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Abstract 

In this paper, a multivariate fundamental skew probit (MFSP) model is used to model 
correlated ordinal responses which are constructed from the multivariate fundamental 
skew normal (MFSN) distribution originate to the greater flexibility of MFSN. To 
achieve an appropriate VC structure for reaching reliable statistical inferences, many 
types of variance covariance (VC) structures are considered to model MFSN. 
Simulation methods are used to find the properties of the parameters estimate. The 
Schizophrenia Collaborative Study data invokes the proposed MFSN model. The results 
confirm that the first-order autoregressive (AR(1)) structure substantially enhances the 
estimation of the parameters. Furthermore, over time the drugs effect the schizophrenia 
treatment, noticeably.   
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Introduction 
Correlated categorical ordinal data arise in many 

applications related to medical, behavioral and social 
survey researches [1-4]. The multivariate probit (MP) 
model has been a popular method to model this type of 
data and many people have studied various aspects of 
the MP method [5-9].  In the MP model, the measured 
observations for different individuals are independent, 
but the measured observations at different occasions for 
a given individual are assumed to be correlated where 
the ordinal categorical responses are obtained by using 
discrete threshold values from a multivariate normal 
variable [1]. However, we can use the more flexible 
skew normal distribution to obtain the correlated ordinal 
responses. This model is called a multivariate skew 

probit  (MSP) model. 
In the literature, various forms of the multivariate 

skew normal distributions are defined [10-13]. However 
[14], discusses a class of a fundamental skew normal 
distribution that is more flexible to model the ordinal 
data. This is because the marginal and conditional 
distributions of the MSFN sub-vectors are also 
fundamental skew normal.  

Usually, special VC structures have been applied in 
modeling the MP to avoid using expensive 
computational methods to analysis correlated data [15-
17, 2]. However, we need to determine an appropriate 
VC structure to make a valid inference about the model 
parameters. This is achieved by finding a correct 
standard error such that the model parameter estimates 
are been consistent and asymptotically unbiased [8]. 
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many interesting properties which are not available in 
(2.2). Furthermore, a random variable ࢆ is distributed as 
a multivariate canonical fundamental skew normal, ܵܥ ௞ܰ,௠(∆), when its density function is: (ࢠ)݂ࢆ = 2௠߶௞(ࢠ)Φ௠(Δ்ܫ|ࢠ௠ − ΔΔ்), .௞ܴ߳ࢠ (2.3) 
 

Lemma 1 Let ࢆ distribute as the multivariate 
canonical fundamental skew normal 	ܵܥ ௞ܰ,௠(∆)  in the 
form of (2.3). Then, the cumulative distribution function ࢆ is given by 

(ࢠ)ࢆܨ  = 2௠Φ௞ା௠൫(்ࢠ 0்)หΩ൯,														ܴ߳ࢠ௞ 

where Ω = ൬ ௞ܫ −Δ−Δ் ௠ܫ ൰ 

 
Proof: [1] 

Likelihood Function for MFSP Model 
Let the model error ߝ௝ in the latent 

variable	 ௝ܻ∗	defined in (2.1) be distributed as a 
multivariate fundamental skew normal as:    

௝ߝ  ~௜௡ௗܵ ௡ܰೕ(0, ,ܦ  (2.4)																																																									௘)߂
 
where ܦ and ߂௘ represent respectively the variance 

covariance and skewness matrices of the model errors, ߝ௝, (݆ = 1,2, … ,݉). Therefore, for the latent 
variable	 ௝ܻ∗	, the density function is: 

 ݂௒ೕ∗൫ݕ௝∗หߠ൯ = 2௡ೕ߶௡ೕ൫ݕ௝∗ห ௝ܺߚ, ܦ + ܦ)௘Δ௘்൯Φ௡ೕ ቀΔ௘்߂ + ∗௝ݕ௘Δ௘்)ିଵ൫߂ − ௡ೕܫ൯ቚߚ௝ݔ − Δ௘்(ܦ +      	௘ቁ߂௘Δ௘்)ିଵ߂
                                                                                  (2.5)  

 ݆ = 1,2, … ,݉	and the cumulative distribution function 
of ܻ∗ using the density function (2.5) and lemma 1 is as 
follows. 

௝∗൯ݕ௒ೕ∗൫ܨ   = 2ଶ௡ೕΦଶ௡ೕ ൭൬ݕ௝∗ − 0ߚ௝ݔ ൰ อ ቆܦ + ௘Δ௘்߂ Δ௘்߂௘ I௡ೕቇ൱                         

(2.6) 
 
Moreover, the ordinal response variable ܻ is obtained 

by employing the latent variable Y* in a way that for 
threshold levels −∞ = ܽ଴ < ܽଵ < ⋯ < ܽ௞ାଵ = ∞,	the 
response variable ௜ܻ௝ = ݈௜௝, when		ܽ௟ିଵ < ∗௜௝ݕ ≤ ܽ௟,  ݈௜௝ = 1,2, … , ݇,	݅ = 1,2, … , ௝݊, ݆ = 1,2, … ,݉. The ݆th 
likelihood function for the ordinal response ௝ܻ is: 

(ߠ)௝ܮ  = ܲ൫ ௝ܻ = ൯࢐࢒ = ܲ ቀି࢐࢒ࢇ૚ < ௝ܻ∗ ≤ ቁ࢐࢒ࢇ ∗௒ೕܨ = ቀ࢐࢒ࢇቁ − ∗௒ೕܨ ቀି࢐࢒ࢇ૚ቁ 

 

where ௝ܻ = ቀ ଵܻ௝, … , ௡ܻೕ௝ቁ, ௝ܻ∗ = ቀ ଵܻ௝∗ , … , ௡ܻೕ௝∗ ቁ் ࢒ࢇ = ቀܽଵ௟, … , ܽ௡ೕ௟ቁ் and ࢐࢒ = ቀ݈ଵ௝, … , ݈௡ೕ௝ቁ்.  
 
The likelihood function is given by 
;ߠ)݈  (ݕ =ෑܮ௝(ߠ) =ෑቂܨ௒ೕ∗(࢒ࢇ) − ቃ௠(૚ି࢒ࢇ)∗௒ೕܨ

௝ୀଵ
௠
௝ୀଵ  

 
where ܨ௒ೕ∗ denotes the cumulative distribution 

function of ௝ܻ∗.  Therefore, utilizing the fundamental 
multivariate skew normal ܵܰ௠(0, ,ܦ  ௘) for the model߂
error (2.1) has this benefit that the distribution function 
of the latent variable, ௝ܻ∗, and the response variable, ௝ܻ, 
have closed forms and it results in closed forms for the 
maximum likelihood function of the desired model. 
Thus, there is no need to employ extensive numerical 
methods to achieve the parameters estimate. After 
employing the Newton-Raphson method, Maximization 
the likelihood function is done applying appropriate 
functions in R software. 

 
The Structure of VC Matrix 

To verify an appropriate VC structure for the 
response variables over time, several VC matrix 
structures have been considered by different authors 
[18]. Let ߝ௝ = ൫ߝଵ௝, ,ଶ௝ߝ ,ଷ௝ߝ  ସ௝൯ be the model error. Theߝ
structures which are usually used for the VC matrix are 
simple, equal correlations, Toeplitz 2 bands, Toeplitz, 
first-order autoregressive and unstructured 
independence. 

In the simple (SIM) structure of VC, the model error 
components are uncorrelated (ݒ݋ܥ൫ߝ௜௝, ௞௝൯ߝ = 0, ݅ ≠݇ = 1,2,3,4) with identical variance ߪ௘ଶ (ܸܽݎ൫ߝ௜௝൯ ,௘ଶߪ= ݅ = 1,2,3,4). Thus, the VC matrix will be diagonal, 
i.e., a multiple of identity matrix (ߪ௘ଶI). As a result, the 
latent variables components ௝ܻ∗ and the components of 
the response variable ௝ܻ are independent over time. If 
the VC matrix has an equal correlation (EC) structure, 
all correlations between model error components will be 
the same and equal ρ௘ (ܸܽݎ൫ߝ௜௝൯ = ,௘ଶߪ ݅ ,௜௝ߝ൫ݒ݋ܥ	݀݊ܽ	1,2,3,4= ௞௝൯ߝ = ,௘ଶρ௘ߪ ݅ ≠ ݇ = 1,2,3,4). 
Therefore, all correlations between response variables ௝ܻ 
are the same. Thus the VC structure reduces to SIM’s 
whenever ρ௘ 	= 0.  In the Toeplitz 2 bands (TOEP2) 
structure of VC, the components of model error are 
correlated with adjacent components, however 
independent of other elements (ܸܽݎ൫ߝ௜௝൯ = ,௘ଶߪ ݅ ,௜௝ߝ൫ݒ݋ܥ	݀݊ܽ	1,2,3,4= ௞௝൯ߝ = ݅)ݏܾܽ	݁ݎℎ݁ݓ	௘ଶρ௘ߪ −
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݇) = 1). The Toeplitz (TOEP) type of VC structure 
generalizes TOEP2 to k-th adjacent component 
௜௝൯ߝ൫ݎܸܽ) = ,௘ଶߪ ݅ = ,௜௝ߝ൫ݒ݋ܥ	݀݊ܽ	1,2,3,4 ௞௝൯ߝ ݅)ݏܾܽ	݁ݎℎ݁ݓ	௘ଶρௗ௘ߪ= − ݇) = ݀). As a result, the TOEP 
structure can be perceived as a moving average (MA) 
structure of order equal to the size of the matrix. 
Moreover, a TOEP2 matrix corresponds to MA 
structures of lower order.  Therefore, model error 
components are correlated to each other with different 
values. In first-order autoregressive (AR(1)) structure of 
the VC matrix, the correlation coefficient decreases 
over time  (ܸܽݎ൫ߝ௜௝൯ = ,௘ଶߪ ݅ = ,௜௝ߝ൫ݒ݋ܥ	݀݊ܽ	1,2,3,4 ௞௝൯ߝ ݅)ݏܾܽ	݁ݎℎ݁ݓ	௘ௗߩ௘ଶߪ= − ݇) = ݀). Finally, in an unstructured 
independent (UN1) structure, the VC matrix is diagonal 
௜௝൯ߝ൫ݎܸܽ) = ,௜௘ଶߪ ݅ = ,௜௝ߝ൫ݒ݋ܥ	݀݊ܽ		1,2,3,4 ௞௝൯ߝ =0, ݅ ≠ ݇ = 1,2,3,4). The following relationship is found 
between various types of VC structure matrices. SIM is 
a sub-model of UN1 when in UN1 considered  σଵୣଶ =σଶୣଶ = σଷୣଶ = σସୣଶ = σୣଶ and EC is a sub-model of 
TOEP when in TOEP structure it is supposed ߩଵ௘ ଶ௘ߩ= = ଷ௘ߩ = ρ௘.  Structures AR(1) and TOEP2 are the 
sub-models of TOEP when in TOEP we assume  ρ୦ୣ = ρ୦ୣ, h = 1,2,3 and ߩଵ௘ = ρ௘ and ߩଶ௘ = ଷ௘ߩ = 0, 
respectively. 

 

Results 

In this study, the schizophrenic data [21] is used to 
investigate risk factors associated with the intensity of 
the schizophrenic disease. The data included 
information on schizophrenic patients. The disease 
intensity of these has been measured for four 
consecutive weeks of the illness. The information from 
312 complete cases of observations is selected. The data 
is analyzed, via MP and MSFP models such that the 
response variable ܻ demonstrates the disease intensity. 
The response variable was 85 items of the Inpatient 
Multidimensional Psychiatric Scale, scored as follows: 
(a) normal or borderline mentally ill, (b) mildly or 
moderately ill, (c) markedly ill, and (d) severely or the 
most extremely ill which are denoted by 1, 2, 3 and 4 
respectively so that number one demonstrates the lowest 
intensity and number four indicates the highest.  The 
patients were randomly allocated to receive one of four 

medications: placebo, chlorpromazine, fluphenazine, or 
thioridazine. Because previous studies illustrated similar 
effects for the three antipsychotic drug groups, they 
were assigned as one group (drug) in the analysis [21]. 
The covariates used in the previous analyses were: ܶܺ 
(=0,1) the type of drug administered to the patient (i.e. 
real drug=1, placebo=0), Sܹ is the square root of the 
patient's week to referral. The measurement taken place 
at weeks 0, 1, 3, and 6 and finally interaction term, i.e., ܹܵ. ܶܺ. 

The following latent variable is used to analyze the 
data. 

∗௜௝ݕ  = ଴ߚ + ଵܶߚ ௜ܺ௝ + ଶܵߚ ௜ܹ௝ + ଷܵߚ ௜ܹ௝. ܶ ௜ܺ௝ + ݅ 						௜௝ߝ = 1,… , ௝݊																																																																		(3.1) 
 
where ߚ	 = 	 ,଴ߚ) ,ଵߚ ,ଶߚ  ଷ) denotes the covariateߚ

coefficients, ௝݊ = 4 and, the distribution of the model 
error is the MFSN. The skewness matrix Δ௕ of the 
model error is assumed to be diagonal with values  ߜଵ௘ = ଶ௘ߜ = ଷ௘ߜ = ସ௘ߜ =  ௘. VC matrix D can takeߜ
different structures. Furthermore, it is assumed that ߪ௘ଶ = 1 for scale normalization in using EC, TOEP, 
TOEP2, and AR(1) structures. Many VC structures, e.g. 
TOEP, TOEP2, and AR(1) have merely been employed 
when the measurements are considered at equal time 
intervals. The VC structures TOEP, TOEP2 and AR(1) 
are altered to be suitable for non-equal time intervals by 
omitting the rows and columns of the corresponding 
time intervals which have not observations in the data. 

 Finally, two MP (ߝ௝ ~௜௡ௗ ௤ܰ(0,  and MFSP ((ܦ
௝ߝ) ~௜௡ௗܵ ௤ܰ(0, ,ܦ Δ௘)) models are fitted to the data with 
different structures for the VC matrix  ܦ. The values of 
the Akaike Information Criterion (AIC) which is a 
criterion of the good modeling measure regarding 
different types of the VC structures for models MP and 
MFSP are presented in Table 1. Table 1 shows that 
MFSP produces a better fit because it has lower AIC for 
all VC structures. Thus, the MFSP model is more 
reliable than the MP model to analyze this data. 

As can see in Table 1, the VC structure AR(1) 
produces the lowest AIC (7620.404) among the entire 
VC structures in the MFSP model. Therefore, it is the 

Table 1. The values of AIC goodness for multivariate probit (MP) and multivariate fundamental skew probit (MFSP) models 
The structure of the VC matrix Multivariate Probit Multivariate Fundamental Skew Probit 

UN1 9779,810 9320,742 
SIM 9086,822 8648,004 

TEOP 7801,650 7724,948 
TEOP2 8447,410 8123,196 
AR(1) 7975,716 7620.404 

EC 8102,992 7983,062 
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best model among 8 models.  
Table 2 presents the results of the model fitting for 

VC structures UN1, SIM, TEOP, TEOP2, AR(1) and 
EC for the MFSP. 

The treatment groups (drug users) are substantially 
different from the baseline group in the various type of 
VC structures. Significant negative treatment effects 
emphasizes that the drugs improve patients’ health as 
displayed in Table 2.  However, other authors, 
employed different types of ordinal longitudinal 
models, have shown that the treatment groups were not 
considerably different from each other, [21,22]. 
Furthermore, time covariate is negatively significant 
which shows that the placebo group also gets better 
over time but the drug groups have a greater 
improvement. Table 2 also illustrates that the interaction 
of drug by time is statistically significant which 
demonstrates that patients with the highest disease 
severity show the greatest recovery over time by 
employing the drug. Furthermore, it can be noticed from 
Table 2 that the estimation of the threshold levels 
parameters ܽଵ and ܽଶ are 1.582 and 2.714, respectively. 
This invokes that the drug effects are different for the 
intensity levels of the schizophrenic disease. 

Thus, in schizophrenia treatment, our results support 
prescribing appropriate drugs; since they decrease the 
intensity of disease with the passage of time. Also, 
Table 2 shows in AR(1), a high significant correlation 
between sequential responses over time (ρଵ௕ = 0.897) 
which decreases as time increases.  

According to results in Table 2, ߜመ௘ = −1.081 which 
is statistically significant.  This demonstrates that the 
density function of the model error is negatively 

skewed. Furthermore, in the AR(1) model, the 
maximum likelihood estimate (MLE) of ߪ௘ is highly 
statistically significant (ߪ௘ = 1.624) which shows that 
the MFSP model works reasonably well in fitting the 
proposed model to the data 

 
Simulation 

The simulation method is used to investigate the 
properties of the proposed MLE model parameters. We 
generate ܭ = 300 samples with sizes 200, 300 and 500 
from the MFSP model as follows. At first, a latent 
variable ܻ∗ is generated as: 

∗௜௝ݕ  = ଵߚଵ௜௝ݔ + ଶߚଶ௜௝ݔ + .ଵ௜௝ݔ ଷߚଶ௜௝ݔ + ݅ 												௜௝ߝ = 1,… , ௝݊																																																(4.1) 
 
where the covariates ଵܺ and ܺଶ are generated 

independently from the standard normal and binary 
distribution with success probability 0.6 respectively 
and ௝݊ = 4. The covariates coefficients, β଴ = 1,  βଵ = ଶߚ ,1 = 0.5	 and ߚଷ = 0.1 are considered. The 
errors ߝ௝ = ൫ߝଵ௝, ,ଶ௝ߝ ,ଷ௝ߝ  ସ௝൯ are generated from aߝ
multivariate fundamental skew normal distribution with 
mean zero. Also, AR(1) structure is employed for VC 
matrix D with the variance and correlation coefficient ߪ௘ଶ = 2	 and ߩ௘ = 0.5 respectively and a diagonal 
skewness matrix with values: ߜଵ௘ = ଶ௘ߜ = ଷ௘ߜ = ௘ߜ =−0.4. At the end the ordinal response variable Y is 
achieved from the latent variable ܻ∗, defend in equation 
(4.1), by applying the threshold levels: ܽଵ = 0	, as a 
fixed constant value for identifiability, ܽଶ = 2	and ܽଷ = 4. The estimate of parameters are obtained by 

Table 2. Results of parameter estimates for various types of VC structures of the MFSP model 
Parameters Parameter Estimates (Standard Deviation) 

UN1 SIM TEOP2 TEOP AR (1) EC 
 β଴ 1.696(0.048) 2.200(0.007) 2.498(0.022) 2.512(0.017) 2.207(0.019) 2.624(0.007) 
 βଵ -0.075(0.025) -0.199(0.013) -0.167(0.007) -0.051(0.010) -0.037(0.003) -0.105(0.004) 
 βଶ -0.624(0.010) -1.231(0.011) -1.122(0.021) -1.019(0.006) -0.954(0.014) -1.101(0.010) βଷ 0.067(0.050) 0.174(0.013) 0.136(0.007) 0.109(0.007) 0.094(0.010) 0.112(0.019) 
 aଵ 1.140(0.040) 1.873(0.002) 1.737(0.002) 1.671(0.010) 1.582(0.009) 1.783(0.011) 
 aଶ 1.870(0.051) 3.251(0.009) 2.966(0.011) 2.879(0.012) 2.714(0.007) 3.121(0.016) 
 ρଵୣ - - 0.799(0.006) 0.755(0.008) 0.897(0.019) 0.688(0.019) ρଶୣ - - - 0.812(0.004) - - ρଷୣ - - - 0.675(0.026) - - ρହୣ - - - 0.573(0.008) - - ρ଺ୣ - - - 0.232(0.014) - - 
 δୣ -0.521(0.027) -2.170(0.014) -1.359(0.012) -0.961(0.007) -1.081(0.016) -1.247(0.012) 
Sigma1 0.466(0.053) 1.170(0.012) 1.628(0.007) 1.822(0.007) 1.624(0.014) 1.964(0.011) 
Sigma2 0.649(0.020) - - - - - 
Sigma3 0.762(0.025) - - - - - 
Sigma4 1.098(0.035) - - - - - 
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utilizing the maximum likelihood method and R 
software.  

We use measures: the mean-squared error, ܧܵܯ௝ =ଵ௄ ∑ ൫ߚመ௝௞ − ௝൯ଶ௞ߚ , the bias, ܤ௝ = ଵ௄ ∑ ൫ߚመ௝௞ − ௝൯௞ߚ  and the 

ratio of bias, ௝ܴ = ఉ෡ೕೖఉೕ  to evaluate parameter estimation 

where n = 200, 300 or 500 and ߚመ௝௞ represents the 
estimated value of ߚ௝ in the kth simulated data. 
Therefore, two measures, ܧܵܯ௝ and ܤ௝ respectively deal 
with the precision and accuracy of ߚመ௝ respectively.  

According to the results in Table 3, the bias and 
mean-squared error (MSE) of the MLE of entire 
parameters reduce when the sample size increases from 
200 to 500. However, as can be seen that the magnitude 
of the declining rate is not the same for all parameters 
estimates. However, the simulation results indicate that 
the MLE’s parameters are efficient and asymptotically 
unbiased. 

 

Discussion 
The aim of this paper is using the multivariate 

fundamental skew probit (MFSP) model to obtain 
parameters estimates of the ordinal longitudinal models 
where different types of VC structures are assumed. The 
maximum likelihood method is employed to obtain the 
parameters estimate. The maximum likelihood function 
was found to have a closed form whenever the MFSP 
model is used. 

We recognized that assuming AR(1) structure for the 
VC matrix yields the least value of the goodness-of-fit 
criterion AIC. Therefore, it provides the best results 
compared to other types of VC structures in the analysis 
of the real data. We also obtained that using the MFSP 
model provided the least value of AIC and enhance the 
model fitting noticeably.  

Our analysis of the real data demonstrated that the 
patients who employed drug substantially improved 

over time. Finally, the results of simulation show 
efficiency and asymptotically unbiasedness of the 
MLE’s parameters of the MFSP model. 
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