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Abstract
In this paper we reduce a free boundary problem from heat transfer to a weakly

Singular Volterra

integral equation of the first kind. Since the first kind integral

equation is ill posed, and an appropriate method for such ill posed problems is based on
wavelets, then we apply the Chebyshev wavelets to solve the integral equation.
Numerical implementation of the method is illustrated by two benchmark problems
originated from heat transfer. The behavior of the initial and free boundary heat
functions along the position axis during the time have been shown through some three
dimensional plots. The convergence of the method is pointed in the end of section 2.
The numerical examples show the accuracy and applicability of the method from
application and programming points of views.

Keywords: Volterra integral equation of the first kind; Heat equation; Numerical solution; Second kind

Chebyshev wavelets; Free boundary.

Introduction

In this paper we consider the following free boundary
problem from heat transfer in one spatial dimension.

u, O0<x <1,0<1¢,

ulx,0)=f(x), 0<x <1,
s(t)
Iu@JyﬁngL 0<s(t)<1,0<t, (3

=u

(M
2

xx 2

0
u(Le)=h(t), 0<t. @)
Where u(x,t) is the temperature function and is

unknown, and the data and the free boundary function
s(t) are known.

In [1, 2] the authors have solved similar problems
with product integration technique, which is a good
method on short time intervals and the second kind
integral equations [3-9]. The product integration is not
efficient for the integral equations of the first kind.

Since the solution of the associated first kind integral

equation is in L”(0,1), which is spans by wavelets,
hence we solve this problem by wavelets on [0,1) . We
show the efficiency of the method by two sample
problems.

For more application examples of the Chebyshev

wavelets for differential and integral equations see [10,
11].

1. Equivalent Integral Equation
Definition 1.1. The fundamental solution of heat
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equation is denoted by K (x,¢) =

Definition 1.2. The theta function is defined as
follow

O(x,t1)= > K(x+2m,), 1>0.

m=—co

Proposition 1.3. We have the following list of
methods for generating solutions of heat equation from
other solutions [12].

Linear combinations: 1f u ,u,are solutions, then

ou, + ﬂuz is a solution, where @, # are constants.

Translations: 1If u(x ,t) is a solution, then so is

u (X - §at - T)
parameters.
Convolutions: 1f u(x ,t) is a solution, then so are

[u=E00(E)dE ma [ulx.r—OPENE.

, where £ and 7 are translation

However '[u (x,t =&)P(E)dE is a solution only if

u(x,0)=0.
Integrate with Respect to a parameter: 1f
u(x,t,a), is a solution for each ¢ in a < <h,
b
then so is '[u(x,t,a)da.

Affine Transformation: 1f u(x ,t)is a solution,

then so is u (Ax , A*t) for any constant 1.

Integration with Respectto x and t : 1f u(x ,t)is

X
a solution, then so is ju (&,t)d &, provided that
Xo
u_(x,,t)=0. Also, if u(x,t)is a solution, then so
t
is '[u (x,m)dn, provided that u (x ,a)=0.

Lamma 1.4. The bounded solution of

vV, =V, O<x <1, 0<t,
v(x,0)=1(x), 0<x <1,
v(0,t)=v(1,t)=0, 0<t,
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is given by

|
v(x,t) = [{6(c —£,6)=60(x + &0 (§)dE.
Proof. See e())(ercise 3.6. of [12].

Lamma 1.5. For ¢ >0 ,

th;n 2 —(x t—-17)g(t)dt=0,

for any Lebesgue integrable g . Moreover, this limit

is taken on uniformly with respect to ¢ contained in
compact sets.
Proof. See lemma 6.2.5 of [12].

Lamma 1.6. For

h,

t > 0, and piecewise-continuous

lim 2

t—>1"

—H(x— Lt-) h(D)dT=h(1),
x

is uniform for 7 belonging to a compact subset of an

interval of continuity of /1 .
Proof. See lemma 6.2.3 and last analysis of section
6.2 from [12].

Theorem 1.7. For continuous f ,2,h and s with
s(0)

g(0)= I f (&Y, the solution of problem (1)-(4)
0

has the representation

u(r.0)=[ {06 &0 -0+ E 0} (E)dE

—2j —(xt ) ¢(r)d T )

+2j —(x Lt-7)h(7)dT,

if and only if ¢ is a piecewise-continuous solution of
the integral equation

g [ [ {60 £.0- 60+ £.0}f (©)d Eax
=2[ 00.t-0)p(0)d 7 -2[ 665 (). t- 1) gy (©)

+2 L O(s(t) — 1, t— ) h(z)d 7 — 2]0 O(~1,t—T)h(7)dT.

search
that

Proof. We are going to
u(x,t)=u,(x,t)+u,(x,t)+u,(x,t)such
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U,,u,and u,satisfy heat equation and each of them

meet one of the equations (2)-(4). For this aim let

u,(x.0) = [{8(x —£,0)=6(x +£0Y (S,
u,(x,t) :—ZIg—e(x gt —T)(7)d T,
0 X
1y (x 1) =2]§—9(x ~1Lt —0h(r)dT.
0 X

2
Let L =——a—
ot ox°’

of the theta function, L6(x,t)= i LK (x+2m,t)=0-

m=—co

By the linear combinations and translations of
Proposition 1.3, {8(x —&,1)—0(x +&,0)}f (&) s

a solution of the heat equation. So according to integrate

, by the uniformly convergent

with respect to a parameter u, (X ,¢), satisfies the heat
equation. From the convolutions of Proposition 1.3, for
the investigation of u,(X,f)as a solution of heat

equation it is  sufficient to  show  that
.06
lim —(x,¢)=0.
ox

t—0"

lim gg(x )=

t—0"

dK < —(x +2m)
™ (x,t)+272t K (x +2m,t)+

m
07| &

ZWK@ +2m,t —7)

m=1

Py
7.’_
N
. 2
(e +2m)exp {<+2m>}

m=1

= lim
t—0"

d . 2t
mzzltg(g1 4\/513/2
(v 2
—(x —2m)exp —(x —2m)~
> li A -
+mzzlltl>%]+ 4713 o

where the uniform convergence of the series allow us
to change limit and sigma in lines 4 and 5. Similar

. d6
evaluations show that lim—(x —1,¢/)=0, and
t—0" dx

hence u,(x,t) is a solution of the heat equation.
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Substitution of u (x,t)=u,(x,t)+u,(x,t)+u,(x,t)
in (3) and application of Fubini's theorem, forces (6).
Now we investigate the equations (2) and (4).

u(x,0)=u,(x,0)+u,(x,0)+u,(x,0)=u(x,0)

= lim [{oGc - £.0)-00x + £ (A€ =1 (),

where the last equality obtained from Lemma 1.4,
and hence u satisfies (2). Applications of Lemmas 1.4-
1.6 yield that

u(l,t)=u, (L) +u,(Lt)+u,(L,t)=u,(L1)

t
=1lim2
t—>1"

8_9(x Lt —7)h(r)d T =h(t),
ox

and then u satisfies (4). Since the solution of (1)-(4)
is unique (Chapter3 of [12]) then Eq. (5) is the only
solution.

2. Chebyshev wavelet technique

Wavelets were first applied in geophysics to analyze
data from seismic surveys, which are used in oil and
mineral exploration to get "pictures" of layering in the
subsurface rock [13]. There are several bases for
wavelets, such as Haar wavelet, Daubechies Wavelets,
Legendre wavelets, Chebyshev wavelets, and so on [14-
17]. In this paper we consider the second kind
Chebyshev wavelets. Chebysheve wavelets

v, (t)=w(k,n,m,t)have 4 arguments where

n=12,....,2"kel",m is of

Chebyshev polynomials and # is normalized time. They

the order

are defined on the interval [(,1) as follow

n
yo =] VI @ =) Sst<gm )
0, otherwise.
The coefficient |2 is for the orthonormality, the
V4

parameter is a = 2""and translation

parameter is b =(2n —1)27* . Here, U, (t) are the

dilation

m"™ order second kind Chebyshev
with respect to weight function

well-  known
polynomials

w (t)=+1—t>, which is defined on the interval
[-L1]. A function @(t) defined over [0,1) can be
expressed by the Chebyshev wavelets as

6= ¢, W, (O,

n=1 m=0

®)

where
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1
Con = BWom) = [Wa OO, O, ©)
"0

and <,> denotes the inner product in Hilbert space
L*(0,1).andw , (£) =w (2"t —2n +1).

One can consider the following truncated
approximation for series (8)
2K M1
o0 > > e, W, O=CT¥®). (10)
n=l m=0

Where C and W(t) are (2°7'M x1)vectors, that
can be given by

Cio Vio ®
Cii Q)

CrLum—1 Yira® (an
€20 ¥

C=| : [|¥@®= : ,
Com-1 Wou ()
czk -1 ,O Wzk -1 ,0 (t)
_czkfl’M _1_ Wzkfl,M -1 (t)

and for the simplicity of numerical evaluations, we
rearrange the indices in the second representation of
vectors by the mapping

[l Y VY Kl U P HENFIRRR PV =
[{M }+1,1 M{M} IJ—)Z,Z L,..,.2"" M,

where [x] denotes the greatest integer less than or
equal to x.

The following theorem gives the convergence and
accuracy estimation of the second kind Chebyshev
wavelets expansion [18].

Theorem 2.1. Let ¢(t) be a second-order derivative

square-integrable function defined on [0,1) with
bounded second-order derivative, say|¢’(X)SB| for

some constant B, then

(i) @(t) can be expanded as an infinite sum of the
second kind Chebyshev wavelets and the series
converges to @(t) uniformly, in the form (8).
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(i) - |
S 1le 1Y)
> [ Z —52 (m—l)“} —0as M ,k — oo,

2 2

w (tdt |,

25—

O)=2, D ConWon ()

n=1 m=0

Oy m

{1

) 2
is the L~ norm error.

3. Application of the Method
The integral equation (6) in theorem 2.7 is as follow

j ker(t, T)(2)d T =7(t),t >0. (12)

0

Where

rt) =g+ > r, ), (13)
m=0

s(t) 1

R == [(Kx-&0-Kx+ &) (§dEdx

t

+2 j (K (=1,t=7) =K (s(t) = 1,t=7) ) (2)d T,

m el

O Kx=E+2m )+ K (x=&E-2m,t)
—H( ]f(é)dfdx
T\ K x+&+2m,t) - K (x+&—2m,t)

C(K(=1+2m,t—=7)+ K (=1=2m ,t-7)
+2j
0

—K () =1+2m,t=7) =K (s(t) =1 = 2m , t— 1)

jh (),

ker(t,7) = i ker, (t,7), (14)
m=0

ker, (t,7) =2(K (0,t—7)— K (s(t),t— 7)),

ker, (t,7) =

2[K(2m,t—r)+K(—2m,t—T) j
—K (s(t)+2m ,t—=7) = K (s(t) = 2m ,t—T)

m el

From the uniform absolute convergence of the series
for @(x ,t) and its partial derivatives, the equation (13)

can be approximated by

r(t)t g(t)+ZOrn,(t)

ODGTP()+ iR,ﬁ‘P(t):RT‘P(t),

m=0
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where N is sufficiently large positive integer and we
apply equation (10) in the second row. Similar
evaluations are true for other series of @(x,¢) and its

partial derivatives. Every terms of equations (13) and
(14) is evaluable by Mathematica software, and in
numerical process the functions in (13) and (14)
approximated by some finite terms of sigma, as
mentioned for r(t). Using Eq. (10) for approximate

(7)1 ®" W(r)and r(t) ] R"¥(t) in Eq. (12), forces

@’ j ker(t, )P (2)dT=R"P(t),t >0.  (15)
0

T
7 .
Where @ =[¢1,...,¢M 2“] is unknown vector.

t
Let w(t)= jker(z,r)\{f(r)dr, then from Eq. (10)

we obtain w({)UWW(t), where W is a
2 M 25 M known matrix. Substitution of these
W P(t) = R” Y(t).

Hence the linear system W ' @ =R , must be solved.
In the following examples we evaluate matrices
R W by the 16-point Gaussian integration rule.

quantities in (13) yields

4. Algorithm of the Method

For illustration of superiority and applicability of the
method we give an algorithm for the numerical solution
of the problem (1)-(4) by the proposed method.

Step1 Input the known functions f,g,h,s ;

Define the fundamental solution of heat equation by

-X
exp{ : }
K t)y=—r—2

A7t

Solve the linear system W ' ® =R as mentioned in

section 3 and obtain @(7) ] @ W(7). Note that we
apply the numerical integration such as Gaussian
integration rule for the numerical evaluation of R and
w.

Step2 Since W(7) is a piecewise function, then

@(7)is also a piecewise function. For example with
M=5, k=3,

1

B+ T+O,T +4,T +¢,7" 0St<Z

1 1

Gy + T+, T + .7 + 0,7 7 <t< 5

P(7) L 1 3
¢30 +¢3|T+¢3272 +¢33T3 +¢34T4 E <t < Z

3

B + D T+P,T + 0,7 + 9,7 " <t<l1
0 otherwise,

which is obtained from stepl, and all of ¢1’1’ are known

constants. The function #, in the theorem 1.7 is as

follow

u, (x, z)_—zj—(x t —T)(r)d T

0 uzo(x t)+2u2m(x t),

m=1
where
x +2m K (x4 2m =0+
Uy (x,1) = j o 2m #(r)d,
0 K(x =2m,t —7)
t—7

and N is a sufficiently large integer. For evaluation of

1
u,,  first of all, evaluate on 0<¢ <Z, then for

1
— <t <— evaluate
4
! x+2mK(x+2m,t—T)+
iy (5) = j S o) T
) K(x—Zm,t—T)
X +2m
' K(x+2m,t—2')+
] ! §(2)d,
ixt K (x —2m,t —7)

and so on. Since ¢(T) is piecewise polynomial, then
these evaluations are straight forward.
The function #, in the theorem 1.7 is



Vol. 30 No. 4 Autumn 2019

u3(x,t)=2jgf(x —Lt-Dh(r)dr
0

1K(x —-Lt-Dh(r)dt
T

_’Jx—
ol —
I rx —1+2m

-> K(x —142m,t —0h(t)dt

X Z122m e S om ot DD

[
Dl

t
Suppose U, (x,t)= —IMh(T)dT,
-7
0
then
u, (x,t)= jK(x K& =Ly ryar
0
,exp(ﬂ
T
J_ [—ht-vdz|_ ..

The last integral is evaluable by any software such as
Mathematica . Thus we let

uy(x,t)0 (x=Du, (x,t)

N
+ ) (x =1+ 2m)u, (x —1+2m,t)

m=1
N

+ ) (x =1=2m)u, (x =1-2m,t).
m=1

The function #, in the theorem 1.7 is

u, () = [{00x =£,0) =00 + £ (),

0 %um(x ,t)+iul’m(x L),
where
Uy (x,t)=
j-(K(x —E+2m,t)+K (x =&E-2m,t)
N\ —K(x +&+2m,t)—K (x +&-2m,

)/(é‘) S

Step3 Print and plot i (x 1) =, (x 1) +17, (x .t ) +il,(x ,1) »
u;(x,t),j=12,3are the

u;(x,t) untile sufficiently large

are evaluable by any software.

where truncated
approximation of

integer N, evaluated in step 2.
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5. Numerical Examples

Example 5.1. In the problem (1)-(4), for
1 1
= 1
s(t)= 3 2+t=g(t) e sm[3 2+[}

f(x ) =cos(x), h(t) =e™ cos(l), The exact solution
is u(x,t)=e" cos(x). With this data, we solve the
integral equation (12) by Chebyshev wavelets technique
with M=5, k=3, and then we put this solution in the
representation formula (5) to obtain # as approximated
solution. Table 1 shows the absolute error of # in the
points (0.151,0.15j),i,7 =1,...,
the three dimensional plot of % (X,t) on[0,1]X[0,1].

6. Figure 1 shows

Example 52 In the problem (1)-(4), for

1
s(t)= 2 34 gO)=—¢ [ 1+COSB SItD

f(x ) =sin(x), h(t) =™ sin(1), the exact solution is
u(x,t)=esin(x). With this data we solve the
matrix is

Table 1. The(i,j)th element of the

4 (0.151,0.15 j) =7 (0.151,0.15 j)| in example 5.1

275007 224078 24000 330078 52407 153075 |
30710 524078 37078 15078 3407 234078
34310710 364078 764070 19070 1731078 970710
2240710 254078 12d07° 571070 134078 1441078
500071 150078 17070 454070 254q07° 5040”0
L1607 284078 164078 163078 373078 1ox07 |
1.0
g(xv”‘;‘: 10

04

02

0.0

10
Figure 1. Variation of the 27 (x ,t) as a function of

(x ,t) for Example 5.1.
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Table 2. The(i,j)th element of the matrix is
[ (0.151,0.15 j) =17 (0.151,0.15 j)| in example 5.2.

584070 65407 764075 954070 24074 9640713

15 15 15 15 15 15

12407 1240 7 4240 7 92x10 ° 5940 T 7.5<0

5 5 5 5 5

124074 42q07!
15 15

9207

36401

484071
15

464075 1pao™!

—15

5.2x10 3.6d0 9.1<0 7 1.IK0

5 5 6 5 7

56407

5640716 |

13407
15

33407
15

2307!
16

40407
15

2040 7 100 T L0 T 2040 4240

08
_ 06
u(x.l)o4
02

0.0
0.0

10 %

Figure 2. Variation of the (x St ) as a function of
(x ,¢) for Example 5.2

integral equation (12) by Chebyshev wavelets technique
with M=5, k=3, and then we put this solution in the
representation formula (5) to obtain # as approximated
solution. Similar to the previous example Table 2 shows
the absolute error of # in the points
(0.151,0.15j),i,j =1,...,6 . Figure 2 shows the

three dimensional plot of # (X, t) on [0,1]%[0,1].

Results

In this study, we consider the theta function by the
following form [12]

O(x,t)=K(x,t)

+Z{K(x +2m,t)+K (x —2m,t)}.
m=0
0 is a uniform absolute convergence in its domain
and hence series and integral can be interchanged ( for
example see the corollary of theorem 7.16 of Rudin

[19], so we can write the equations (13),(14) and these
relations help us to apply the proposed method for such
free boundary problems from heat transfer phenomenon.
There are many heat transfer problems which reduce to
the system of Volterra integral equations of the first
kind and theta function representation [12]. Many of
such problems solved directly by some numerical
approaches such as Runge-Kutta methods. Applicability
of wavelets for such problems caused the high accuracy
for the solution of the system as we have shown in two
benchmark sample problems from heat transfer.
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