مرزی نوحدانی, مریم, میرزایی اصلی, فرهاد, لیاقت, عبدالمجید. (1398). بررسی میزان جذب آب و عملکرد ذرت علوفه ای در شرایط مختلف تلفیق آب شور و غیر شور. , 9(1), 1-14. doi: 10.22059/jwim.2019.276358.660
مریم مرزی نوحدانی; فرهاد میرزایی اصلی; عبدالمجید لیاقت. "بررسی میزان جذب آب و عملکرد ذرت علوفه ای در شرایط مختلف تلفیق آب شور و غیر شور". , 9, 1, 1398, 1-14. doi: 10.22059/jwim.2019.276358.660
مرزی نوحدانی, مریم, میرزایی اصلی, فرهاد, لیاقت, عبدالمجید. (1398). 'بررسی میزان جذب آب و عملکرد ذرت علوفه ای در شرایط مختلف تلفیق آب شور و غیر شور', , 9(1), pp. 1-14. doi: 10.22059/jwim.2019.276358.660
مرزی نوحدانی, مریم, میرزایی اصلی, فرهاد, لیاقت, عبدالمجید. بررسی میزان جذب آب و عملکرد ذرت علوفه ای در شرایط مختلف تلفیق آب شور و غیر شور. , 1398; 9(1): 1-14. doi: 10.22059/jwim.2019.276358.660
بررسی میزان جذب آب و عملکرد ذرت علوفه ای در شرایط مختلف تلفیق آب شور و غیر شور
1دانشجوی دکتری آبیاری و زهکشی، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران
2دانشیار، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران
3استاد، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران
چکیده
با توجه به مسئله کمبود آب و افزایش تقاضا برای مصرف آب و وجود حجم بالایی از منابع آب شور و لب شور در کنار منابع آب با کیفیت، مدیریت تلفیق آب شور و غیر شور برای تولید محصولات کشاورزی بهعنوان راهکاری برای حفظ آب در شرایط کم-آبی مطرح میباشد. در این مطالعه، تاثیر اعمال تنش شوری موضعی ریشه بر میزان جذب آب و عملکرد ذرت علوفهای بهصورت لایسیمتری و در گلخانه بررسی شد. آزمایش با پنج تیمار آبیاری شامل: 1- بدون تنش شوری یا شاهد (کاربرد آب با کیفیت)، تنش شوری در تمام محیط ریشه، 2- اختلاط آب شور و غیر شور ،3- آبیاری دورهای با آب با کیفیت و شور، تنش شوری در نصف محیط ریشه (با وجود تیغه نازک جداکننده)، 4- شوری موضعی ثابت ریشه و 5- شوری موضعی متناوب ریشه، در سه تکرار در قالب طرح کامل تصادفی انجام شد. نتایج نشان داد که تفاوت در میزان جذب تجمعی آب در سطح آماری 1 درصد، میزان سطح و حجم ریشه در سطح آماری 5 درصد معنیدار بود. در تیمار اختلاط، بیشترین جذب تجمعی آب (333/8 میلیمتر) و بیوماس تر (45/7 تن در هکتار) و کمترین تنش شوری (0/89=Ks) مشاهده شد. در تیمار شوری موضعی متناوب ریشه، کمترین میزان جذب تجمعی (244/0 میلیمتر) و بیوماس تر و خشک (34/9 و 11/3 تن در هکتار) و بیشترین تنش شوری (0/65=Ks) مشاهده شد. با توجه به کمبود منابع آب و پایین آمدن کیفیت آب موجود در شرایط خاص بهجای تنش خشکی، میتوان از تنش شوری با استفاده از منابع آب شور (زهآب تولید شده در پروژهها و طرحهای آبیاری و زهکشی) موجود در کنار منایع آب با کیفیت، استفاده کرد.
1Ph.D. Student in Irrigation and Drainage, Department of Irrigation and Drainage Engineering, College of Agriculture and Natural
Resources, University of Tehran, Karaj
2Associate Professor in Irrigation and Drainage, Department of Irrigation and Drainage Engineering, College of Agriculture and
Natural Resources, University of Tehran
3Associate Professor in Irrigation and Drainage, Department of Irrigation and Drainage Engineering, College of Agriculture and
Natural Resources, University of Tehran
چکیده [English]
Regarding the problem of water scarcity and increasing demand for water and water supply problems and the high volume of saline water sources along with fresh water resources, the management of salt and sweet water for agricultural production as a way to preserve water In conditions of water shortage. In this study was evaluated the effect of Partial Root-Zone Salinity Stress on the water uptake in silage corn in lysimeter in a greenhouse. The experiment with five treatments including: 1-No stress, control; Salinity stress in all root, 2- Mix, 3- Interval, Salinity stress in half of the root (despite the thin blade),4-Fixed Partial Root-zone Salinity-stress, 5- Alternative Partial Root-zone Salinity-sress in three replications in a complete randomized design. The results showed that the cumulative uptake, root area and root volume were significant at 5% level. In the Mix treatment, the highest accumulation (333.8 mm) and wet biomass (45.7 t/ha) and lowest salinity stress coefficient (Ks=0.89) were observed. In the Alternative Partial Root-zone Salinity-sress treatment, the lowest cumulative uptake (244.0 mm) and wet and dry biomass (34. 9 and 11.3 ton/ha) and the highest salinity stress coefficient (KS=0.65) were observed.Due to the lack of water resources and the lowering of the quality of water in certain conditions, instead of drought stress,It is possible to use salinity stresses using saline water sources (Drainage water produced in irrigation and drainage projects and projects) along with quality water sources.
کلیدواژهها [English]
Conjunction Saline and Non saline water, Corn, Cumulative uptake, Fixed and Alternative Partial Irrigation, Lysymeter
مراجع
امداد م ر. و فرداد ح (1379) اثر تنش شوری و رطوبتی بر عملکرد ذرت. علوم کشاورزی ایران. 31(3): 654-641.
حسنپور درویشی ح.، نورالوندی ت. و فرشیدی م (1390) بررسی تأثیر آبیاری با روش تلفیق آب شور و شیرین بر کارایی مصرف آب سورگوم. زراعت و اصلاح نباتات. 7(4):11-1.
حسنلی م.، پارسی نژاد م. و ابراهیمیان ح (1395) تأثیر مدیریت آبیاری با آب شور بر اجزای عملکرد ذرت علوفهای. مجموعه مقالات سومین کنفرانس ملی مدیریت آب و خاک کشاورزی. دانشگاه تهران. کرج.
خالدی، ه (۱۳۸۲) شناخت و بهرهوری آب کشاورزی به منظور تأمین امنیت آبی و غذایی کشور. مجموعه مقالات یازدهمین همایش کمیته ملی آبیاری و زهکشی ایران، تهران، صفحات 657-674.
شهبازی، م. و کیانی، ع (1377) تعیین آستانه تحمل به شوری ارقام تجاری کلزا. پنجمین کنگره علوم زراعت و اصلاح نبات ایران. کرج 287-286.
علیزاده ا (1380) رابطه آب و خاک و گیاه. چاپ دوم. انتشارات دانشگاه امام رضا(ع)، 353 ص.
لیاقت، ع. م. و اسمعیلی، ش (1382) تأثیر تلفیق آب شور و شیرین روی عملکرد و غلظت نمک در منطقه توسعۀ ریشۀ ذرت، مجلۀ علوم کشاورزی و منابع طبیعی، 10(2): 159-170.
همایی م (1381) واکنش گیاهان به شوری. تهران: نشریه شماره 8، کمیته ملی آبیاری و زهکشی ایران.
Adiku S, Lafontaine GK and Bajazet HOT (2001) Patterns of root growth and water uptake of a maize–cowpea mixture grown under greenhouse conditions. Plant and Soil. 235(1): 85-94.
Allen, RG, Pereira LS and Martin MR (1998) Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, 300 p.
Aslam M and Prathapar SA (2006) Strategies to mitigate secondary salinization in the Indus Basin of Pakistan: A selective review. Colombo Sri Lanka.
Bassil ES and Kaffka SR (2002) Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. Consumptive water use. Agricultural Water Management. 54(1): 67-80.
De La Hera ML, Romero P, Plaza EG and Martinez A (2007) Is partial root zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field grown wine grapes under semiarid condition. Agricultural Water Managent. 87(3): 261-274.
Dehshiri A, Ahmadi M and Tahmasebi Z (2001) Response of canola cultivars to water stress. Agricultural Sciences 32(3): 649-659.
Dry PR, Stoll M, Loveys B, Stewart D and McCarthy G (2000) Partial root-zone drying. Effects on root distribution and commercial application of a new irrigation technique. Australian & New Zealand Wine Industry. 15(2): 74-76.
Dudley LM, and Shani U (2003) Modeling plant response to drought and salt stress: Reformulation of the root-sink term. Vadose Zone, 2(4): 751-758.
Feizi M, Hajabbasi MA, Mostafazadeh-fard B (2010) Saline irrigation water management strategies for better yield of safflower (Carthamus tinctorius L.) in an arid region. Crop Science; 4(6): 408-414.
Kang Y, Chen M and Wan S (2010) Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain. Agricultural Water Management; 97(9):1303-1309.
Kiziloglu FM, Shahin U, Tunc T and Diler S (2006) The effect of deficit irrigation on potato evapotranpiration and tuber yield under cool season and semiarid climatic conditions. Agronomy. 5(2): 284-288.
Laboski CAM, Dowdy RH, Allmars RR and Lamb JA (1998) Soil Strength and water content influences on corn root Distribution in a sandy soil. Plant and Soil. 203(2): 239-247.
Martin JH, Leonard WH and Stamp DC (1976) Principles of field crops roduction. Macmillan New York.
Mostafazadeh-Fard B, Mansouri H, Mousavi S F and Feizi M (2009) Effect of different levels of irrigation water salinity and leaching on yield and yield components of wheat in an arid region. Irrigation and Drainage Engineering. 135 (1): 32-38.
Nresh RK, Minhans PS, Goyal AK, Chauhan CPS and Gupua RK (1993) Conjunctive use of saline and non-saline waters (II). Field Comparisons of cyclic uses and mixing for wheat. Agricultural Water Management. 23(2): 139-148.
Pasternak DY, Malach De and Boroyic I (1985) Irrigation with brackish water under desert conditions. Phusiological and yield response of maize (Zea mays) to continuous irrigation with brackish water and to alternating brackish-fresh-brackish water irrigation. Water Managemnt. 10(2): 47-60.
Rodrigues ML, Santos TP, Rodrigues AP, de Souza CR, Lopes CM, Maroco JP, Pereira JS and Chaves MM (2008) Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation. Functional Plant Biology, 35(7): 565-579.
Shahnazari A, Fulai L, Andersen MN, Jacobsen SE and Jensen CR (2007) Effects of partial root-zone drying on yield, tuber size and water use efficiency on potato under field conditions. Field Crops, 100(1): 117-124.
Shani U and Dudley LM (2001) Field studies of crop response to water and salt stress. Soil Science, 65(5): 1522-1528.
Spreer M, Nagle W, Neidhart S, Carle R, Ongprasert S and Muller J (2007) Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. ‘Chok Anan’). Agricultural Water Management, 88(1-3): 173-180.
Wright GC and Smith CJ (1987) Soybeans root distribution under wet soil culture on a red-brown earth. Plant and Soil, 103(1): 129-133.
Yazar A, Hamdy A, Gencel B and Metin SS (2003) Sustainable use of highly saline water for irrigation of crops under arid and semi-arid conditions: new strategies Corn yield response to saline irrigation water applied with a trickle system under Mediterranean climatic conditions: In Turkey.Regional Action Programme (RAP): Water Resources Management and Water Saving in Irrigated Agriculture (WASIA PROJECT). Bari: CIHEAM. 44(2): 123-135.
Zhou Q, Kang S, Li F and Zhang L (2008) Comparison of dynamic and static APRI-models to simulate soil water dynamic in vineyard over the growing season under alternate partial root zone drip irrigation. Agricultural Water Management. 95: 767-775.