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Abstract 
In this paper, we calculate the second virial coefficient for binary mixtures of Ar with 

CH4 and CO in order to evaluate the performance of equations of state (EOSs). The 
investigated EOSs are van der Waals (vdW), Redlich-Kwong (RK), Peng-Robinson 
(PR), Carnahan-Starling–van der Waals (CS-vdW) and Guggenheim-van der Waals (G-
vdW) based on van der Waals model. In our work, we also use Dieterici model of EOS 
consists of Dieterici (D) and Dieterici-Carnahan-Starling (DCS). In this study, the 
ability of these EOSs to predict second virial coefficients of binary mixtures is 
illustrated and since these models represent two different physical attitudes of 
contribution of interaction between molecules to thermodynamic functions, therefor 
from this view point, a comparison between the two models of equations of state is also 
reported.  
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Introduction 
Thermophysical data on chemical compounds are 

essential for design of chemical industries. In this 
regard, prediction of such properties by using suitable 
models has fundamental importance. Equations of 
State (EOSs) are very suitable tools to do prediction 
of thermodynamic properties of gases, liquids or even 
solids in different temperatures and pressures[1-9].  

The virial equation of state (VEOS) is likely the 
oldest theoretical tool for calculating       the p-V-T 
properties of fluids 
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in which ρ  is the density ( 1/ mVρ = ), Z is the 

compressibility factor ( /mZ pV RT= ) and nB is 
nth-virial coefficient. What is important is that the 
virial equation is obtained on the basis of statistical 
mechanics, since virial coefficients are related to 
intermolecular interactions. In this respect, the nth-
virial coefficient is rigorously related to molecular 
interaction in clusters of n molecules. For example, 
the second virial coefficient is derived from the 
interaction of two molecules; the third one is the 
result of the effects of the triple molecular 
interactions, and so on. From this view point, the 
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virial coefficients provide a critical bridge between 
macroscopic and microscopic properties and represent 
the non-ideal behavior of real gases. The 
thermophysical properties of fluids may be easily 
computed using virial equation of state and hence, 
accurate knowledge of the virial coefficients is of 
great significance [10-11]. 

Virial coefficients can be obtained from theoretical 
approaches and experimental measurements. 
Experimental measurements are such as PVT, speed 
of sound, Joule–Thomson, relative permittivity and so 
on. On the other side, virial coefficients can be 
calculated from theoretical approaches that usually 
consist of using equations of state and interaction 
potential functions [10-22]. 

In this paper, we calculate the second virial 
coefficient for binary mixtures of Ar with CH4 and 
CO using several equations of state. In general, the 
nth-virial coefficient (Bn) can be obtained from any 
equation of state via the following relationship: 
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Therefore the second virial coefficient is 
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The aim of this work is to investigate whether the 

two models of equations of state can be used to 
accurately predict the second virial coefficients of 
mixtures and also since these models represent two 
different physical attitudes of contribution of 
interaction between molecules to thermodynamic 
functions, we compare the two attitudes in this study 
and illustrate which model is better.  

 
Equations of State 

Historically, the development of equations of state 
has been largely empirical. However, EOSs are being 
formulated increasingly with the benefit of greater 
theoretical insights. In our work, we use five EOSs of 
van der Waals model and two EOSs of Dieterici 
model for calculating and predicting the second virial 
coefficient of binary mixtures of Ar with CH4 and 
CO. The use of these EOSs has become widespread 
because of their advantages: 

• Simplicity of application 
• Only a few parameters need to be determined 
In fact, the ease and speed of implementation 

combined with the precise results in many practical 

cases explains why using these equations of state is 
still common in industrial applications and designs. 
At present, due to existence of various articles, the 
applications of these models to high pressure phase 
equilibria, to binary and multicomponent mixtures, to 
polymer mixtures, to reservoir fluids, and to 
supercritical fluids are well known [2-9].  

 
Van der Waals Model 

The van der Waals EOS, proposed in 1873 in his 
doctoral thesis, was the first equation to predict 
vapor-liquid coexistence [23]  
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The parameters a  and b are related to attractive 
forces between the molecules and the covalume 
occupied by the molecules respectively. They can be 
obtained from the critical properties of fluid. In the 
spirit of vdW equation, equation of state in the 
literature almost invariably follows the "repulsive 
+attractive" formula, i.e. 

rep attp p p= +
                                               (5)

 

or 

rep attZ Z Z= +
                    (6)

 

in which the subscripts identify the contributions 
of intermolecular repulsion and attraction forces to 
pressure or compressibility factor. Van der Waals 
model is the first one for calculation and prediction of 
thermophysical properties of fluids based on 
attractive and repulsive forces. Many of the equations 
of state that have been introduced later, with different 
degree of success for non-ideal liquids and gases, are 
based on this model [1-3]. Many of them can be 
categorized in terms of modifications to the repulsive 
and attractive of vdW model.  

Five EOSs based on vdW model have been used in 
this paper for calculating and predicting the second 
virial coefficient of binary mixtures of Ar with polar 
and non-polar fluids and the details are shown in 
Table 1.   

 
Dieterici Model 

In 1899, Dieterici suggested an EOS involving an 
exponential term [24] 
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This model can be generalized as follows 
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attZ
repZ Z e=                            (8)

 

Despite some advantages such as a more realistic 
critical compressibility factor ( 0.2706cZ = ), the 
Dieterici’s equation has not contributed significantly 
to the development of modern equations of state. 

The same as van der Waals EOS, attractive or 
repulsive term of Dieterici EOS can be replaced with 
the other terms. In this respect, Sadus replaced the 
repulsive term of this model with the Carnahan-
Starling expression and observed the generally good 
results on predicting the phase behavior of some 
fluids and binary mixtures [25-26]. Therefore, the 
generalized Dieterici formula can be used the basis 
for equation of state development. 

Two EOSs on the basis of Dieterici model have 

been used in our work for calculating and predicting 
the second virial coefficent of binary mixtures of Ar 
with polar and non-polar fluids and the details are 
shown in Table 1.  

 

Results and Discussion 
In this paper, we used five vdW EOSs and two 

EOSs based on Dieterici model for calculating and 
predicting second virial coefficient for binary 
mixtures of Ar with CH4 and CO. Table 2 gives 
critical properties and acentric factors of the fluids. 
For determining parameters a  and b of EOSs for 
mixtures, the classical van der Waals mixing rules 
were used as follows 

Table 1. The models used in this work 
Model EOS Formula a b 

 
vd Waals 

 
 

Van der Waals (vdW) 
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Carnahan-Starling (Cs-

vdW) 
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0.4963 R2T2
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0.18727 RTc/Pc 

 
Dieterici 

 
 

Dieterici(D) 
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Dieterici-Carnahan-

starling(DCS) 
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0.8143 R2T2

c/Pc 
 

1.5285 Vc 

Table 2. Critical properties and acentric factors of fluids 
Fluid TC (K) PC (atm) ρC (mol/L) ω D (Debye) 

Ar 150.687 47.994 13.4074 0.0022 0.0 
CO 132.86 34.478 10.85 0.05 0.1 
CH4 190.564 45.391 10.139 0.01142 0.0 
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provide consistent with experimental data, but at the 
medium and high temperature, this model shows a 
large deviation.  

3- The EOSs on the basis of vdW model present 
more accurate results and these are consistent well 
with experimental data in wide range of temperatures.  

4- Our study show RK and then PR equations of 
state predict very accurate results for the mixtures. 

5- In Dieterici model, DCS shows a large 
deviation and D provides a fairly good results in high 
temperature in comparison with experimental data.  

 
Conclusion 

The obtained results show that all EOSs predict the 
qualitative behavior of the second virial coefficient of 
fluid mixtures in respect to the temperature but 
quantitatively, each of EOS presents different results 
in comparing with experimental data. 

Quantitatively, it seems that vdW model yields 
very better prediction than Dieterici model in wide 
range of temperatures. In this respect, RK EOS 
provides very good consistent with experimental data 
for studied binary mixtures. 

Given that these models represent two different 
physical attitudes of contribution of interaction 
between molecules to thermodynamic functions, it 
can be concluded that vdW model demonstrates the 
contribution better than the other. In fact, it seems that 
the "repulsive + attractive" formula to pressure or 
compressibility factor are more in keeping with 
attitude of the system. 
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