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A B S T R A C T 

 

Static modeling of heterogeneous reservoirs remains an important challenge in petroleum engineering that requires more attentions. Ordinary 
Kriging (OK), sequential Gaussian simulation (SGS) or Multilayer Perceptron Neural Network (MLP) are the common methods that are 
utilized in modeling different type of reservoirs. However, it is well known that these methods are impractical on heterogeneous reservoirs. 
In this paper, Wavelet Neural Network (WNN) is introduced for modeling the heterogeneous reservoirs. In order to investigate the 
applicability of the WNN, two exemplar heterogeneous reservoirs were generated. The first model, represents a heterogeneous reservoir being 
divided into three homogeneous subzones. The second model simulates a heterogeneous reservoir composed of randomly distributed data 
with a wide range of variability. The applicability of such methods for porosity modeling in a heterogeneous carbonated reservoir in south-
west of Iran has been investigated. The OK, MLP and WNN methods were applied to model both synthetic reservoirs. The results showed 
that in the second model, all three methods presented biased solutions. However, in the case of first model, the MLP resulted in biased 
solution, whereas the OK and WNN models presented unbiased and acceptable solutions. The results also showed that the WNN was more 
accurate with a lower range of error compared to the OK. In addition, it was noted that the CPU time of the WNN was approximately 15% of 
that of the OK, and 5% of the CPU time of the MLP. In the case of the real reservoir, all three methods resulted in unbiased solutions, because 
heterogeneity was less than that of both synthetic datasets. Moreover, the error of the WNN was less than that of the OK and MLP approaches, 
meanwhile, the WNN resulted in a lower range of error compared to the other methods. However, same as the synthetic data, the CPU time 
of the WNN was approximately 20% of the CPU time of the OK, and 7% of the CPU time of the MLP.  
Considering the complexity associated to up-scaling the heterogeneous reservoirs and the difficulty of history matching in large blocks, which 
introduces large uncertainty as well, the results of this study suggests that the WNN, with a faster running time, can handle more blocks (finer 
grids) and offer advantages in modeling heterogeneous reservoirs. 
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1. Introduction 

Various modeling methods have been used in reservoir 
characterization in the literature. Geostatistical [1, 2], intelligent [3, 4, 
5], fractal [6, 7, 8], and hybrid-based modeling methods [9, 10], are some 
examples of many available methods. Researchers have discussed the 
shortcomings of some of the widely used methods when used in the 
simulation of heterogeneous reservoirs [11, 12]. 

The past studies show that the followings are the two critical factors 
in developing a robust estimator for modeling heterogeneous reservoirs: 
 Localization property: Estimators with localization properties are 

less influenced by heterogeneity, as they use the neighboring data 
for the estimation. However, those estimators that use the whole 
dataset on a global basis, are not able to integrate the local 
variabilities into the model, therefore, in heterogeneous media, the 
details at local scales are discarded. This suggests that in 
heterogeneous media, it is advisable to use the estimators that have 
localization properties.  

 CPU time: This is an important parameter to generalize the 
applications of an estimator to the situation where the media is 
composed of large datasets. The CPU time is important because 

the static models should be coarse to yield reliable processing time 
during the history matching. In heterogeneous reservoirs, a large 
portion of the data variance is reduced due to the coarse block sizes 
used in the modeling. Although this suggests using finer size 
models, it introduces long processing times. Therefore, if a model 
offers a shorter processing time, it would be the preferred method 
for static modeling. The results of this work indicate that the 
wavelet neural network (WNN) requires less CPU time than the 
ordinary kriging (OK) and multilayer perceptron neural network 
(MLP) methods. 

The literature suggests that the geostatistical estimators/simulators 
yield more reasonable results in heterogeneous reservoirs than other 
methods [11]. The use of hybrid methods with their localization 
property lend some promises but they suffer from long CPU times to 
process the data [13].  

In fractal-based simulators, the idea of the cost function is to keep the 
fractal dimension of the data constant to ensure that the original 
variability of the data is maintained [14].Compared to other modeling 
methods, these fine-based simulators properly show the data variability 
of heterogeneous media. In specific, the geostatistical-based models with 
their cost function being based on minimizing the error, smoothen the 
data variability. However, the long CPU time, lack of control over the 
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estimation error, and producing biased results, are the main 
disadvantages of multi-fractal/fractal-based simulators [15]. 

As already stated, the long CPU time is one of the main shortcomings 
of the common intelligent methods, such as the multilayer perceptron 
(MLP) or the radial basis function (RBF) neural networks. MLP is a 
global modeling method, introducing larger errors in the results 
comparing to common geostatistical methods in heterogeneous 
reservoirs [13]. RBF is a local based model requiring large datasets to 
generate reasonable results: this is while the reservoir datasets are 
generally sparse [16]. 

The above discussion shows the necessity of a suitable method to 
model complex heterogeneous reservoirs. The WNNs are the recent 
classes of neural networks that combine the MLP and wavelet analysis. 
The WNN was initially introduced to overcome the shortcomings of the 
MLP [17]. The WNNs are used with great success in a wide range of 
applications [18]. For example, it has been proven that The WNN is a 
valuable tool for analyzing a wide range of time-series. The WNN has 
already been used with success in image processing, de-noising, signal 
and image compression, and time-scale decomposition. The WNN is 
often regarded as a “microscope” in mathematics [19], and it is a 
powerful tool for representing nonlinearities [20]. 

The WNN is rarely utilized in geosciences, and especially in 
petroleum engineering. A few published works have shown that the 
WNN is a suitable method for reservoir inflow predictions [21, 22, 23]. 
Other researchers have suggested the WNN or wavelet for forecasting 
the crude oil/gas price [24, 25, 26]. The results of these studies suggest 
that the WNN provides better results in comparison with other 
common methods.  

Perhaps the works conducted by Xiao-li et al. and Li-hong et al. are 
the first studies that compared the OK and WNN methods for grade 
estimation purposes [27, 28]. They reported that the WNN method, in 
contrary to OK, does not require any assumptions and is a less time-
consuming method, while they reported that both methods presented 
reliable results. Niu et al. have investigated the applications of the WNN 
in the prediction of water content in crude oil [29]. They found that 
water content can be predicted with higher precisions using the WNN 
compared to other theoretical methods. The applications of the MLP 
and WNN in the estimation of the Total Oil Content (TOC) using well 
logs have been presented in other studies [30, 31]. These studies show 
that both methods yield good results at higher values of TOCs, while the 
MLP predicts underestimated results at the TOC values of lower than 
0.4. They have also noted that the WNN gives unbiased results with 
higher precision than the MLP. Permeability and porosity predictions 
from the well logs were studied by Shokooh Saljooghi and Hezarkhani 
[32, 33]. Their simulation results indicated a decrease in estimation 
error values that depicts the ability of wavelets to enhance the function 
approximation capability, and better learning ability compared to the 
MLP neural network with different activation functions. They reported 
that among various mother wavelets applied as the activation functions, 
the Morlet function was found to be the most efficient one. 

In this paper, firstly the applications of the OK and MLP, as two 
currently used static modeling methods, will be studied on 
heterogeneous reservoir datasets generated synthetically. Then, the 
results are compared with the proposed WNN method to compare the 
reliability and the CPU time of these methods.  

2. Dataset 

The applications of OK, MLP, and WNN for heterogeneous 

 

 

 

* It should be mentioned that researcher are able to control the behavior of 

reservoirs modeling are studied using synthetic* and real datasets, which 
are introduced in the following.  

2.1. Synthetic Data Generation 

In order to generate heterogeneous data corresponding to a reservoir 
property, three synthetic datasets were generated having different 
number of data, different mean and variance (see Figure 1). The 
Gaussian probability density function was chosen for each dataset: 

𝑓(𝑥) =
1

√2𝜋𝜎2
exp(

𝑥−�̅�

𝜎
)2, (1) 

Where, f(x) is the probability density function, x is the property, 
which might be any static feature e.g. porosity or geology rock type, 𝜎 is 
the standard deviation of each dataset, and �̅� represents the mean of 
each dataset. 

 
Figure 1. Probability density functions of three generated synthetic datasets. 

The reservoir was considered as a simple cube geometry with each 
edge comprising 10 equally spaced grids (i.e. a total of 1000 nodes) and 
the property assigned to each node.  

In order to perform comparative studies as the objective of this work, 
the property was assigned to the reservoir in two different forms as show 
in Figure 2. In Figure 2 (left), three subzones with different sizes are 
considered where the distribution of data in each zone is patchy random, 
hence simulating a homogeneous reservoir in each zone, while the 
reservoir in its entirety is heterogeneous. In this case, it is expected that 
approaching the boundaries of each two adjacent subzones would 
increase the heterogeneity in data distribution. Figure 2 (right) shows 
the second case, where the property is assigned randomly across the 
entire cube, representing a homogeneous reservoir. In this situation, the 
values of the properties in the two adjacent nodes can exhibit either very 
high or low values.  

2.2. Studied Reservoir 

We applied the proposed methodology to an oilfield located in the 
southwest of Iran. More than 450 wells have been drilled in the studied 
area. Conventional logs include natural gamma ray, caliper, sonic, 
density, resistivity, and neutron ran in most of the wells. A section of the 
eastern part of the reservoir with seven wells was selected for this study. 
An Underground Counter (UGC) map of the top of the studied 
formation and the location of the studied wells are shown in Figure 3. 
The petrophysical logs as well as porosity, which was already processed 
and interpreted, are available in studied wells. Since the studied 

synthetic data, which leads to a reasonable interpretation of the results.  
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reservoir is a naturally fractured carbonated formation (Asmari), there 
exists heterogeneity associated with the variability of porosity. The 
sequences of fractured zones with variable fracture density are observed 
along with non-fractured intervals in the Oligo-Miocene Asmari 
Formation [34]. Higher porosity values in upper and lower Asmari were 
measured, and porosity was specifically high in higher dolomitized 
subzones. Also, as it can be seen in Figure 3, some faults in the studied 
section of the reservoir are responsible for the heterogeneity and 
porosity of the fractures. A relatively suitable volume of data was used 
in this study, which enabled us to investigate the capability of the 
aforementioned three methods in modeling  heterogeneous reservoirs.    

 
Figure 2. Assignment of data to two synthetic cube reservoirs. A heterogeneous 

model with three homogeneous subzones (left) and a heterogeneous model 
(right). 

 
Figure 3. The UGC map of the oilfield and the location of studied wells. 

3. Methodologies 

A brief overview of the Ordinary Kriging (OK), Multilayer 
Perceptron neural network (MLP) and Wavelet Neural Network 
(WNN) methods is presented in the following subsections. The idea is 
to compare the results of the OK and MLP, as the two commonly used 
techniques in geo-modeling in petroleum engineering applications, 
against the WNN proposed in this work.  

3.1. Ordinary Kriging 

Ordinary Kriging is a basic, linear, and unbiased average geostatistical 
estimator, with wide spread applications in geosciences. The procedure 
to conduct an OK modeling includes: 

 The variogram of the data is calculated and modeled through 
Eq. 2 [35]:  

𝛾(ℎ) =
(𝑍(𝑥+ℎ)−𝑍(𝑥))

2

2𝑁(ℎ)
, (2) 

 Where, 𝛾(ℎ) is the variogram of the property for lag h, and 

N(h) is the number of pair samples with distance h, and Z(x+h) and 
Z(x) are the values of the property in locations x+h, and x, respectively. 

 Extracting range, nugget, and sill values from the variogram 
model. 

 Performing a search around the point to be estimated. 
 Using the samples located inside the search neighborhood of 

a point to estimate the property of that point. 
 Assigning weights (Eq. 3) to the samples to reflect the spatial 

variability explored using the variogram model [36]: 
 
𝑍𝑂 = ∑ 𝑤𝑖𝑍𝑖

𝑛
𝑖=1 . (3) 

In the above equation, 𝑍𝑂  is the estimated property in point O; n 
represents the number of points in search sphere or ellipsoid; 𝑤𝑖 and 𝑍𝑖 
are the weights and values of the property for neighboring points, 
respectively. The weights are determined under unbiased and minimum 
error variance restrictions. 

3.2. Multilayer Perceptron Neural Network 

The MLP is also a widely used intelligent estimator in the field of 
petroleum engineering. Figure 4 illustrates a schematic architecture of 
the MLP. 

 
Figure 4. A schematic architecture of the MLP. 

Referring to Figure 4, the data are randomly divided into three parts: 
70% for training the network and optimizing the weights of synapses, 
15% for test and controlling the stop conditions, and 15% for the 
validation and optimization of the structure of the network (the number 
of layers and the number of neurons in each layer) [37]. 

In Figure 4, 𝑋𝑖, i=1, …, n, are input neurons, with normalized (Eqs. 4 
and 5) input data being assigned to them. In the case of this study, the 
coordinates of the cube or reservoir nodes are the input data, which can 
be written as: 

 

𝑋𝑖 =
�̂�𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
, (4) 

 
𝑋𝑖 = 2𝑋𝑖 − 1, (5) 

Where, �̂�𝑖  is the vector of input data, and 𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛  are the 
vectors of maximum and minimum inputs of training data, respectively. 
The data are mapped over the range of [0, 1] using equation 4, and then 
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they are transformed over the range of [-1, 1], using equation 5.  
The 𝑥0 and 𝑦0 are the offsets and equal to 1, giving freedom to the 

activation functions. The hyperbolic tangent (Eq. 6) was selected as the 
activation function in this work. The activation functions are shown as 
h and g in Figure 4. It should be mentioned that due to optimizing the 
weights of the offsets, the optimization of the type of activation function 
is not critical and was not conducted in this paper. The activation 
functions are defined as: 

ℎ(𝑝) = 𝑔(𝑝) = 𝑡𝑔ℎ(𝑝) =
𝑒𝑝−𝑒−𝑝

𝑒𝑝+𝑒−𝑝
. (6) 

𝑊  and 𝑈  are the synapses weight matrixes which initially are 

randomly generated in the range of [-0.25, 0.25], with Gaussian PDF, 
and need to be optimized during the process of optimization. In the 
following we consider all weights as 𝑊𝑖 . 
𝑦, 𝑍, 𝑡 and 𝑒 in Figure 4 are the output neurons of the hidden layer, 

output neurons of the output layer (output of network), the real output, 
and the error, respectively. Therefore, the structure (the number of 
layers and neurons) and parameters (weights) of the MLP are optimized 
by minimizing the error, so the developed network can be utilized for 
the estimation of the property at unknown points. The overall figure of 
the error function (cost function) when the network contains one 
hidden layer is developed according to equation 7 [38]: 

𝑇𝑆𝑆𝐸 =∑∑{𝑡𝑗 − 𝑍𝑗}
2

𝐽

𝑗=1

𝑁

𝑘=1

=∑∑{𝑡𝑗 − 𝑔(∑ 𝑦𝑚𝑢𝑚𝑗

𝑀

𝑚=0

)}

2𝐽

𝑗=1

𝑁

𝑘=1

=∑∑{𝑡𝑗 − 𝑔(∑ ℎ(∑𝑋𝑖 𝑤𝑖𝑚

𝑛

𝑖=0

𝑢𝑚𝑗)

𝑀

𝑚=0

)}

2𝐽

𝑗=1

𝑁

𝑘=1

 

(7) 

In  the above equation, TSSE is the total sum of the squared error for 
all data (train, test or validation individually), N, n, M, J are the number 
of data (train, test or validation individually), the number of input data, 
the number of neurons in hidden layer, and the number of outputs of 
the network, respectively. 

In the case of the MLP, the architecture of neural network (the 
number of layers and the number of neurons in each layer) as well as 
the weights of synapses (𝑊 and 𝑈) were optimized using the conjugate 

gradient method. The conjugate gradient is an extension of the Quasi 
Newton, which decreases the optimization time as its main advantage 
[39]. The Conjugate gradient is expressed as: 
𝑊𝑖+1 = 𝑊𝑖 − 𝜌𝑖 𝑉𝑖, (8) 
Where, 𝑊𝑖  is the vector of weights for synapses (𝑊  and 𝑈 ) in 

iteration i, and 𝑊𝑖+1  is the updated weights in iteration i+1. 𝑊0  are 
randomly generated, in the range of [-0.25, 0.25], and because of its high 
impact on the results, the optimization is repeated for 20 times. Here, 𝜌𝑖 
is the step size in the optimization procedure that is optimized using a 
heuristic procedure. Also, 𝑉𝑖 is a vector, with its size similar to 𝑊, and it 
is calculated from partial derivative of TSSE to weights. 𝑉𝑖 is calculated 
as: 
𝑉𝑖 = 𝑙𝑖 − 𝛽𝑖 𝑉𝑖−1, (9) 
where, 𝑙𝑖 is partial derivative of TSSE (𝛻𝑓(𝑊𝑖)) to weights, and 𝛽𝑖 is 

the step coefficient calculated as:  

𝛽𝑖 =
𝑙𝑖
𝑡𝑙𝑖

𝑙𝑖−1
𝑡 𝑙𝑖−1

=
‖𝑙𝑖‖

2

‖𝑙𝑖−1‖
2. (10) 

The initial 𝑃, (𝑃0) is calculated using the initial randomly weights 𝑊0, 
generated as: 
𝑃0 = 𝑙0 = 𝛻𝑇𝑆𝑆𝐸(𝑊0).  (11) 
Here, 𝑇𝑆𝑆𝐸(𝑊0) is the total sum of squared error of the MLP in each 

iteration, which is a function of weights of synapses.  
It should be noted that, increasing the total sum of squared error 

(TSSE) of test data in five continuous steps, is taken as the termination 
criterion for training the network. 

3.3. Wavelet Neural Network 

WNN is in fact an extension of the MLP. The two main differences 
between the architecture of WNN and MLP [40, 41, 42] are that: 

 the number of layers in the MLP should be optimized, whereas 
in the WNN one hidden layer is considered; and 

 the activation functions of WNN are mother wavelets. In fact, the 
activation functions in the MLP are global, but in the WNN are 
local with limited bands.  

The above differences, offer the following two significant capabilities 
to the WNN [43]: 

 The WNN is a global modeling method. Its optimization is based 
on the TSSE with localization properties as its computing units 
(activation functions) are limited bands and are calculated in a 
local format [44]. 

 The CPU time of the WNN is much less than the MLP due to the 
fact that the structure of the WNN is much denser than the MLP 
[45]. 

 A common mother wavelet is presented in the form of [46 and 47]: 

𝜓𝑎𝑗𝑏𝑗
(𝑡) =

1

√𝑎𝑗
𝜓(

𝑡−𝑏𝑗

𝑎𝑗
) 𝑗 = 1. 2. … . 𝑘, (12) 

Where, 𝜓(𝑡) is the mother wavelet at time t (in our case the location 
of each node), and a and b are scale and translation parameters, 
respectively. The structure of the WNN, with one input neuron is shown 
in Figure 5 [17, 41].  

 
 

Figure 5. A schematic architecture of WNN with one input. 𝝍(𝒕) is the mother  

wavelet, and one hidden layer might be considered. 

 The output of the network as presented in Figure 5, is in the form of:  
𝑦(𝑢) = ∑ 𝑤𝑖

𝑀
𝑖=1 𝜓𝑎𝑗𝑏𝑗

(𝑢) + �̅�. (13) 

Here, 𝑤𝑖’s are the synapses weights, and �̅� is the offset. The role of the 
offset is tuning the estimation, when the average is not zero [48].  

In the case of WNN, as previously mentioned, only one layer was 
considered, and the number of neurons are optimized. Similar to the 
MLP, the weights of synapses as well as the dilation and translation of 
mother wavelets in each neuron were optimized using the conjugate 
gradient method. Gaussian Gradient (Eq. 14, Figure 6.a) and Mexican 
Hat (Eq. 15, Figure 6.b) were selected as the activation functions in this 
study, however, here, the results of the Gaussian Gradient are presented, 
because it generated better output than the Mexican Hat. Increasing the 
TSSE of the test data in five continuous steps was set as the termination 
criterion for the training.  

𝜓2 

𝜓𝑀 

u ∑ 

�̅� 

y 

𝑤1 

𝑤2 

𝑤3 

𝜓1 



 B. Tokhmechi et al.   / Int. J. Min. & Geo-Eng. (IJMGE), 53-2 (2019) 203-211 207 

 

ℎ(𝑝) = −𝑝 exp (
−1

2
𝑝2) (14) 

ℎ(𝑝) = (1 − 𝑥2)exp(−
𝑥2

2
) (15) 

 
 

 
 

Figure 6. Two mother wavelets used as the activation functions for the WNN. 
Mexican Hat (left) and Gaussian Gradient (right).  

4. Results and Discussion 

Results of modeling of both synthetic and real data are presented in 
the following. 

4.1. Synthetic Data 

The modeling process was carried out at all 1000 node-points of the 
synthetic models shown in Figure 2. In order to focus on the main 
objective of this study, we do not present the results of variogram 
modeling (in the case of OK), the optimization of weights and the 
training termination criterion (in the case of MLP), and also the 
optimization of weights-dilation-translation and the training 
termination criterion (in the case of WNN). 

The results of three different modeling approaches and their 
corresponding errors for two reservoirs shown in Figure 2 are presented 
in Figures 7 and 8. It should be emphasized that the 3D coordinates (x, 
y, and z) are input values, and synthetic property, the sole output. 

 

 

 

 
Figure 7. Modeling a heterogeneous exemplar reservoir composed of three homogeneous sub-reservoirs (Figure 2, left) using the OK, MLP and WNN methods. 
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Figure 8. Modeling a heterogeneous exemplar reservoir (Figure 2, right) using the OK, MLP and WNN methods.

The results of Figure 7, corresponds to the first reservoir, where the 
heterogeneous reservoir is made of three homogeneous sub-reservoirs. 
In Figure 7, the WNN method appears to yield the best results with its 
slope of linear regression and R-squared values being close to 1. This 
confirms that the WNN is capable to simulate a heterogeneous reservoir 
which is a combination of subsets of homogeneous patches.  

From Figure 6, one can say that the results of the OK are also within 
the acceptable range. However, the MLP method results in dispersed 
estimations with data scattered over a wide range and cannot be 
considered as a reliable model in this case. One of the shortcomings of 
this method is the increased variance of estimation as observed in the 
MLP analysis. 

Another interesting outcome from this study was that the errors 
significantly increased at the nodes located around the borders, whereas 
it is close to zero in nodes at far distances from the borders. The 
boundary of error for the OK, MLP, and WNN are [-2.5, 2], [-6, 6] and 
[-1.5, 1.5], respectively. Therefore, the range of errors are 5.5, 12 and 3 for 
these three methods, respectively.  

As explained previously, thr WNN is a global estimator, and acts as a 
local estimator in neighborhood of each estimation point; therefore, it 
can effectively consider of the impact of the nodal points at the borders 
of the homogeneous subzones in this example which resulted to 
minimal error.  

The results of the analysis for the second exemplar reservoir (i.e. a 
heterogeneous reservoir shown in Figure 2, right) are presented in 
Figure 8. Here, unlike the previous example, the heterogeneity scattered 
in all nodes instead of being along localized regions. This creates more 
difficulty even for the WNN method to yield highly accurate results; 
therefore, it shows larger error ranges in this case comparing to those of 
the first example. 

A closer look at the data shows that they range within [2-13] (see 
Figure 1). This is while the range of the estimated data presented in 
Figure 8 is [5, 13] for the OK, [-15, 35] in case of MLP and [7, 13] for the 
WNN method. This indicates that all three estimators used in this study 
are biased. Figures 1 and 2 show that 60% of the generated data are in 
the range of [10.5-13.5], which influenced the OK and WNN. Sum of 
Errors (SE) for the OK is almost zero (Table 1), this is while the results 
of this study suggests that the proximity of the SE to zero is not a good 
indicator to decide whether an estimator is unbiased or not. The 
inherent lack of continuity in the reservoir data is the main reason why 
the OK and WNN methods could not accurately model the reservoir in 
the second example. However, it is observed that the MLP has estimated 
some of the points with negative values, while all data are positive. The 
reason is that the TSSE is the cost function in the MLP, and the weights 
need to be optimized by minimizing the TSSE. Therefore, the wide 
heterogeneous nature of the reservoir property spread in the second 
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exemplar reservoir failed the MLP to find a reasonable trend between 
the data. It is to be noted that 20 runs required in order to complete the 
training for the MLP in an attempt to optimize the architecture of the 
reservoir. The results of the two examples presented above also show 
that, in overall, all three methods present considerable error when used 
to model the reservoirs with heterogeneous natures, and are not 
recommended for the simulations of such reservoirs.  

A summary of the results of this study are presented in Table 1. As 
shown, the CPU times in both scenarios are almost the same. However, 
there is a considerable difference between the CPU times of the three 
methods. The CPU time for WNN is about 15% that of the OK and 5% 
that of the MLP. This suggests that for real reservoirs with large volume 
of data, due to the upscaling, the WNN is a better estimator that is faster 
and better suited for modeling smaller sized blocks [49]. It should be 
mentioned that because of the high computational cost of simulating 
such fine gridded models, the upscaling techniques are commonly used 
to reduce the resolution of the simulated models at the expense of losing 
accuracy. 

Well 2 in Figure 3 was selected as a test, therefore, six other wells were 
used for training the MLP or WNN, and also variogram modeling in OK. 
Here also the results of variogram modeling (in the case of OK), and the 
optimization of weights and the training termination criterion (in the 
case of MLP), and also the optimization of weights-dilation-translation 
and the training termination criterion (in the case of WNN) are not 

presented. 
Table 1. Comparison between the results of various methods used to study the 

two exemplar reservoirs. 

 Heterogeneous reservoir composed of 
three homogeneous patches  

A randomly dispersed heterogeneous 
reservoir  

Method SSE SE 
Range 

of 
error 

CPU 
Time 

(second) 
SSE SE 

Range 
of 

error 

CPU 
Time 

(second) 

Ordinary 
Kriging 293 

-2 
(unbiased) 5.5 61 5805 

6 (biased, 
because of 

over 
estimation, 

fig 5.a) 

10 60 

MLP 
Neural 

Network 
2446 

441 
(biased) 12 177 29028 

-75 
(biased) 55 169 

Wavelet 
Neural 

Network 
65 5 

(unbiased) 
3 9 12179 72 (biased) 13 8 

4.2. Real Data 

Figure 9 shows the results of estimate porosities using three methods 
and real porosity in well 2. Here again, the 3D coordinates are the input 
data and the output is porosity. It is clear in Figure 9 that the variability 
of estimated porosities using the MLP is higher than that of the OK and 
WNN. 

 
Figure 9. Comparison between real porosity and the results of porosity estimation in well 2 in the studied oilfield. It is clear that the variability of porosity estimations 

for the MLP is higher than that of the OK and WNN. 

 In Figure 10, the errors and their range for all three methods are 
mapped, clearly showing unbiased results of the estimations (because 
mean of errors approach to zero). Moreover, based on Figure 10, the 
range of error for the WNN is the lowest and for the MLP the highest.   

A summary of the results of this study in the case of real data are 
presented in Table 2. Obviously, there is a considerable difference 
between the CPU times of the three methods. The CPU time for the 
WNN is about 20% that of the OK and 7% that of the MLP. All three 
methods resulted unbiased estimations, while the SSE for WNN are the 
lowest, and the MLP is the highest. 

 

 

 
Figure 10. Range of error of estimation of porosity in well 2 while estimators are 

a) OK, b) MLP, and c) WNN. 
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Table 2. Comparison between the results of various methods used to modeling of 
Asmari reservoir.  

Heterogeneous reservoir composed of three homogeneous patches 

Method SSE SE 
Range of 

error 
CPU Time 
(second) 

Ordinary Kriging 5774 -0.7 (unbiased) 8 210 
MLP Neural 

Network 12419 1.1 (unbiased) 11 600 

Wavelet Neural 
Network 

1376 0.2 (unbiased) 4 42 

5. Conclusions 

Two exemplar heterogeneous reservoirs were generated in this study 
to assess the application of three estimators OK, MLP, and WNN. The 
first one comprised three homogeneous sub-reservoirs and the second 
one with randomly dispersed data.  

The results of modeling the first case indicated that the WNN appears 
to be the best estimator in terms of having the shortest CPU time, being 
unbiased, with a low SSE and a limited range of error. In this case, it was 
seen that modeling the nodes near the borders between the two adjacent 
sub-reservoir was the main challenge and required more attention. 
However, the WNN successfully models these regions due to its 
localized properties. The results showed that the WNN took 
approximately 15% of the CPU time of the OK, and 5% that of the MLP. 
Therefore, due to its faster running time, it can handle more blocks 
(finer grids) and is highly advantageous in modeling heterogeneous 
reservoirs. 

The results of the second example showed that all three estimators 
were biased and yielded large error ranges. 

In the case of real reservoirs, all methods resulted unbiased, 
acceptable solutions, while the WNN was more accurate, with a low 
range of error, and fast running time. 
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