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Abstract

In this paper, a multivariate fundamental skew probit (MFSP) model is used to model
correlated ordinal responses which are constructed from the multivariate fundamental
skew normal (MFSN) distribution originate to the greater flexibility of MFSN. To
achieve an appropriate VC structure for reaching reliable statistical inferences, many
types of variance covariance (VC) structures are considered to model MFSN.
Simulation methods are used to find the properties of the parameters estimate. The
Schizophrenia Collaborative Study data invokes the proposed MFSN model. The results
confirm that the first-order autoregressive (AR(1)) structure substantially enhances the
estimation of the parameters. Furthermore, over time the drugs effect the schizophrenia

treatment, noticeably.
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Introduction

Correlated categorical ordinal data arise in many
applications related to medical, behavioral and social
survey researches [1-4]. The multivariate probit (MP)
model has been a popular method to model this type of
data and many people have studied various aspects of
the MP method [5-9]. In the MP model, the measured
observations for different individuals are independent,
but the measured observations at different occasions for
a given individual are assumed to be correlated where
the ordinal categorical responses are obtained by using
discrete threshold values from a multivariate normal
variable [1]. However, we can use the more flexible
skew normal distribution to obtain the correlated ordinal
responses. This model is called a multivariate skew

probit (MSP) model.

In the literature, various forms of the multivariate
skew normal distributions are defined [10-13]. However
[14], discusses a class of a fundamental skew normal
distribution that is more flexible to model the ordinal
data. This is because the marginal and conditional
distributions of the MSFN sub-vectors are also
fundamental skew normal.

Usually, special VC structures have been applied in
modeling the MP to avoid wusing expensive
computational methods to analysis correlated data [15-
17, 2]. However, we need to determine an appropriate
VC structure to make a valid inference about the model
parameters. This is achieved by finding a correct
standard error such that the model parameter estimates
are been consistent and asymptotically unbiased [8].

* Corresponding author: Tel: +986133331043; Fax: +986133331041; Email: zadkarami_m@scu.ac.ir

363



Vol. 30 No. 4 Autumn 2019

Furthermore, the procedure of the estimation of the
parameters for the proposed model is involved in
complicated numerical computations for the MP model.
However, considering the MFSN instead of the
multivariate normal yields a closed form likelihood
function of the MFSP model. Therefore, we do not need
to employ approximate methods that require an
extensive amount of computation.

Therefore, the main point of this paper is to use the
MEFSP model with different VC structures to model
ordinal correlated response variables to obtain more
efficient parameter estimates, using the maximum
likelihood method.

The paper is organized as follows. The MFSP model
is illustrated in Section 2. In Section 3, the analysis of
the real data is presented in conjunction with evaluating
the maximum likelihood estimators properties of the
MFSP model. Finally, some conclusions are
demonstrated in Section 4.

Materials and Methods

Consider m individuals in a longitudinal study such
that there are n; measurements for jth individual. Now,
consider a continuous latent variable y; =

(yl* jr s y,*lj j) which contains fixed covariates as:

yi=xif+te, j=1..,m (2.1)
where f and x; denote a p-dimensional vector of
unknown regression coefficients and a (n]- X p) matrix
of the fixed covariates associated with [ respectively,
and ¢; is the (nj X 1) vector of the model errors. The
ordinal longitudinal response variable Y;; is obtained by
employing the latent variable y; as follows. Assume the
threshold levels —o0 = a5 < ay < -+ < agyq = 0, the
response variable Y;; = [;; whenever -1 < yij <
a,; lij=12,..,k. Thus, for the model error &;

distribution function F;, we have:

P(Yij = li]') =P (alij—l <y = alif) -
Fe (azil- - xij.B) - F (azij—1 - xij.B)-

It is assumed a; = 0 for the identifiability of the
model [4, 19]. We assume that the response variables
for different individuals are independent, but the
response variables on different occasions for a given
individual are correlated. Therefore, we have a
multivariate probit (MP) model for ordinal data if we

M. R. Ghalani and M. R. Zadkarami.

364

J. Sci. . R. Iran

consider the normal distribution for the model error &;;
[18, 3]. The likelihood function is given by
m

10;y) = HP(YU =1y Yoy = znj|xj; 0)

j=1
m
= | | f b f f(.\'{j""!.v.:l:j 'rj;e)d.\ ] d‘v;}
j=1 A:'. A;n:
where x; = (xlj, ....,xnﬂ-) A, = (aj_y,q;) for
li=12,..,k, i=1,..,n; and, 6 is the model

unknown parameters. Stingo et al., [19] have illustrated
that in the presence of selectivity bias, the probit model
is not convenient. Therefore, they applied multivariate
skew normal distribution which is defined in [20] for

the model error g = (51 j,...,enﬂ-) which is called a

multivariate skew probit (MSP) model. In this paper, a
multivariate fundamental skew normal distribution
defined by [14] was employed for the model error ¢;
which is more flexible than the previous versions of the
multivariate skew normal distribution. This model is
called a multivariate fundamental skew probit (MFSP)
model

Multivariate Fundamental Skew Normal
A multivariate skew normal [4], which are used by
authors to model various types of correlated
longitudinal responses is given by
fz2(2) = 2¢,(2)®,(ATz), z€R*, A€RF, (22)
where ¢, (z) and @ (z) represents the density and
cumulative distribution functions of the k-dimensional
normal vector, N, (0,I;), and A is the vector of
skewness parameters. For A = 0, the density function
fz(z) declines to N, (0,I;). Diverse versions of the
multivariate skew normal distribution have been
introduced by [S, 17, 9]. The MFSN distribution [14]
is:
f2(2) =

2" (zlp, Q + AN D, (AT (Q + AAT) Yz — WL, — AT(Q + A4T)724)

which is denoted by Z~SNj,(u,Q,A) and by
Z~SNp,(u, Q,A) for k =m. For A =0 SNy ,, (1, Q, A)
mitigates to the multivariate normal N, (u, Q)
distribution. Sahu et al, [17] defined the multivariate
fundamental skew normal which is a generalized
version of the multivariate skew normal. Arellano-Valle
and Genton [14] illustrated that the MFSN which has
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many interesting properties which are not available in
(2.2). Furthermore, a random variable Z is distributed as
a multivariate canonical fundamental skew normal,
CSNy 1, (A), when its density function is:
f2(2) = 2™ (2)D,, (AT 2|, — AAT), zeR¥.(2.3)

Lemma 1 Let Z distribute as the multivariate
canonical fundamental skew normal CSN,,(A) in the
form of (2.3). Then, the cumulative distribution function
Z is given by

Fz(2) = 2"y (" 07[Q), zeR*
I, —A
whereQ=(_AT Im)
Proof: [1]
Likelihood Function for MFSP Model
Let the model error ¢ in the latent

variable ;" defined in (2.1) be distributed as a
multivariate fundamental skew normal as:

g'~'SN,,,(0,D,4,) (2.4)

where D and A4, represent respectively the variance
covariance and skewness matrices of the model errors,

g, (=12,..,m). Therefore, for the Ilatent
variable Y;* , the density function is:

fr: (v716) = 2% ¢y (¥7[X;8.D + 4. A7) P,
(AT(D + 4.8T) 7 (v = ;) |, — AL(D + A.AT) 14, )
2.5)

j=1,2,..,mand the cumulative distribution function
of Y using the density function (2.5) and lemma 1 is as

follows.
D+ A,AT AT
A, In].

(2.6)

. ) F—x;
Py () = 2% ®a, <<y’ o)

Moreover, the ordinal response variable Y is obtained
by employing the latent variable Y* in a way that for
threshold levels —0 =qay < a; < -* < Apyq = o, the
response variable Y;; =1;, when a;_; <y; < aq,
lij = 1,2, vy k, i= 1,2, ...,nj, ] = 1,2, e, m. The ]th
likelihood function for the ordinal response Y; is:

Li®) =P(Y; =) =P (a4 <Y <a;) =

Fy; (a’i) —Fy (a’i‘l)

365

where ¥ = (Y. V). Y = (¥ ...,Y;},j)T

a; = (au, ...,anjl)T and l]- = (llj, ...,ln].j)T.

The likelihood function is given by

169 =[ [ =] [[Fy; @0 - Fs @]
j=1 j=1

where F v denotes the cumulative distribution

function of Y;". Therefore, utilizing the fundamental
multivariate skew normal SN,,(0,D, 4,) for the model
error (2.1) has this benefit that the distribution function
of the latent variable, Yj*, and the response variable, Y;,
have closed forms and it results in closed forms for the
maximum likelihood function of the desired model.
Thus, there is no need to employ extensive numerical
methods to achieve the parameters estimate. After
employing the Newton-Raphson method, Maximization
the likelihood function is done applying appropriate
functions in R software.

The Structure of VC Matrix

To wverify an appropriate VC structure for the
response variables over time, several VC matrix
structures have been considered by different authors
[18]. Let g = (slj, £2j, €3, s4j) be the model error. The
structures which are usually used for the VC matrix are
simple, equal correlations, Toeplitz 2 bands, Toeplitz,
first-order autoregressive and unstructured
independence.

In the simple (SIM) structure of VC, the model error
components are uncorrelated (Cov(sij,skj) =0,i #
k =1,2,3,4) with identical variance 0,% (Var(g;) =
O'ez,i = 1,2,3,4). Thus, the VC matrix will be diagonal,
i.e., a multiple of identity matrix (g, 21). As a result, the
latent variables components Y;* and the components of
the response variable Y; are independent over time. If
the VC matrix has an equal correlation (EC) structure,
all correlations between model error components will be
the same and equal p, (Var(sij) =0,%i=
1,2,3,4 and Cov(e;j, &x;) = 0,2pe, i # k = 1,2,3,4).
Therefore, all correlations between response variables Y;
are the same. Thus the VC structure reduces to SIM’s
whenever p, = 0. In the Toeplitz 2 bands (TOEP2)
structure of VC, the components of model error are
correlated with adjacent components, however
independent of other elements (Var(ei j) =0,%i=
1,2,3,4 and Cov(ei]-, sk]-) = 0,%p, where abs(i —
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k) = 1). The Toeplitz (TOEP) type of VC structure
generalizes TOEP2 to k-th adjacent component
(Var(eij) =0,%i=1234and Cov(sij,skj) =
0,%pg. where abs(i — k) = d). As a result, the TOEP
structure can be perceived as a moving average (MA)
structure of order equal to the size of the matrix.
Moreover, a TOEP2 matrix corresponds to MA
structures of lower order. Therefore, model error
components are correlated to each other with different
values. In first-order autoregressive (AR(1)) structure of
the VC matrix, the correlation coefficient decreases
over time (Var(s,-]-) =0,%i=1234and Cov(sij,skj) =
0.2p2 where abs(i — k) = d). Finally, in an unstructured
independent (UN1) structure, the VC matrix is diagonal
(Var(eij) =0;,%1=123,4 and Cov(sij, skj) =

0,i # k =1,2,3,4). The following relationship is found
between various types of VC structure matrices. SIM is
a sub-model of UN1 when in UNI considered 0%,
0%, = 03, = 0%, = 0,2 and EC is a sub-model of
TOEP when in TOEP structure it is supposed pi, =
DPre = P3¢ = Pe- Structures AR(1) and TOEP2 are the
sub-models of TOEP when in TOEP we assume
Pre = P, h=123and p;, = p, and p,, = p3. = 0,
respectively.

Results

In this study, the schizophrenic data [21] is used to
investigate risk factors associated with the intensity of
the schizophrenic disease. The data included
information on schizophrenic patients. The disease
intensity of these has been measured for four
consecutive weeks of the illness. The information from
312 complete cases of observations is selected. The data
is analyzed, via MP and MSFP models such that the
response variable Y demonstrates the disease intensity.
The response variable was 85 items of the Inpatient
Multidimensional Psychiatric Scale, scored as follows:
(a) normal or borderline mentally ill, (b) mildly or
moderately ill, (c) markedly ill, and (d) severely or the
most extremely ill which are denoted by 1, 2, 3 and 4
respectively so that number one demonstrates the lowest
intensity and number four indicates the highest. The
patients were randomly allocated to receive one of four
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medications: placebo, chlorpromazine, fluphenazine, or
thioridazine. Because previous studies illustrated similar
effects for the three antipsychotic drug groups, they
were assigned as one group (drug) in the analysis [21].
The covariates used in the previous analyses were: TX
(=0,1) the type of drug administered to the patient (i.e.
real drug=1, placebo=0), SW is the square root of the
patient's week to referral. The measurement taken place
at weeks 0, 1, 3, and 6 and finally interaction term, i.e.,
SW.TX.
The following latent variable is used to analyze the

data.

Vij = Bo + BiTXij + B2SWij + BsSWi;. TXij + &5
i=1,..,n; 3.1)

where f = (o, P1, B2, F3) denotes the covariate
coefficients, n; = 4 and, the distribution of the model
error is the MFSN. The skewness matrix A, of the
model error is assumed to be diagonal with values
S1e = Og¢ = 03, = 84 = 6,. VC matrix D can take
different structures. Furthermore, it is assumed that
62 =1 for scale normalization in using EC, TOEP,
TOEP2, and AR(1) structures. Many VC structures, e.g.
TOEP, TOEP2, and AR(1) have merely been employed
when the measurements are considered at equal time
intervals. The VC structures TOEP, TOEP2 and AR(1)
are altered to be suitable for non-equal time intervals by
omitting the rows and columns of the corresponding
time intervals which have not observations in the data.
two MP (g'~'N,(0,D)) and MFSP
(e]-”'lvdSNq (0,D,A,)) models are fitted to the data with
different structures for the VC matrix D. The values of
the Akaike Information Criterion (AIC) which is a
criterion of the good modeling measure regarding
different types of the VC structures for models MP and
MFSP are presented in Table 1. Table 1 shows that
MFSP produces a better fit because it has lower AIC for
all VC structures. Thus, the MFSP model is more
reliable than the MP model to analyze this data.

As can see in Table 1, the VC structure AR(1)
produces the lowest AIC (7620.404) among the entire
VC structures in the MFSP model. Therefore, it is the

Finally,

Table 1. The values of AIC goodness for multivariate probit (MP) and multivariate fundamental skew probit (MFSP) models

The structure of the VC matrix Multivariate Probit Multivariate Fundamental Skew Probit
UNI1 9779,810 9320,742
SIM 9086,822 8648,004
TEOP 7801,650 7724,948
TEOP2 8447,410 8123,196
AR(1) 7975,716 7620.404
EC 8102,992 7983,062
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best model among 8 models.

Table 2 presents the results of the model fitting for
VC structures UN1, SIM, TEOP, TEOP2, AR(1) and
EC for the MFSP.

The treatment groups (drug users) are substantially
different from the baseline group in the various type of
VC structures. Significant negative treatment effects
emphasizes that the drugs improve patients’ health as
displayed in Table 2. However, other authors,
employed different types of ordinal longitudinal
models, have shown that the treatment groups were not
considerably different from each other, [21,22].
Furthermore, time covariate is negatively significant
which shows that the placebo group also gets better
over time but the drug groups have a greater
improvement. Table 2 also illustrates that the interaction
of drug by time is statistically significant which
demonstrates that patients with the highest disease
severity show the greatest recovery over time by
employing the drug. Furthermore, it can be noticed from
Table 2 that the estimation of the threshold levels
parameters a; and a, are 1.582 and 2.714, respectively.
This invokes that the drug effects are different for the
intensity levels of the schizophrenic disease.

Thus, in schizophrenia treatment, our results support
prescribing appropriate drugs; since they decrease the
intensity of disease with the passage of time. Also,
Table 2 shows in AR(1), a high significant correlation
between sequential responses over time (p;;, = 0.897)
which decreases as time increases.

According to results in Table 2, §, = —1.081 which
is statistically significant. This demonstrates that the
density function of the model error is negatively

skewed. Furthermore, in the AR(1) model, the
maximum likelihood estimate (MLE) of o, is highly

statistically significant (o, = 1.624) which shows that

the MFSP model works reasonably well in fitting the
proposed model to the data

Simulation

The simulation method is used to investigate the
properties of the proposed MLE model parameters. We
generate K = 300 samples with sizes 200, 300 and 500
from the MFSP model as follows. At first, a latent
variable Y* is generated as:
Vi = X1ijB1 + X248z + Xuij- X2ijB5 + &

i=1.,n (4.1)

where the covariates X; and X, are generated
independently from the standard normal and binary
distribution with success probability 0.6 respectively
and n; =4. The covariates coefficients, B, =1,
B1=1, B, =05 and f; =0.1 are considered. The
errors & = (51 jr€2js E3js s4j) are generated from a
multivariate fundamental skew normal distribution with
mean zero. Also, AR(1) structure is employed for VC
matrix D with the variance and correlation coefficient
62=2 and p, =0.5 respectively and a diagonal
skewness matrix with values: ;. = 8,, = 83, = 8, =
—0.4. At the end the ordinal response variable Y is
achieved from the latent variable Y*, defend in equation
(4.1), by applying the threshold levels: a; =0, as a
fixed constant value for identifiability, a, = 2 and
a; = 4. The estimate of parameters are obtained by

Table 2. Results of parameter estimates for various types of VC structures of the MFSP model

Parameter Estimates (Standard Deviation)

Parameters
UNI1 SIM TEOP2

Bo 1.696(0.048)  2.200(0.007)  2.498(0.022)
81 -0.075(0.025) -0.199(0.013) -0.167(0.007)
Bz -0.624(0.010) -1.231(0.011) -1.122(0.021)
[33 0.067(0.050)  0.174(0.013)  0.136(0.007)
a 1.140(0.040)  1.873(0.002)  1.737(0.002)
a, 1.870(0.051)  3.251(0.009)  2.966(0.011)
P1e - - 0.799(0.006)
Pz2e - - -

P3e - - -

Pse - - -

Pee - - -

56 -0.521(0.027) -2.170(0.014) -1.359(0.012)
Sigmal 0.466(0.053)  1.170(0.012)  1.628(0.007)
Sigma?2 0.649(0.020) - -
Sigma3 0.762(0.025) - -
Sigma4 1.098(0.035) - -

TEOP AR (1) EC
2.512(0.017)  2.207(0.019)  2.624(0.007)
-0.051(0.010)  -0.037(0.003)  -0.105(0.004)
-1.019(0.006)  -0.954(0.014) -1.101(0.010)
0.109(0.007)  0.094(0.010)  0.112(0.019)

1.671(0.010)
2.879(0.012)
0.755(0.008)
0.812(0.004)
0.675(0.026)
0.573(0.008)
0.232(0.014)
-0.961(0.007)

1.822(0.007)

1.582(0.009)
2.714(0.007)
0.897(0.019)

-1.081(0.016)
1.624(0.014)

1.783(0.011)
3.121(0.016)
0.688(0.019)

-1.247(0.012)
1.964(0.011)
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Samples n=200 n=300 n=500

Parameter Bias  Ratio of bias MSE Bias Ratio of bias MSE Bias Ratio of bias MSE
Bo 0.017 0.017 0.027 0.002 0.002 0.013 0.002 0.002 0.012
B1 0.057 0.057 0.034 0.013 0.013 0.014 0.003 0.003 0.010
B, 0.026 0.051 0.035 0.020 0.039 0.019  -0.003 -0.006 0.007
B, 0.020 0.195 0.022 -0.012 -0.116 0.019 -0.011 0.114 0.017
a; 0.005 0.002 0.002 0.004 0.002 0.001 0.002 0.001 0.001
a, 0.003 0.001 0.002 0.002 0.001 0.001  -0.001 -0.0001 0.001
Pe 0.022 0.043 0.023 0.016 0.032 0.013  -0.006 -0.012 0.010
8¢ 0.026 -0.065 0.026 0.007 -0.017 0.019  0.002 -0.006 0.011
o -0.014 -0.002 0.007 0.007 0.004 0.005  -0.001 -0.001 0.003

(<]

utilizing the maximum likelihood method and R
software.
We use measures: the mean-squared error, MSE; =

%Zk(ﬁ]k - ‘8]')2, thf bias, B] = %Zk(ﬁ]k - B]) and the

ratio of bias, R; = % to evaluate parameter estimation
j

where n = 200, 300 or 500 and Bjk represents the
estimated value of f; in the kth simulated data.
Therefore, two measures, MSE; and B; respectively deal

with the precision and accuracy of ; respectively.

According to the results in Table 3, the bias and
mean-squared error (MSE) of the MLE of entire
parameters reduce when the sample size increases from
200 to 500. However, as can be seen that the magnitude
of the declining rate is not the same for all parameters
estimates. However, the simulation results indicate that
the MLE’s parameters are efficient and asymptotically
unbiased.

Discussion

The aim of this paper is using the multivariate
fundamental skew probit (MFSP) model to obtain
parameters estimates of the ordinal longitudinal models
where different types of VC structures are assumed. The
maximum likelihood method is employed to obtain the
parameters estimate. The maximum likelihood function
was found to have a closed form whenever the MFSP
model is used.

We recognized that assuming AR(1) structure for the
VC matrix yields the least value of the goodness-of-fit
criterion AIC. Therefore, it provides the best results
compared to other types of VC structures in the analysis
of the real data. We also obtained that using the MFSP
model provided the least value of AIC and enhance the
model fitting noticeably.

Our analysis of the real data demonstrated that the
patients who employed drug substantially improved
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over time. Finally, the results of simulation show
efficiency and asymptotically unbiasedness of the
MLE’s parameters of the MFSP model.
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