تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,270 |
تعداد دریافت فایل اصل مقاله | 97,206,807 |
Characterisation of biocomposite film made of kefiran and carboxymethyl cellulose (CMC) | ||
Journal of Food and Bioprocess Engineering | ||
مقاله 10، دوره 2، شماره 1، شهریور 2019، صفحه 61-70 اصل مقاله (677.29 K) | ||
نوع مقاله: Original research | ||
نویسندگان | ||
Ali Akbar Motedayen1؛ Faramarz Khodaiyan* 2؛ Esmail Atai Salehi1؛ Seyed Saeid Hosseini2 | ||
1Department of Food Science and Technology, Quchan Branch, Islamic Azad University, P.O. Box 9479176135, Quchan, Iran | ||
2Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran | ||
چکیده | ||
This study was carried out to characterize the physical, mechanical and barrier properties of kefiran-carboxy methyl cellulose (CMC) biocomposite films in function with CMC content. Films were prepared by combining these two biopolymers and adding glycerol as plasticizer. Film-forming solutions of different ratios of kefiran to CMC were cast at room temperature. Increasing CMC content from 0 to 50 % (v/v) increased the tensile strength and extensibility of the composite films; however, with further CMC addition these mechanical properties decreased. The water-vapor permeability (WVP) of the films first decreased and then increased with CMC addition. The microstructure of the films was observed by scanning electron microscopy and atomic-force microscopy. The morphology study of the films showed rougher surfaces with increasing CMC amounts. Dynamic mechanical thermal analysis (DMTA) curves showed a single Tg, and addition of CMC at all levels increased the glass-transition temperature of films. These results indicated that these two film-forming components were compatible, and that an interaction existed between them. | ||
کلیدواژهها | ||
Kefiran؛ Carboxy methyl cellulose؛ Composite films؛ Mechanical properties؛ Water-vapor permeability | ||
مراجع | ||
Aklonis, J. J., & Macknight, W. J. (1983). Introduction to polymer viscoelasticity 2 edition. Jonn Wiley&Sons., New York.
Almasi, H., Ghanbarzadeh, B., & Entezami, A. A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules, 46(1), 1-5.
Arvanitoyannis, I., & Biliaderis, C. G. (1999). Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate polymers, 38(1), 47-58.
ASTM (1993) Standard practice for conditioning plastics and electrical insulating materials for testing: D618-61 (Reproved 1990) Annual Book of American Standard Testing Methods Vol. 8.01 Philadelphia: ASTM, 146-148.
ASTM (1995) Standard test methods for water vapor transmission of material, E 96-95. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Materials.
ASTM (2001) Standard test method for tensile properties of thin plastic sheeting. Standard D882, Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
Bergo, P., Sobral, P. J. A., & Prison, J. M. (2010). Effect of glycerol on physical properties of cassava starch films. Journal of Food Processing and Preservation, 34, 401-410.
Bertuzzi, M. A., Vidaurre, E. C., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of food engineering, 80(3), 972-978.
Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and bioprocess technology, 4(6), 849-875.
Chen, P., Yu, L., Kealy, T., Chen, L., & Li, L. (2007). Phase transition of starch granules observed by microscope under shearless and shear conditions. Carbohydrate Polymers, 68(3), 495-501.
Chick, J., & Ustunol, Z. (1998). Mechanical and barrier properties of lactic acid and rennet precipitated casein‐based edible films. Journal of food science, 63(6), 1024-1027.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683.
Famá, L., Gerschenson, L., & Goyanes, S. (2009). Starch-vegetable fibre composites to protect food products. Carbohydrate polymers, 75(2), 230-235.
Freddi, G., Romanò, M., Massafra, M. R., & Tsukada, M. (1995). Silk fibroin/cellulose blend films: preparation, structure, and physical properties. Journal of Applied Polymer Science, 56(12), 1537-1545.
Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of food engineering, 21(4), 395-409.
Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative food science & emerging technologies, 11(4), 697-702.
Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011). Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127(4), 1496-1502.
Ghasemlou, M., Khodaiyan, F., & Gharibzahedi, S. M. T. (2012a). Enhanced production of Iranian kefir grain biomass by optimization and empirical modeling of fermentation conditions using response surface methodology. Food and bioprocess technology, 5(8), 3230-3235.
Ghasemlou, M., Khodaiyan, F., Jahanbin, K., Gharibzahedi, S. M. T., & Taheri, S. (2012b). Structural investigation and response surface optimisation for improvement of kefiran production yield from a low-cost culture medium. Food chemistry, 133(2), 383-389.
Gontard, N., Duchez, C., CUQ, J. L., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International journal of food science & technology, 29(1), 39-50.
Hattori, K., Abe, E., Yoshida, T., & Cuculo, J. A. (2004). New solvents for cellulose. II. Ethylenediamine/thiocyanate salt system. Polymer journal, 36(2), 123.
Kazazi, H., Khodaiyan, F., Rezaei, K., Pishvaei, M., Mohammadifar, M. A., & Moieni, S. (2017). Rheology and microstructure of kefiran and whey protein mixed gels. Journal of food science and technology, 54(5), 1168-1174.
Keller, J. D. (1986). Sodium carboxymethylcellulose (CMC). Food hydrocolloids, 3, 45-104.
Khulbe, K. C., Feng, C. Y., & Matsuura, T. (2007). Synthetic polymeric membranes: characterization by atomic force microscopy. Springer Science & Business Media.
Krochta, J. M., & Mulder, J. C. 1997. Edible and biodegradable polymer films: Challenges and Opportunities. Food Technology, 51(2), 61-74.
Laaksonen, T. J., & Roos, Y. H. (2000). Thermal, dynamic-mechanical, and dielectric analysis of phase and state transitions offrozen wheat doughs. Journal of Cereal Science, 32(3), 281-292.
Li, Y., Shoemaker, C. F., Ma, J., Shen, X., & Zhong, F. (2008). Paste viscosity of rice starches of different amylose content and carboxymethylcellulose formed by dry heating and the physical properties of their films. Food Chemistry, 109(3), 616-623.
Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369-375.
Mano, J. F., Reis, R. L., & Cunha, A. M. (2000). Effects of moisture and degradation time over the mechanical dynamical performance of starch‐based biomaterials. Journal of applied polymer science, 78(13), 2345-2357.
Martins, J. T., Bourbon, A. I., Pinheiro, A. C., Souza, B. W., Cerqueira, M. A., & Vicente, A. A. (2013). Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: Physical and antimicrobial properties. Food and Bioprocess Technology, 6(8), 2081-2092.
Mirzakhani, M., Moini, S., & Emam-Djomeh, Z. (2018). Physical and mechanical features investigation of protein-based biodegradable films obtained from trout fish waste. Journal of Food and Bioprocess Engineering, 2(1), 41-54.
Motedayen, A. A., Khodaiyan, F., & Salehi, E. A. (2013). Development and characterisation of composite films made of kefiran and starch. Food chemistry, 136(3-4), 1231-1238.
Murofushi, M., Shiomi, M., & Aibara, K. (1983). Effect of orally administered polysaccharide from kefir grain on delayed-type hypersensitivity and tumor growth in mice. Japanese Journal of Medical Science and Biology, 36(1), 49-53.
Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
Olaru, N., Olaru, L., Stoleriu, A., & Ţi mpu, D. (1998). Carboxymethylcellulose synthesis in organic media containing ethanol and/or acetone. Journal of Applied Polymer Science, 67(3), 481-486.
Pereira, P. M., & Oliveira, J. C. (2000). Measurement of glass transition in native wheat flour by dynamic mechanical thermal analysis (DMTA). International journal of food science & technology, 35(2), 183-192.
Piermaria, J. A., Pinotti, A., Garcia, M. A., & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food hydrocolloids, 23(3), 684-690.
Rad, S. A., & Askari, G. (2018). Optimization of edible alyssum homalocarpum films for physical and mechanical properties. Journal of Food and Bioprocess Engineering, 2(1), 15-24.
Rimada, P. S., & Abraham, A. G. (2001). Polysaccharide production by kefir grains during whey fermentation. Journal of Dairy Research, 68(4), 653-661.
Salleh, E., & Muhamad, I. I. (2007) Mechanical properties and antimicrobial analysis of antimicrobial starch-based film. In International Conference on Advancement of Materials and Nanotechnology, Langkawi, Kedah, 29th May-1st June.
Smith, S. A. (1986). Polyethylene, low density. The Wiley encyclopedia of packaging technology, 514-523.
Sothornvit, R., & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of β-lactoglobulin films. Journal of Food Engineering, 50(3), 149-155.
Su, J. F., Huang, Z., Yuan, X. Y., Wang, X. Y., & Li, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate polymers, 79(1), 145-153.
Joseph, C. S., Prashanth, K. H., Rastogi, N. K., Indiramma, A. R., Reddy, S. Y., & Raghavarao, K. S. M. S. (2011). Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food and Bioprocess Technology, 4(7), 1179-1185. | ||
آمار تعداد مشاهده مقاله: 433 تعداد دریافت فایل اصل مقاله: 480 |