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Abstract  
The precipitation of asphaltene, one of the components of oil, in reservoirs, transfer 

lines, and equipment causes many problems. Accordingly, researchers are 

prompted to determine the factors affecting asphaltene precipitation and methods 

of avoiding its formation. Predicting precipitation and examining the simultaneous 

effect of operational variables on asphaltene precipitation are difficult because of 

the multiplicity, complexity, and nonlinearity of factors affecting asphaltene 

precipitation and the high cost of experiments. This study combined the use of 

response surface methodology and the artificial neural network to predict 

asphaltene precipitation under the mutual effects of various parameters. The values 

of such parameters were determined to reach the minimum amount of precipitation. 

We initially selected the appropriate algorithm for predicting asphaltene 

precipitation from the two neural network algorithms. The outputs of designed 

experiments in response surface methodology were determined using the optimum 

algorithm of the neural network. The effects of variables on asphaltene precipitation 

were then investigated by response surface methodology. According to the results, 

the minimum precipitation of asphaltene achieved at zero mole percent of injected 

nitrogen and methane, 10–20 mole percent of injected carbon dioxide, asphaltene 

content of 0.46, the resin content of 16.8 weight percent, the pressure of 333 psi, 

and temperature of 180 ℉. Results showed that despite the complexities of 

asphaltene precipitation, the combination of artificial neural network with response 

surface methodology can be successfully used to investigate the mutual effect of 

different variables affecting asphaltene precipitation. 
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Introduction 

Oil is a compound comprising multiple hydrocarbons with different molecular weights. The 

identification of all these compounds is impossible, so oil hydrocarbons are instead classified 

into the four main groups of asphaltene, resin, aromatic, and saturate. Asphaltene is the heaviest 

and most polarized component of crude oil. This compound is soluble in aromatics such as 

benzene and toluene and insoluble in light n-alkanes such as n-heptane and n-pentane [1-4]. 

Studies show that asphaltene exists in oil in colloidal form and that the asphaltene solubility in 

oil is dependent on oil polarity and components [5,6]. Changes in thermodynamic properties 

such as pressure and temperature are also effective for asphaltene solubility. Any change in the 

oil thermodynamic equilibrium affects asphaltene solubility and leads to asphaltene 

precipitation [7].  
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Asphaltene precipitation in reservoir, transfer, and refinery equipment causes multiple 

problems such as a decrease in permeability, change of tank wettability, and clog of transfer 

lines. Multiple experimental studies were conducted to investigate the effect of different factors 

on asphaltene precipitation. The effects of pressure and temperature and the injection of 

nitrogen, methane, and Carbone dioxide gases on asphaltene precipitation are investigated [8-

13]. Some scientists claim that the amount of asphaltene precipitation is directly proportional 

to its structure, whereas some others emphasize on the effect of resins on asphaltene 

precipitation [5,14,15]. 

The accurate determination of the effect of each effective parameter on the precipitation 

under reservoir conditions requires multiple experiments. The execution of asphaltene 

precipitation determination experiments in high temperature and pressure encounters various 

problems. These problems include excessive time consumption and high costs of experiments 

and equipment. The amount of problems increases when asphaltene precipitation in porous 

media is considered. Many studies used mathematical modeling to investigate the precipitation 

mechanism and to determine the effective parameters for asphaltene precipitation considering 

the restriction of performing these experiments. Various models are available to predict 

asphaltene precipitation. Some researchers used state equations such as Peng–Robinson (PR) 

and Soave–Redlich–Kwong (SRK) [16,17]. Examples of these models include polymeric 

solution theory, association theory, and molecular thermodynamics [18-20]. The common 

models in the prediction of asphaltene precipitation cause error and limitation because the 

calculations in these models possess multiple input parameters that require many experiments. 

Therefore, the lack of experimental data to predict input parameters leads to erroneous results. 

Despite all these drawbacks, these models have been used for many years to study asphaltene 

precipitation [21,22]. Thus, researchers aim to determine a model, which can predict the results 

of asphaltene precipitation with maximum accuracy. The prediction of precipitation is nonlinear 

and ambiguous because of the multiplicity and complexity of the effective parameters on the 

asphaltene precipitation phenomenon [23].  

The artificial neural network is a useful method for solving nonlinear engineering problems 

[24]. The artificial neural network is a computer model that simulates complex engineering 

problems in a manner inspired by the biological central neural network. This model is composed 

of an input layer, one or more hidden layers, and an output layer with input and output elements 

that are connected to one another in a nonlinear form by some constants [25,26]. 

Central Composite Design (CCD) is a useful optimization method. In the traditional 

optimization methods, optimization is performed by changing a variable while the other 

variables remain constant. However, in CCD, the effect of variable interaction is considered in 

the optimization [27]. The system behavior can be predicted under various parameters and the 

most effective parameters can be determined by using the response surface methodology [25]. 

Thus, this method can investigate the behavior of the asphaltene precipitation under the 

simultaneous effects of different parameters and can determine the most effective parameters 

for asphaltene precipitation. Some researchers used the artificial neural network to model the 

asphaltene precipitation. Ahmadi et al. [28] studied the effect of temperature and pressure on 

asphaltene precipitation using the artificial neural network. Abedini et al. [29] investigated the 

effect of temperature on asphaltene precipitation in the artificial neural network. Khamechi et 

al. [30] studied the effect of carbon dioxide injection on the asphaltene precipitation onset and 

bulb pressure using neural network model. Ashoori et al. [31] compared the artificial neural 

network and empirical equations to predict asphaltene precipitation of dead oil under the effect 

of temperature and solvent ratio. Results showed that the neural network model can accurately 

predict asphaltene precipitation. The artificial neural network has been utilized for asphaltene 

precipitation modeling of dead oil in most of these studies. However, the effect of all parameters 

was not investigated due to the lack of input experimental data.  
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Experimental studies showed that in actual reservoir conditions, various variables such as 

temperature, pressure, amount of asphaltene and resin, saturation pressure, and American 

Petroleum Institute (API) gravity affect asphaltene precipitation [32-35]. Previous studies 

investigated the effect of limited parameters, and the simultaneous effect of operational 

variables on asphaltene precipitation was not determined [32-35]. In this study, the effect of 

temperature, pressure, saturation pressure at reservoir temperature, API gravity of stock tank 

oil, asphaltene, and resin composition, and the amount of injected nitrogen, methane, and 

Carbone dioxide was investigated, simultaneously. However, it is very difficult to investigate 

the simultaneous effect of variables on asphaltene precipitation by performing multiple 

experiments; it requires much time and cost. Though, ANN is a flexible mathematical structure 

which is capable to recognize complex nonlinear relationships between input and output data 

sets, the calibration model based on ANN is more unstable. On the other hand, the trained 

network model is not applicable to the optimization of a different number of experimental data. 

In order to overcome this problem, it seems that the combination of ANN and CCD is the 

appropriate method which can be considered to identify relationships between the inputs, 

operating condition, and outputs, asphaltene precipitation. Therefore, this article represents a 

new calculation approach for the estimation of asphaltene precipitation using combined ANN 

and CCD methods. 

This work represents a novel way to approximate the asphaltene precipitation using the 

combination of CCD and ANN techniques. The primary use of this method is to reliably 

guarantee the dependence between the process factors and the outcome of the experiments, 

asphaltene precipitation. This methodology for predicting asphaltene precipitation has not been 

reported yet. Also, there is no study published in the literature, focuses on the prediction of 

asphaltene precipitation using this method to investigate the effect of methane, nitrogen, and 

carbon dioxide injection, and PVT properties, simultaneously. The last novelty of this work is 

using more than 100 experiments with an extensive range of changes that were introduced into 

ANN, to train the network and generate the model. Well training depends on the number of 

input experiments. More input experiments involved, the better the capability to approximate a 

real system. 

In this research, firstly, more than 100 experimental data derived from previous studies were 

used to investigate the effect of different parameters on asphaltene precipitation, which was 

used for training the neural network model [32-40]. A complex nonlinear relation between nine 

operational parameters and the amount of asphaltene precipitation is established, and an 

optimum model with the least error is determined to predict asphaltene precipitation by using 

artificial neural network.  

Finally, more than 500 precipitation static experiments were designed, considering the effect 

of nine effective operational parameters. Subsequently, the simultaneous effect of effective 

parameters on asphaltene precipitation was investigated by using ANN and CCD methods. 

Research Method 

Data Collection 

The importance of asphaltene precipitation and its instability under different conditions led to 

the execution of many experimental studies under various operational conditions to identify the 

effective parameters of precipitation. The experimental data collection covers all the effective 

parameters and forms the input data bank. Data are analyzed in the data collection and 

summarized to reach the highest efficiency and the least cost. The data bank includes more than 

100 PVT experiments obtained from previous studies [32-40]. The data bank is used as the 

input for the artificial neural network. 
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Input Effective Parameters 

The results of the studies showed that under static conditions, the asphaltene precipitation 

amount is dependent on the temperature, pressure, and composition [32-40]. The type of crude 

oil and injected gas into the oil during the enhanced oil recovery processes also affects the 

asphaltene precipitation amount [32-40]. Thus, the most important and effective parameters are 

temperature, pressure, saturation pressure at reservoir temperature, API gravity of stock tank 

oil, asphaltene and resin composition, and the amount of injected nitrogen, methane, and 

Carbon dioxide under static conditions. These parameters are the input data for the artificial 

neural network. Table 1 shows the range of the input parameters for the artificial neural 

network. Table 2 represents the experiments reported in the literature which were used as input 

data. 

 

Structure of The Artificial Neural Network 

The artificial neural network is a technique used to create a nonlinear relation between plenty 

of input and output data. In mathematical modeling, the input parameters adapt to the specified 

output values using different algorithms. In the artificial neural network, this aim is 

accomplished by learning from some network-introduced input/output data. Then, the neural 

network uses the last data learned pattern to predict the desired output.  

The most common model of the neural network is the multilayer feed-forward neural 

network [41,42]. This model has wide applications in computer science and oil engineering. In 

this type of neural network, neurons are located in input, hidden, and output layers. Each neuron 

in the hidden and output layers receives input data from  neurons in its previous layer. The effect 

of each relation in the input, hidden, and output layers on the prediction of the neural network 

is determined by weights and biases, which are referred to as the neural network parameters 

[28,30,43]. The optimum predictive algorithm in the neural network depends on the algorithm, 

number of layers, number of neurons in each layer, and neural network parameters [25]. 

The data are entered into the neural network software, Neural Power version 2.5 (CPC-X 

software, USA). Different algorithms of the neural network were investigated to identify the 

best prediction of the test and train data. The artificial neural network model used was feed-

forward with one hidden layer. Two algorithms, namely, quick propagation (QP) and batch 

backpropagation (BBP) were considered to determine the optimum algorithm for asphaltene 

precipitation prediction. The trial and error method was used to identify the optimal number of 

neurons in the hidden layer. The number of neurons varies in the range of 6 to 10. 

The best algorithm and the optimal number of neurons are selected based on the least error 

between the predicted value of asphaltene precipitation and the experimental results. Root Mean 

Square Error (RMSE) and the coefficient of determination (R2) are the parameters used to 

determine the prediction capability of the neural network defined as follows [25]: 

𝑅𝑀𝑆𝐸 = ∑
(𝑦𝑝 − 𝑦𝑒)2

𝑁

𝑁

𝑖=1

 (1) 

𝑅2 = 1 −
∑ (𝑦𝑝 − 𝑦𝑒)2𝑁

𝑖=1

∑ (𝑦𝑝 − 𝑦𝑎)2𝑁
𝑖=1

 (2) 

N is the number of data, 𝑦𝑒 is the amount of asphaltene precipitation under the experimental 

conditions, 𝑦𝑝 is the predicted amount of precipitation by the neural network model, and 𝑦𝑎 is 

the mean value of the asphaltene precipitation under experimental conditions. A neural network 

model is acceptable if the RMSE parameter is as small as possible and if R2 approaches unity. 
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Response Surface Methodology Structure 

Studies showed that the asphaltene precipitation mechanism is extremely complex, and many 

parameters such as pressure, temperature, and composition affect precipitation because crude 

oil comprises many components with unknown behavior. The changes in each parameter can 

influence the efficacy of other parameters on the asphaltene precipitation, according to the 

multiplicity of effective parameters on the asphaltene precipitation and the complexity of the 

mechanism. The simultaneous effect of all factors on the asphaltene precipitation cannot be 

investigated experimentally. The best solution under such conditions is the use of mathematical 

models. Artificial neural network cannot provide the model equation for the asphaltene 

precipitation behavior in terms of effective parameters despite its success in predicting the 

asphaltene precipitation. The artificial neural network acts similar to the human brain and 

represents the response based on the learning received from data.  

The response surface method is a combination of statistical and mathematical models and is 

a branch of the experimental design. The response surface methodology can (i) investigate the 

effect of independent variables and the interaction between the variables on the response, (ii) 

predict the response and determine the important level of variables, (iii) create the quadratic 

regression model between the variables and response, and (iv) determine the optimal parameters 

to obtain the maximum or minimum response [25,27,44]. The response variable (asphaltene 

precipitation, 𝑌) is related to the effective parameters (temperature, pressure, the composition 

of asphaltene, and resin) by a second-order polynomial equation [25,27,44]. The model 

equation is as follows [45]: 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑋𝑖
2

𝑘

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗

𝑘

𝑖<𝑗=1

𝑋𝑖𝑋𝑗
 (3) 

In this relation, 𝛽0 is a constant, 𝛽𝑖 is a linear constant, 𝛽𝑖𝑖 is a second-order constant, and 

𝛽𝑖𝑗 is the cross product constant. 𝑋𝑖 and 𝑋𝑗 are the independent variables such as temperature 

(𝑋1), pressure (𝑋2), the composition of asphaltene (𝑋3), and resin (𝑋4). The effect of the 

variables (temperature, pressure, the composition of asphaltene, and resin) and the interaction 

between them on the response variable (asphaltene precipitation) was investigated using Expert 

Design (7.1.6 stat-Ease Inc., Minneapolis, MN, USA). In addition, the operational conditions 

that result in the minimum amount of precipitation were determined using the response surface 

method.  

Result and Discussion 

Optimal Neural Network Model 

The applied neural network model includes nine inputs, one hidden layer, and an output. The 

input layer includes temperature, pressure, oil saturation pressure at reservoir temperature, oil 

API gravity, the weight percentage of asphaltene and resin in oil, the molar percentage of 

injected methane, carbon dioxide, and nitrogen. The output layer includes a weight percentage 

of asphaltene precipitation. The network input parameters were divided into three sections, 

namely, train, test, and validation data. If the rules of the neural network model are excessively 

adapted in the train data, then these rules may not fit the remaining data. To avoid this 

phenomenon, the model rules are evaluated and controlled in the test stage. In this stage, if the 

error exceeds a limit, then the data training is completed. 
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Table 1. Range of input parameters in the artificial neural network 

Table 2.  The experiments reported in the references used as input data. 

 Reported Asphaltene Precipitation Experiments 

Pressure 

Change 

Temperature 

change 

Crude oil 

type analysis 

N2 

Injection 

CO2 

Injection 

CH4 

Injection 

Reference [32-40] [32-40] [34,36,37,40] [36,39] [32,34,38,39] [33,36] 

The two algorithms, namely, QP and BBP were investigated to determine the optimum 

model of the neural network. The number of nodes in the hidden layer is optimized as the 

effective parameter on the model algorithm. The variations in the number of nodes in the hidden 

layer are between 6 and 10. RMSE and R2 parameters are used as criterions to select the best 

algorithm with prediction capability. The capability of the algorithm improves when the RMSE 

parameter is smaller, and R2 parameter approaches unity. Table 3 shows a comparison between 

two BBP and QP algorithms. The number of nodes in the hidden layer in each algorithm shows 

that the BBP algorithm with seven nodes in the hidden layer at the testing and training stages 

has the least amount of RMSE compared with the other models. Furthermore, the amount of 

R2, in this case, is also sufficiently close to one. The results showed that increasing the number 

of nodes in the hidden layer does not lead to error reduction. The optimized model is selected 

with 9-7-1 structure. The optimum model is used to predict the asphaltene precipitation 

experiments that are designed to be fed into the response surface software as inputs. The 

optimized model 9-7-1 has an output (asphaltene precipitation percentage) and nine inputs 

(temperature, pressure, saturation pressure, oil API gravity, the molar composition of the 

injected gas and weight percentage of asphaltene, and resin in the oil). The optimized model 

validation is performed using the data in the training and testing stages. Fig. 1 shows the 

predicted results of the asphaltene precipitation using the neural network model, according to 

the experimental results of asphaltene precipitation. In this figure, the accuracy of the neural 

network model in the prediction of asphaltene precipitation can be observed. The optimized 

model 9-7-1 predicted the precipitation amount of asphaltene under different operational 

conditions with extremely high accuracy (R2 =0.9803).  

Table 3. Comparison of algorithms in the prediction of asphaltene precipitation by artificial neural network 

Testing Training 
MLP Algorithm 

R2 RMSE R2 RMSE 

0.4875 
0.79311 
0.66303 
0.73177 
0.79416 

2.4402 
1.5504 
1.9787 
1.7654 
1.5465 

0.9994 
0.99908 
0.99965 
0.99981 
0.9998 

0.08000 
0.09878 
0.06084 
0.04507 
0.04637 

9-6-1 
9-7-1 
9-8-1 
9-9-1 

9-10-1 

QP 

0.49708 
0.87298 
0.58507 
0.71861 
0.68254 

2.4173 
1.2342 
2.1957 
1.808 
2.208 

0.99909 
0.99989 
0.99986 
0.99981 
0.99921 

0.098284 
0.033706 
0.038160 
0.044566 
0.091696 

9-6-1 
9-7-1 
9-8-1 
9-9-1 

9-10-1 

BBP 

 
P 

[psi] 

T 

[ºF] 

Asphaltene 

[wt (%)] 

Resin 

[wt (%)] 

Injected 

Nitrogen 

[mol (%)] 

Injected 

Carbon 

dioxide 

[mol (%)] 

Injected 

Methane 

[mol (%)] 

API 

Gravity 

Saturation 

Pressure 

[psi] 

Precipitated 

Asphaltene 

[wt (%)] 

Min 333 180 0.46 0.49 0.0 0.0 0.0 19.8 1090 0.25 

Max 8561 255 13.8 16.8 30 54 45 6.33 3464 10.04 
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Fig. 1. Scatter plot for the predicted asphaltene precipitation using artificial neural network against the 

experimental results 

Response Surface Method and Model Fitting 

The effective parameters on the amount of asphaltene precipitation include temperature, 

pressure, saturation pressure of oil under reservoir conditions, API gravity, the weight 

percentage of asphaltene and resin in oil, and molar composition of injected nitrogen, methane, 

and carbon dioxide. To investigate the simultaneous effects of these parameters on the 

asphaltene precipitation using the response surface method, some experiments were designed 

based on the effective parameters. Then, using the optimized model of the artificial neural 

network, the outputs of the designed experiments were determined. The variables have different 

units and ranges; thus, the importance level and their effectiveness on the asphaltene 

precipitation can be compared by expressing the variables in code forms. Therefore, a code is 

dedicated to each variable according to Table 4 to determine the statistical model. A total of 

546 experiments were designed according to the coded variables. All analyses were performed 

using the design expert software. The mutual effects of variables on the amount of asphaltene 

precipitation were represented in the form of a second-order polynomial equation. The 

interacting coefficients are presented in Table 5. The first row of this table shows the 

coefficients of the first-order variables. P-values less than 0.05 indicate the significance of the 

terms. Therefore, the interacting coefficients which have a significant effect on the asphaltene 

precipitation (P-value<0.05) are specified in Table 5.  

The results of the variance analysis are shown in Table 6. P-value indicates the significance 

of the model. If the p-value exceeds 0.1, then the model is insignificant. As shown in Table 6, 

the p-value is less than 0.0001. The F-value of 0.53 shows that the lack of fit is less important 

than the pure error [41]. The sum of square is the sum of square difference of the experimental 

data and the predicted data. Sum of square shows the level of model consistency on each point. 

High values of R2 and low values of the sum of squares result in a better model. 

Desirability analysis 

Desirability analysis is performed in Design-Expert software by using the desirability function. 

Desirability function merges all responses into a single value, which varies in the range of 0 to 

1. Zero value shows the minimum desirability function, and one value shows the maximum 

desirability function. The value of this function increases with the increase in the considered 

response and decreases with the decrease in the related response. Therefore, high desirability 

represents an effective process, and low desirability indicates an ineffective process. The effect 

of independent variables on the desirability of a system can be simultaneously investigated by 

using the desirability function. 
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Table 4. Representative codes of the input variables in the response surface methodology 

Code Variable 

T Temperature [℉] 

P Pressure [psi] 

N Injected N2 [mol%] 

CO Injected CO2 [mol %] 

CH Injected CH4 [mol%] 

SP Saturation pressure [psi] 

AS Asphaltene [wt%] 

RS Resin [wt%] 

API API gravity stock tank oil 

Wt Precipitated asphaltene [wt%] 

The process desirability is the minimization of the amount of asphaltene precipitation with 

respect to the independent variables. Therefore, the minimum amount of asphaltene 

precipitation is determined by optimizing the independent parameters.  

Case 1 

The first case aims to investigate the effect of pressure, temperature, API gravity of stock tank 

oil, saturation pressure at reservoir temperature, and weight percentage of resin and asphaltene 

in the oil on the desirability function. The desirability contour plots that change in the 

determined range of the experimental data are shown in Figs. 2 to 9. Other variables are held 

constant at the medium value of the variation interval. The number of effective independent 

variables is equal to nine; thus, the number of plots that simultaneously investigates the effect 

of parameters on desirability is equal to 29. The analysis of all plots is not possible in this article. 

Thus some graphs are investigated and the results of other graphs are discussed. Fig. 2, shows 

the simultaneous effect of temperature and pressure on desirability. At constant temperature 

and pressures lower than the saturation pressure, decreasing the pressure will increase oil 

density and decrease the amount of asphaltene precipitation. The amount of precipitation is 

decreased with decreased pressure and increased desirability. Increasing temperature increases 

the amount of precipitation and decreases desirability value. Resin is the stabilizer component 

of asphaltene in the oil. It avoids precipitation by its absorbance on the asphaltene surface and 

polar interactions. Thus, increasing the temperature decreases the interaction between 

asphaltene and resin and increases asphaltene precipitation. The decrease in oil density with an 

increase in temperature is another reason for this behavior. Thus, the maximum desirability is 

obtained at the minimum pressure, which is equal to 333 psi, and at the minimum temperature, 

which is equal to 180 °F. 

 
Fig. 2. Surface plots and contour, representing the effects of temperature and pressure on desirability 
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Table 5. Interacting coefficients of variables in the second-order polynomial 

API RS AS SP CH CO N P T  

0.500* -0.320* 0.140 0.052* 0.860 0.280* 0.290 3.240* -0.390*  

-0.074E-5 6.048E-4* 4.383E-3 -3.463E-3 0.130 -0.045 0.0770* -0.170* -0.063 T 

-9.740E-6 -0.047* 0.056* -0.043* 1.150* 0.180 0.400* -0.170 - P 

+8.185E-4* -0.089 -0.220 -0.060 -0.400 4.602E-3 -0.540 - - N 

-9.638E-05 -0.025* -2.013E-3 9.040E-3 -0.110 0.180 - - - CO 

3.817E-4 0.150* -0.095 9.799E-4 -0.550 - - - - CH 

8.184E-8 2.604E-3 0.018 0.120 - - - - - SP 

-1.385E-3 -0.047 -0.12 - - - - - - AS 

-4.535E-4 -0.086 - - - - - - - RS 

-9.274E-3 - - - - - - - - API 

* Interacting parameters with a significant effect on asphaltene precipitation 

Table 6. Analysis of variance table for the asphaltene precipitation prediction 

R-Squared Status P-Value F-Value 
Degree of 

freedom 

Mean 

square 

Sum of 

squares 
Source 

0.8551 Significant <0.0001 67.2 44 160.02 7040.87 Model 

- - - - 501 2.38 1193 Residual 

- - - - 228 1.6 365 Lack of fit 

- Insignificant 1.00 0.53 273 3.03 827 Pure error 

- - - - 545 - 8233.93 Total 

 

 
Fig. 3. Surface plots and contour, representing the effects of (a) pressure and API gravity and (b) temperature 

and API gravity on desirability 

All plots, which include pressure and another independent variable, have similar behavior to 

that in Fig. 2. In all these plots, desirability occurs at the minimum pressure. In Fig. 3a, the plot 

of desirability variations is shown against the API gravity of stock tank oil and pressure. The 

maximum desirability occurs at the minimum pressure. When API gravity increases, the 

desirability value decreases at first and then increases. Thus, the maximum desirability is 



162   Hosseini-Dastgerdi and Jafarzadeh-Ghoushchi 

 

achieved at API, 33.6 and 19.8. As shown in Fig. 3b, the maximum desirability occurs at API 

grades of 19.8 and 33.6 and at a temperature of 180 °F.  

Fig. 4a depicts the desirability variation according to the oil saturation pressure at reservoir 

conditions and pressure. Fig. 4b shows the effect of saturation pressure at reservoir conditions 

and temperature on desirability. Fig. 4 indicates that desirability is much more sensitive to the 

pressure and temperature than saturation pressure at reservoir conditions. 

 
Fig. 4. Surface and contour plots, representing the effects of (a) pressure and saturation pressure and (b) 

temperature and saturation pressure on desirability 

Fig. 5 shows the effect of temperature and resin weight percent in the oil on desirability. As 

expected, the maximum desirability is achieved at the maximum amount of resin, i.e., 16.8 

weight percent. Resin, which is absorbed on the surface of asphaltene, is the stabilizer for 

asphaltene. Thus, increasing the resin concentration improves the stability of asphaltene and 

decreases the amount of precipitation. To reach the maximum desirability, the operating 

pressure should be 333 psi. Fig. 5b indicates that the minimum amount of asphaltene 

precipitation is obtained at the minimum temperature. The investigation on the effect of 

asphaltene weight percent and pressure on desirability shows that the asphaltene content of the 

oil insignificantly affects the precipitation of asphaltene. 

Fig. 6 shows the effect of resin and asphaltene weight percent on the desirability. The 

maximum desirability is achieved at asphaltene content, 0.46 and resin content, 16.8 weight 

percent. For a specified amount of asphaltene content, the asphaltene stability increases with an 

increase in the resin content of the oil. For less amount of asphaltene, the available amount of 

resin for asphaltene stability is increased. Thus, the maximum desirability is obtained at the 

highest level of resin content to asphaltene content ratio. 

Case 2 

In this section, the effect of methane, carbon dioxide, and nitrogen injection on the desirability 

is investigated. In all plots, other variables are considered constant at the central level of value 

in their change interval. 
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Fig. 7 shows the desirability variation as a function of the molar percent of the injected 

nitrogen and methane gases. The maximum desirability is obtained at zero percent of injected 

nitrogen and methane. The addition of gas increases its solubility in oil, decreases the solubility 

parameter of asphaltene, and increases asphaltene precipitation. At high molar percentages of 

injected gas, the gas is not dissolved in oil; light compounds are transferred from liquid to gas 

phase. Thus, the liquid enriches with heavy components, its density increases, and asphaltene 

precipitation reduces. The minimum point in the plot is related to the critical concentration in 

the p-x phase diagram in the oil and gas injection system.  

Fig. 8 shows the effect of injected nitrogen and carbon dioxide to the oil on the desirability. 

Results indicate that by increasing the mole percent of injected carbon dioxide, desirability 

initially increases and then decreases. This trend is related to the high density of carbon dioxide 

at the operating pressure and temperature. With increased mole percent of injected gas, the oil 

density and oil solubility parameter increase and asphaltene precipitation decreases. Maximum 

desirability depends on the gas critical composition in the p-x phase diagram. Thus, the 

maximum desirability is achieved at zero mole percent of injected nitrogen and 10–20 mole 

percent of injected carbon dioxide. 

 
Fig. 5. Three dimensional and contour plots of the effect of (a) pressure and (b) temperature and resin weight 

percent in the oil on the desirability 

 
Fig. 6. Three dimensional and contour plots of asphaltene and resin effect on the desirability 
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Fig. 9 shows the desirability variation as a function of molar percent of the injected carbon 

dioxide and methane. The desirability change in Fig. 9 is confirmed by the results obtained 

from Figs. 7 and 8.  

 Fig. 9 indicates that the maximum desirability is obtained at 10–20 mole percent of injected 

carbon dioxide without nitrogen injection.  

The results of this study indicated that oil characteristics and operating parameters 

especially, pressure, temperature, and injected gas composition can affect the asphaltene 

desirability. To determine the effect of live oil composition on the asphaltene desirability, 

further investigations are required. 

 
Fig. 7. Three dimensional and contour plots of the effect of nitrogen and methane molar percentage on the 

desirability 

 
Fig. 8. Three dimensional and contour plots of the effect of nitrogen and carbon dioxide on the desirability 

 
Fig. 9. Three-dimensional and contour plots of the effect of carbon dioxide and methane molar percentage on the 

desirability 
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Conclusion 

The simultaneous effects of operative parameters on the asphaltene precipitation are 

investigated using the combination of artificial neural network and response surface 

methodology. Batch backpropagation with the structure of 9-7-1 was selected as the optimized 

algorithm with reasonable prediction accuracy for asphaltene precipitation. The response 

surface methodology was applied to investigate the simultaneous effects of variables on 

asphaltene desirability. The maximum desirability was obtained at temperature 180 °F, pressure 

333 psi, asphaltene content, 0.46 weight percent, resin content, 16.8 weight percent, and API 

grades of 19.8 and 33.6. A comparison of variables showed the significant effect of pressure 

and temperature on asphaltene precipitation. The minimum asphaltene precipitation was 

achieved at the highest level of resin content to asphaltene content ratio.  Results indicated that 

the maximum desirability depends on the gas critical composition in the p-x phase diagram. 

Accordingly, the maximum desirability occurred at zero mole percent of injected nitrogen and 

methane and 10–20 mole percent of injected carbon dioxide. Results showed that the 

combination of artificial neural network and response surface methodology can appropriately 

investigate the simultaneous effects of different parameters on asphaltene precipitation and 

predict the optimum condition to reach minimum asphaltene precipitation. 
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