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Abstract 
In this paper we reduce a free boundary problem from heat transfer to a weakly 

Singular Volterra  integral equation of the first kind. Since the first kind integral 
equation is ill posed, and an appropriate method for such ill posed problems is based on 
wavelets, then we apply the Chebyshev wavelets to solve the integral equation. 
Numerical implementation of the method is illustrated by two benchmark problems 
originated from heat transfer. The behavior of the initial and free boundary heat 
functions along the position axis during the time have been shown through some three 
dimensional plots. The convergence of the method is pointed in the end of section 2. 
The numerical examples show the accuracy and applicability of the method from 
application and programming points of views. 
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Introduction 
In this paper we consider the following free boundary 

problem from heat transfer in one spatial dimension. 
 

, 0 1,0 ,t xxu u x t= < < <                                (1) 

( ,0) ( ), 0 1,u x f x x= < <                             (2) 
( )

0

( , ) ( ), 0 (t) 1,0 ,
s t

u x t dx g t s t= < < <      (3) 

(1, ) ( ), 0 .u t h t t= <                                         (4) 
 
Where ( , )u x t  is the temperature function and is 

unknown, and the data and the free boundary function 
s(t)  are known. 

In [1, 2] the authors have solved similar problems 
with product integration technique, which is a good 
method on short time intervals and the second kind 
integral equations [3-9]. The product integration is not 
efficient for the integral equations of the first kind.  

Since the solution of the associated first kind integral 
equation is in 2 (0,1)L , which is spans by wavelets, 
hence we solve this problem by wavelets on [0,1)  . We 
show the efficiency of the method by two sample 
problems. 

For more application examples of the Chebyshev 
wavelets for differential and integral equations see [10, 
11]. 

 
1. Equivalent Integral Equation 

Definition 1.1. The fundamental solution of heat 
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equation is denoted by 

2

exp
4

( , )
4

x
t

K x t
tπ

 −
 
 = . 

Definition 1.2. The theta function is defined as 
follow 

( , ) ( 2 , ), 0.
m

x t K x m t tθ
∞

=−∞

= + >  

 
Proposition 1.3. We have the following list of 

methods for generating solutions of heat equation from 
other solutions [12]. 

Linear combinations: If 1 2,u u are solutions, then 

1 2u uα β+ is a solution, where ,α β  are constants. 
Translations: If ( , )u x t  is a solution, then so is 

( , )u x tξ τ− −   , where ξ   and τ  are translation     
parameters. 

Convolutions: If ( , )u x t  is a solution, then so are 

(x , t) ( )
b

a
u dξ φ ξ ξ−  and ( , ) ( )

b

a

u x t dξ φ ξ ξ− . 

However ( , ) ( )
t

a

u x t dξ φ ξ ξ−  is a solution only if 

( , 0) 0u x = . 
Integrate with Respect to a parameter: If 

( , , )u x t α , is a solution for each α  in ,a bα≤ ≤

then so is ( , , )
b

a

u x t dα α . 

Affine Transformation: If ( , )u x t is a solution, 

then so is 2( , )u x tλ λ  for any constant λ . 
Integration with Respect to x  and t : If ( , )u x t is 

a solution, then so is 
0

( , )
x

x

u t dξ ξ , provided that 

0( , ) 0.xu x t =  Also, if ( , )u x t is a solution, then so 

is ( , ) ,
t

a

u x dη η provided that  ( , ) 0.u x a =  

Lamma 1.4. The bounded solution of 
 

, 0 1, 0 ,
( ,0) f( ), 0 1,

(0, t) (1, t) 0, 0 ,

t xxv v x t
v x x x

v v t

= < < <
= < <

= = <
 

    
is given by 

 { }
1

0

( , ) ( , ) ( , ) ( ) .v x t x t x t f dθ ξ θ ξ ξ ξ= − − +  

Proof. See exercise 3.6. of  [12]. 
 
Lamma 1.5. For   0t >  , 

1
0

lim 2 ( , ) ( ) 0,
t

t
x t g d

x
θ τ τ τ

−→

∂− − =
∂  

for any Lebesgue integrable g . Moreover, this limit 
is taken on uniformly with respect to t contained in 
compact sets. 

Proof. See lemma 6.2.5 of [12]. 
 
Lamma 1.6. For   0t > , and piecewise-continuous

,h  

01
lim 2 (x 1, t ) ( ) ( ),

t

t
h d h t

x
θ τ τ τ

−→

∂ − − =
∂  

is uniform for t belonging to a compact subset of an 
interval of continuity of h .  

Proof. See lemma 6.2.3 and last analysis of section 
6.2 from [12]. 

 
Theorem 1.7. For continuous , ,f g h  and s  with 

(0)

0

(0) ( )
s

g f dξ ξ=  , the solution of problem (1)-(4) 

has the representation  
 

{ }1

0

0

0

( , ) (x , t) (x , t) ( )

2 (x, t ) ( )

2 (x 1, t ) ( ) ,

t

t

u x t f d

d
x

h d
x

θ ξ θ ξ ξ ξ

θ τ φ τ τ

θ τ τ τ

= − − +

∂− −
∂
∂+ − −
∂







   (5) 

if and only if φ  is a piecewise-continuous solution of 
the integral equation  

{ }( ) 1

0 0

0 0

0 0

( ) (x , t) (x , t) ( )

2 (0, t ) ( ) 2 ( ( ), t ) ( )

2 (s(t) 1, t ) ( ) 2 ( 1, t ) ( ) .

s t

t t

t t

g t f d dx

d s t d

h d h d

θ ξ θ ξ ξ ξ

θ τ φ τ τ θ τ φ τ τ

θ τ τ τ θ τ τ τ

− − − +

= − − −

+ − − − − −

 

 

 

(6) 

 
Proof. We are going to search 

1 2 3( , ) ( , ) ( , ) ( , )u x t u x t u x t u x t= + + such that 
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1 2,u u and 3u satisfy heat equation and each of them 
meet one of the equations (2)-(4). For this aim let 

{ }
1

1
0

2
0

3
0

( , ) ( , ) ( , ) ( ) ,

( , ) 2 ( , ) ( ) ,

( , ) 2 ( 1, ) ( ) .

t

t

u x t x t x t f d

u x t x t d
x

u x t x t h d
x

θ ξ θ ξ ξ ξ

θ τ φ τ τ

θ τ τ τ

= − − +

∂= − −
∂

∂= − −
∂







 

Let 
2

2L
t x

∂ ∂= −
∂ ∂

 , by the uniformly convergent 

of the theta function, ( , ) (x 2m, t) 0
m

L x t LKθ
∞

=−∞

= + = . 

By the linear combinations and translations of 
Proposition 1.3, { ( , ) ( , )} ( )x t x t fθ ξ θ ξ ξ− − +   is 
a solution of the heat equation. So according to integrate 
with respect to a parameter 1( , )u x t , satisfies the heat 
equation. From the convolutions of Proposition 1.3, for 
the investigation of 2 ( , )u x t as a solution of heat 
equation it is sufficient to show that 

0
lim ( , ) 0.
t

x t
x
θ

+→

∂ =
∂

 

1

0

1

2

3/20

2

3/201

0

2

0

( 2 )( , ) ( 2 , )
2lim

( 2 ) ( 2 , )
2

x exp
2

lim
4

( 2 )( 2 )exp
2

lim
4

lim ( , )

( 2 )( 2 )exp 2
lim

m

t

m

t

tm

t

t

K x mx t K x m t
x t

x m K x m t
t

x
t

t
x mx m

t
t

x t
x

x mx m t

τ

π

π

θ

+

+

+

+

+

∞

=
∞→

=

→

∞

→=

→

→

 
 
 
 
 
 

 
 
 

 
 
 




=

∂ − ++ + +
∂

− + + −

−−
= +

− +− +

∂
∂

− −− −
+







3/2
1

0,
4m tπ

∞

=

 


   =
 

where the uniform convergence of the series allow us 
to change limit and sigma in lines 4 and 5. Similar 

evaluations show that 
0

lim ( 1, ) 0
t

x t
x
θ

+→

∂ − =
∂

, and 

hence 3 ( , )u x t  is a solution of the heat equation. 

Substitution of  1 2 3( , ) ( , ) ( , ) ( , )u x t u x t u x t u x t= + +
in (3) and application of Fubini's theorem, forces (6).  

Now we investigate the equations (2) and (4).  

{ }

1 2 3 1

1

0
0

( , 0) ( , 0) ( , 0) ( , 0) ( , 0)

lim ( , ) ( , ) ( ) (x),
t

u x u x u x u x u x

x t x t f d fθ ξ θ ξ ξ ξ
+→

= + + =

= − − + =
 

where the last equality obtained from Lemma 1.4, 
and hence u satisfies (2). Applications of Lemmas 1.4-
1.6 yield that 

1 2 3 3

1
0

(1, t) (1, t) (1, t) (1, t) (1, t)

lim 2 ( 1, ) h( ) (t),
t

t

u u u u u

x t d h
x
θ τ τ τ

−→

= + + =

∂= − − =
∂

 

and then u  satisfies (4). Since the solution of (1)-(4) 
is unique (Chapter3 of [12]) then Eq. (5) is the only 
solution. 

 
2. Chebyshev wavelet technique 
Wavelets were first applied in geophysics to analyze 

data from seismic surveys, which are used in oil and 
mineral exploration to get "pictures" of layering in the 
subsurface rock [13]. There are several bases for 
wavelets, such as Haar wavelet, Daubechies Wavelets, 
Legendre wavelets, Chebyshev wavelets, and so on [14-
17]. In this paper we consider the second kind 
Chebyshev wavelets. Chebysheve wavelets 

have 4 arguments where 

 is the order of 
Chebyshev polynomials and t  is normalized time. They 
are defined on the interval [0,1) as follow  

/2
1 1

,

12 2 / (2 2 1)
( ) 2 2

0, .

k k
m k k

n m

n nU t n t
t

otherwise

π
ψ − −

− − + ≤ <= 


      7) 

The coefficient  is for the orthonormality, the 

dilation parameter is 12ka −= and translation 
parameter is . Here,  are the 

well- known order second kind Chebyshev 
polynomials with respect to weight function 

2( ) 1w t t= − , which is defined on the interval 
[ 1,1]− . A function (t)φ  defined over [0,1) can be 
expressed by the Chebyshev wavelets as  

, ,
1 0

(t) (t),n m n m
n m

cφ ψ
∞ ∞

= =

=                                   (8) 

where 

( ) ( , , , )nm t k n m tψ ψ=
11, 2,...., 2 , ,kn k m− += ∈�

2
π

(2 1)2 kb n −= − ( )mU t
thm



Vol. 30  No. 4  Autumn 2019 B. Babayar-Razlighi. J. Sci. I. R. Iran 

358 

1

, , ,
0

, (t) (t) (t) ,
n

n m n m n n mw
c w dtφ ψ φ ψ= =         (9)                 

and denotes the inner product in Hilbert space 

, and ( )( ) 2 2 1k
nw t w t n= − + . 

 One can consider the following truncated 
approximation for series (8) 

12 1

, ,
1 0

(t) (t) (t).
k M

T
n m n m

n m
c Cφ ψ

− −

= =

= Ψ�               (10) 

Where C and (t)Ψ  are vectors, that 
can be given by  

1 1

1 1

1,0 1,0

1,1 1,1

1, 1 1, 1

2,0 2,0

2, 1 2, 1

2 ,0 2 ,0

2 , 1 2 , 1

(t)
(t)

(t)
(t)

; (t) ,
(t)

(t)

(t)

k k

k k

M M

M M

M M

c
c

c
c

C
c

c

c

ψ
ψ

ψ
ψ

ψ

ψ

ψ

− −

− −

− −

− −

− −

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

   

= Ψ =

 

 

 

 

                (11) 

 
and for the simplicity of numerical evaluations, we 

rearrange the indices in the second representation of 
vectors by the mapping 

 
11 11,i M 1 , 1,...,2 ,ki i i i M

M M
−    

         

− −+ − − → =   

 
where [x] denotes the greatest integer less than or 

equal to x.  
The following theorem gives the convergence and 

accuracy estimation of the second kind Chebyshev 
wavelets expansion [18]. 

 
Theorem 2.1. Let (t)φ be a second-order derivative 

square-integrable function defined on [0,1)  with 

bounded second-order derivative, say (x) Bφ′′ ≤ for 

some constant B , then 
(i) (t)φ  can be expanded as an infinite sum of the 

second kind Chebyshev wavelets and the series 
converges to (t)φ uniformly, in the form (8). 

 

(ii)  

1

, ,

1
2

3 5 4
2 1

0

1 1 0 , ,
2 (m 1)k

k M

m Mn

B as M k
n

φσ

π
−

∞ ∞

== +

≤ ≤

 
→ → ∞ − 

 

 

where

1

1
2 21 2 1

, ,
1 00

( ) ( ) (t) dt ,
k M

k M nm nm n
n m

t c t wφσ φ ψ
− −

= =

 
 = −
 
 



is the 2L  norm error. 
 

3. Application of the Method 
The integral equation (6) in theorem 2.7 is as follow 

0

ker( , ) ( ) ( ), 0.
t

t d r t tτ φ τ τ = >                       (12) 

Where  

0
( ) g(t) (t),m

m
r t r

∞

=

= +                                      (13) 

( )

( )

( ) 1

0
0 0

0

( ) (x , t) (x , t) ( ) d dx

2 ( 1, t ) (s(t) 1, t ) ( ) ,

s t

t

r t K K f

K K h d

ξ ξ ξ ξ

τ τ τ τ

= − − − +

+ − − − − −

 


 

 

( ) 1

0 0

0

( 1 2 , t ) ( 1 2 , t )

(s(t) 1 2 , t ) (s(t) 1 2 , t )

(x 2 , t) (x 2 , t)

(x 2 , t) (x 2 , t)
( ) d dx

2 ( ) ,

( )
s t

t

m

K m K m

K m K m

K m K m

K m K m
f

h d

r t m

τ τ

τ τ

ξ ξ

ξ ξ
ξ ξ

τ τ
− + − + − − −

− − + − − − − −

− + + − −

− + + − + −
−

+

= ∈

 
 
 

 
 
 

 



�

0
ker( , ) ker (t, ),m

m
t τ τ

∞

=

=                                      (14) 

( )0ker ( , ) 2 (0, t ) (s(t), t ) ,t K Kτ τ τ= − − −  

.2
(2 , t ) ( 2 , t )

(s(t) 2 , t ) (s(t) 2 , t )

( , )m

K m K m
K m K m

k er t m
τ τ

τ τ

τ
− + − −

− + − − − −

= ∈

 
 
 

�

 
From the uniform absolute convergence of the series 

for ( , )x tθ  and its partial derivatives, the equation (13) 
can be approximated by  

0

0

( )

( ) ( ) ( ),

( ) ( )
N

m
m

N
T T T

m
m

r t

G t R t R t

r t g t
=

=
Ψ + Ψ = Ψ

+

�

�
 

.,.
2 (0,1)L

1(2 1)k M− ×
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where N  is sufficiently large positive integer and we 
apply equation (10) in the second row. Similar 
evaluations are true for other series of ( , )x tθ  and its 
partial derivatives. Every terms of equations (13) and 
(14) is evaluable by Mathematica software, and in 
numerical process the functions in (13) and (14) 
approximated by some finite terms of sigma, as 
mentioned for r(t) . Using Eq. (10) for approximate 

( ) ( )Tφ τ τΦ Ψ� and r(t) (t)TR Ψ�  in Eq. (12), forces 

0

(t)ker( , ) ( ) , 0.T
t

T Rt d tτ τ τ ΨΦ Ψ = >         (15) 

Where 11 2
,..., k

T T

M
φ φ −Φ  =   is unknown vector. 

Let 
0

( ) ker( , ) ( )
t

w t t dτ τ τ= Ψ , then from Eq. (10)  

we obtain ( ) (t)w t W Ψ� , where W is a 
1 12 2k kM M− −×  known matrix. Substitution of these 

quantities in (13) yields (t) R (t)T TWΦ Ψ = Ψ . 

Hence the linear system RTW Φ = , must be solved. 
In the following examples we evaluate matrices 
,R W by the 16-point Gaussian integration rule. 
 

4. Algorithm of the Method 
For illustration of superiority and applicability of the 

method we give an algorithm for the numerical solution 
of the problem (1)-(4) by the proposed method.  

Step1 Input the known functions , , ,f g h s ; 
Define the fundamental solution of heat equation by 

2

exp
4

( , )
4

x
t

K x t
tπ

 −
 
 =  ; 

Solve the linear system RTW Φ = as mentioned in 
section 3 and obtain ( ) ( )Tφ τ τΦ Ψ� . Note that we 
apply the numerical integration such as Gaussian 
integration rule for the numerical evaluation of R  and 
W . 

Step2 Since ( )τΨ  is a piecewise function, then 
( )φ τ is also a piecewise function. For example with 

M=5, k=3,  
 

2 3 4
10 11 12 13 14

2 3 4
20 21 22 23 24

2 3 4
30 31 32 33 34

2 3 4
40 41 42 43 44

( )

10
4

1 1
4 2
1 3
2 4
3 1
4

0 ,

t

t

t

t

otherwise

φ τ

φ φ τ φ τ φ τ φ τ

φ φ τ φ τ φ τ φ τ

φ φ τ φ τ φ τ φ τ

φ φ τ φ τ φ τ φ τ

 + + + + ≤ <

 + + + + ≤ <

 + + + + ≤ <

 + + + + ≤ <




�

which is obtained from step1, and all of ijφ  are known 

constants. The function 2u  in the theorem 1.7 is as 
follow 

2
0

2,0 2,m
1

( , ) 2 ( , ) ( )

1 ( , ) ( , ),
2

t

N

m

u x t x t d
x

u x t u x t

θ τ φ τ τ

=

∂= − −
∂

+



�

 

where 
 

2,m
0

2 ( 2 , )
( , ) ( ) ,

2 K( 2 , )

t
x m K x m t

tu x t d
x m x m t

t

τ
τ φ τ τ

τ
τ

+ + − + −=  
− − − − 

  

and N  is a sufficiently large integer. For evaluation of 

2,mu , first of all, evaluate on 
10
4

t≤ < , then for 

1 1
4 2

t≤ <  evaluate 

1
4

2,m
0

1
4

2 ( 2 , )
( , ) ( )

2 ( 2 , )

2 ( 2 , )
( ) ,

2 ( 2 , )

t

x m K x m t
tu x t d

x m K x m t
t

x m K x m t
t d

x m K x m t
t

τ
τ φ τ τ

τ
τ

τ
τ φ τ τ

τ
τ

+ + − + −=  
− − − − 

+ + − + −+  
− − − − 





and so on. Since ( )φ τ  is piecewise polynomial, then 
these evaluations are straight forward.  

The function 3u  in the theorem 1.7 is 
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0

1 0

1 0

( , )

1t

tN

m

tN

m

u x t

x K
t

x

x

τ

=

=

=

−−
−

−−

−−







Suppose 

then 

( , )cu x t =

−

The last in
Mathematica

 

3( , )u x t

+

+

The functi

1( , )u x t =

�

where 
1,m

1

0

( , )

(
(

u x t

K x
K x

ξ
=

−
− +

 

are evalua
 
Step3 Prin

where ju
approximatio

integer N , e

4  Autumn 20

0

2 ( 1

( 1, )

1 2 (

1 2 (

t

x
x

K x t

m K x
t

m K x
t

θ

τ

τ

τ

∂= −
∂

− −

− +
−

− −
−



( , )cu x t =

0

0

( 1

exp
1
4

t

t

K x
τ

τπ

−= −



−




ntegral is eval
a . Thus we let

1

1

(x 1) (

( 1

( 1

c
N

m
N

m

u x

x

x

=

=

−

+ − +

+ − −





�

ion 1u  in the 

{
1

0

1,0

( ,

1 ( , )
2
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