, which can be used for improving these traits in breeding programs. | ||
کلیدواژهها [English] | ||
Cluster Analysis, cooking and eating quality, microsatellite markers | ||
مراجع | ||
10. Cho, Y.C., Suh, J.P., Yoon, M.R., Baek, M.K., Won, Y.J., Lee, J.H., Park, H.S., Baek, S.H. & Lee, J.H. (2013). QTL mapping for paste viscosity characteristics related to eating quality and QTL-NIL development in japonica rice (Oryza sativa L.). Plant Breeding and Biotechnology, 1(4), 333-346. 11. Cho, Y.C., Baek, M.K., Suh, J.P., Won, Y.J., Lee, J.H., Kim, J.J., Park, H.S., Kim, W.J., Kwon, S.W., Cho, Y.G. & Kim, B.K.)2014(. QTL detection associated with eating quality based on palatability test in Japonica rice (Oryza sativa L.). Plant Breeding and Biotechnology, 2(4), 342-353. 12. Emam, E. (2003). Cereal production (2th ed.). Shiraz University Press. (In Farsi) 13. Fan, C. C., Yu, X. Q., Xing, Y. Z., Xu, C. G., Luo, L. J. & Zhang, Q. (2005). The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theoretical and Applied Genetics, 110(8), 1445-1452. 14. Garcia, D. M., Bassinello, P. Z., Ascheri, D. R. P., Ascheri, J. L. R., Trovo, J. B. & Cobucci, R. D. M. A. (2011). Cooking quality of upland and lowland rice characterized by different methods. Food Science and Technology (Campinas), 31(2), 341-348. 15. Han, X. Z. & Hamaker, B. R. (2001). Amylopectin fine structure and rice starch paste breakdown. Journal of Cereal Science, 34(3), 279-284. 16. Hossain, M. S., Singh, A. K. & Zaman, F. (2009). Cooking and eating characteristics of some newly identified inter sub-specific (indica/japonica) rice hybrids. ScienceAsia, 35(4), 320-325. 17. Hsu, Y.C., Tseng, M.C., Wu, Y.P., Lin, M.Y., Wei, F.J., Hwu, K.K., Hsing, Y.I. & Lin, Y.R. (2014). Genetic factors responsible for eating and cooking qualities of rice grains in a recombinant inbred population of an inter-subspecific cross. Molecular Breeding, 34(2), 655-673. 18. Jiranuntakul, W., Puttanlek, C., Rungsardthong, V., Puncha-Arnon, S. & Uttapap, D. (2011). Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. Journal of Food Engineering, 104(2), 246-258. 19. Juliano, B. O., Bautista, G. M., Lugay, J. C. & Reyes, A. C. (1964). Rice quality, studies on physicochemical properties of rice. Journal of agricultural and food chemistry, 12(2), 131-138. 20. Juliano, B. O. (1971). A simplified assay for milled-rice amylose. Cereal Science, Today, 16, 334-360. 21. Juliano, B. O. & Villareal, C. P. (1993). Grain quality evaluation of world rices. Int. Rice Res. Inst. 22. Karhu, A., Hurme, P., Karjalainen, M., Karvonen, P., Kärkkäinen, K., Neale, D., & Savolainen, O. (1996). Do molecular markers reflect patterns of differentiation in adaptive traits of conifers?. TAG Theoretical and Applied Genetics, 93(1), 215-221. 23. Kennedy, G. & Burlingame, B. (2003). Analysis of food composition data on rice from a plant genetic resources perspective. Food Chemistry, 80(4), 589-596. 24. Lapitan, V. C., Brar, D. S., Abe, T. & Redoña, E. D. (2007). Assessment of genetic diversity of Philippine rice cultivars carrying good quality traits using SSR markers. Breeding Science, 57(4), 263-270. 25. Lee, C. M., Park, J., Kim, B., Seo, J., Lee, G., Jang, S. & Koh, H. J. (2015). Influence of multi-gene allele combinations on grain size of rice and development of a regression equation model to predict grain parameters. Rice, 8(1), 33. 26. Little, R. R., HILDER, G. B. & Dawson, E. H. (1958). Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chemistry, 35(2), 111-126. 27. Luan, l., Wang, X., Long, W. B., Liu, Y. H., Tu, S. B., Zhao, Z. P., Kong, F. L. & Yu, M. Q. (2008). Microsatellite analysis of genetic variation and population genetic differentiation in autotetraploid and diploid rice. Biochemical Genetics, 46, 248-266. 28. McCouch, S.R., Teytelman, L., Xu, Y., Lobos, K.B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z., Xing, Y. and Zhang, Q. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 9(6), 199-207. 29. Mia, M.M., Rahman, S., Islam, M.M., Begum, S.N. & Hassan, L. )2015(. Molecular characterization of rice genotypes for Zinc biosynthetic gene (s) using microsatellite simple sequence repeat (SSR) markers. Asian Journal of Medical and Biological Research, 1(2), 187-197. 30. Ming, H., Fang-Min, X., Li-Yun, C. H., Xiang-Qian, Z. H., Jojee, L. & Madonna, D. (2010). Comparative analysis of genetic diversity and structure in rice using ILP and SSR markers. Rice Science, 17 (4), 257-268. 31. Mohammadi, S. A. & Prasana, B. M. (2003). Analysis of genetic diversity in crop plants- Salient statistical tools and considerations. Crop Science, 43, 1235-1248 32. Mo, Y. J., Jeung, J. U., Shin, W. C., Kim, K. Y., Ye, C., Redoña, E. D., & Kim, B. K. (2014). Effects of allelic variations in starch synthesis-related genes on grain quality traits of Korean nonglutinous rice varieties under different temperature conditions. Breeding Science, 64(2), 164-175. 33. Onaga, G., Egdane, J., Edema, R. & Abdelbagi, I. (2013). Morphological and genetic diversity analysis of rice accessions (Oryza sativa L.) differing in iron toxicity tolerance. Journal Crop Science Biotechnology, 16(1), 53-62. 34. Pang, Y., Ali, J., Wang, X., Franje, N. J., Revilleza, J. E., Xu, J. & Li, Z. (2016). Relationship of rice grain amylose, gelatinization temperature and pasting properties for breeding better eating and cooking quality of rice varieties. PloS One, 11(12), e0168483. 35. Raeisi, T. & Sabouri, A. (2015). Validation and association analysis of microsatellite markers related to drought and salinity tolerance in aerobic and Iranian rice under osmotic stress. Crop Biotech, 4(10), 57-72. 36. Sabouri, H., Dadras, A.R., Sabouri, A. & Katouzi, M. (2015). Molecular-genetic analysis of rice grain dimension in recombinant inbreed lines of cross of Anbarbu × Sepidroud. Agricultural Biotechnology Journal, 7(2), 67-85. 37. Saghai Maroof, M. S., Biyashev, R. M., Yang, G. P., Zhang, Q. & Allard, R. W. ( | ||
آمار تعداد مشاهده مقاله: 448 تعداد دریافت فایل اصل مقاله: 464 |