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1. Introduction 

The phenomenon of natural convection refers to the heat 
transfer process that results from the movement of fluid particles 

between zones with different temperatures. This results in a 

combination of fluid particles, which subsequently exchange 

energy and momentum with each other. The structure and 

intensity of natural convection depend on the external thermal 

stresses that cause them, the nature of the fluid and the geometry 
of the space where the process takes place. The importance of the 

natural convection is confirmed by the exploitation of this 

phenomenon in many different fields such as industrial water 

heating, thermal insulation, heat exchangers, solar collector-

receiver, vapor condenser for water distillation, cooling of 

electronic systems, electrical machinery, geophysics, nuclear 
reactors, etc. The study of the natural convection in closed 

enclosures has been the subject of numerous theoretical and 

experimental studies. Many published works have been elaborated 

concerning natural convection in varied geometries, such as 

parallelepiped [1-3], cylindrical [4, 5], spherical [6], ellipsoidal [7] 

the form cylindrical rings [8, 9], spherical [10], and elliptical rings 

[11, 12]. There are also cone shaped [13], lunette [14] or 

cylindrical annular enclosures [15]. The natural convection in a 

square enclosure containing an equilateral triangular cylinderit 

was studied numerically with CFD techniques, with outer cold 

walls of square enclosure and warm inner walls of triangular 
cylinder [16]. The Rayleigh number ranged from 104 to 106 and 

the angles of orientation from 00 to 1050 for a step of 150 for each 

case. Rana and Natoosh [17] studied numerically the stable 

laminar natural convection in a square enclosure, containing four 

hot triangular cylinders. Costa and Raimundo [18] considered a 

conductive rotating cylinder inserted in the center of a square 
enclosure. They concluded that the thermo physical properties of 

the cylinder object were important for the entire process of heat 

transfer through the enclosure. Roslan, Saleh, and Hashim [19] 

studied numerically the natural convection heat transfer in a 

differentially heated square enclosure containing a conductive 

polygonal object. The left wall is heated and the right wall is 
cooled, while the horizontal walls remain adiabatic. Hussain and 

Hussein [20] analyzed the effects of inserting a conductive 
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rotating cylinder at different vertical locations within a 

differentially heated square cavity. A study of the literature review 

reveals the importance of the study of the natural convection in an 

annular space delimited by two horizontal axis cylinders, heated 

trapezoidal internal cylinder and cold elliptical outer cylinder. In 

fact, the annular space traversed by a Newtonian fluid and 
incompressible has not been studied, so that will be the motivation 

of this study. 

In this work, we studied the effect of the angle of inclination of 

the lateral walls of the trapezium, and the effect of the Rayleigh 

number on the flow structure, the temperature distributions and 

the current function as well as the heat transfer rates represented 
by the local and mean numbers of Nusselt. The detailed numerical 

simulations of the dynamic and thermal fields of natural 

convection flows are developed in the proposed configuration at a 

variable Rayleigh number in the range of 103to105 for different 

inclination angle equal to 60 °, 70 °, 80 °, 90 °, 100 ° and 110 °. 

2. Physical model 

Figure 1.a shows the physical model of the current work. The 

present problem we are dealing with is a trapezoidal cylinder 

characterized by the length h = 2cm and the angle of inclination 
of the side walls (α), located inside an elliptical cylinder enclosure 

with an eccentricity e= 0,7. The outer elliptical fence wall has been 

constant low temperature TF. However, the trapezoidal inner 

cylinder is maintained at constant high temperature TC. In this 

work the number of Prandtl is 0.7. The thermal Rayleigh number 

varies between103 and 105.The Newtonian fluid properties are 
also constant, and the Boussinesq approximation is applied to 

model the buoyancy effect. Indeed the acceleration due to gravity 

acts in the negative direction y and the viscous dissipation effects 

are negligible. 

 

 

 

 

 

 

 

 

Figure 1.a. Schematic physical model. 

 

 

 

 

 

 

 

Figure 1.b. Nodes(230×130). 

3. Numerical model 

3.1 Mathematical formulation 

The characteristic quantity used for dimensionless of the 

problem are the differences in temperature (ΔT=TH-TC) between 

the walls of the system and thermal diffusivity α of the fluid. The 

controlling equations are transformed into dimensionless forms 

under the following non-dimensional variables [21, 22]: 

 

𝜃 =
𝑇 − 𝑇𝑐

𝑇𝐻 − 𝑇𝑐

, 𝑋 =
𝑥

𝐵
 , 𝑌 =

𝑦

𝐵
 ,𝑈 =

𝑢𝐵

𝛼
, 𝑉 =

𝑣𝐵

𝛼
 

𝑷 =
𝒑 𝑩𝟐

𝝆𝜶𝟐
 , 𝑷𝒓 =

𝝂

𝜶
𝐚𝐧𝐝 𝑹𝒂 =

𝒈𝜷(𝑻𝑯−𝑻𝑪)𝑩𝟑

𝜶𝝂
                      (1)                                                            

The Equation of Continuity: 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0                                                                  (2)                                                                                                

The equations of momentums are written as follows:  

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ Pr (

𝜕2𝑈

𝜕𝑋2
+

𝜕2𝑈

𝜕𝑌2
)                           (3)                                                                

𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ Pr (

𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2
) + 𝑅𝑎𝑃𝑟𝜃           (4)                                                    

The equation of energy is written as follows: 

𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
= (

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
)                                           (5)                                                                                       

The initial condition:                                            

𝑈 = 𝑉 = 0                                                                    
(6)
      

                              (6) 

𝜃 = 𝜃0                                                           (7)                                                                                                              

(7) 
The conditions of the system limits are defined in the inner 

cylinder as follows: 

𝑈 = 𝑉 = 0                                                                    (8)                                                                                                                                  

𝜃 = 1                                                                            (9)                                                                                                                    
In the outer cylinder, we can write: 

𝑈 = 𝑉 = 0                                                                   (10)                                                                                                             

𝜃 = 0                                                                           (11)                                                                                                             

The local Nusselt 
number:

  

𝑁𝑢𝐿 = 𝐿
𝜕𝜃

𝜕�⃗� 
|
𝑤𝑎𝑙𝑙

                                                           (12)                                                                                            

The average Nusselt number for the square and ellipse: 

𝑁𝑢̅̅ ̅̅
𝑠 =

1

𝑃
∫ 𝑁𝑢𝐿

𝑃

0
𝑑𝑃                                                     (13)                                                                                              

𝑁𝑢̅̅ ̅̅
𝑒 =

1

𝑃𝑒
∫ 𝑁𝑢𝐿

𝑃𝑒

0
𝑑𝑃𝑒                                                  (14)                                                                                       

 
The average Nusselt number: 

𝑁𝑢𝑎𝑣𝑔 =
𝑁𝑢̅̅ ̅̅ 𝑒+𝑁𝑢̅̅ ̅̅ 𝑠

2
                                                          (15)                                                                                              

3.2  Simplifying hypotheses 

Fluid flows subjected to buoyancy forces are modeled by the 

Boussinesq approximation: 

𝜌(𝑇) = 𝜌0[1 − 𝛽𝑡(𝑇 − 𝑇0)]                                         (16)                                                                           

  The Natural convection is laminar and permanent. 

3.3  Meshing choice 

In this article, several meshes were arbitrarily used for the 

configuration presented in the figure 1.b to Rat = 105, we have 

studies the effect of the meshing on the results. Table 

1showtherefore the variation of the average Nusselt number as a 

function of the nodes number. The observed results allow us to 

choose the 230x130 mesh in all the simulations, in fact the error 
relative to the values of the average Nusselt numbers, between the 

two meshes is minimal. 
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Table .1 Effect the number of nodes on the average Nusselt number Rat = 105 

Nodes 180*80 200*100 210*110 220*120 230*130 240*140  

Nu (avg) 5.8826 5.6496 5.5818 5.4955 5.4319 5.4250  

Relative error (%) 4.1242       1.2147           1.5704            1.1709             0.1272        

3.3 Numerical approach 

The equations are processed sequentially by using the isolated 

method. The numerical procedure retained by the CFD code 
Fluent for solving the equations controlling the natural convection 

with the imposed boundary conditions, is based on the finite 
volume method. This method has the advantage of satisfying the 

conservation of the momentum, the mass and the energy in all the 
considered volumes as well as in all the field of computation. The 

physical domain is meshed by the Gambit code. In these 
simulations, a structured quadrilateral mesh was adopted; this 

mesh was made with cells whose size varied gradually. 
To ensure a good resolution in regions with a high temperature 

gradient, non-uniform structured mesh close to the walls' 
boundaries was considered. Spatial terms in the equations are 

discretized using weighted body force. The weighted volume 
force diagram implied this type of scheme is recommended for 

flows involving large volume forces. 

The second order scheme was considered since it allows some 

stability and minimizes the digital diffusion but it can make the 

calculation diverge. The simple algorithm of Patankar and 

Spalding [23] was used for speed-pressure coupling. In addition, 

the computational residue was used to ensure the convergence and 

the stability of the solution 

 

 

4. Results and discussion 

4.1 Validation of numerical results 

We study the natural convection heat transfer for four values of 

the thermal Rayleigh number in the case of an annular space 

delimited by two cylinders, an elliptical outer cylinder and a 
trapezoidal inner cylinder. The results were presented as 

isotherms, streamlines, local Nusselt numbers as presented in 

figures 2 and 3. 

Natural convection between confocal horizontal elliptical 

cylinders by Elshamy [24] was chosen for the validation of the 

present study. The validations were presented as isotherms and 
streamlines for two different Rayleigh numbers (Figure 2), and the 

local Nusselt number was compared to reference [24] for different 

numbers of Rayleigh ranging from 104 to 105 (Figure.3).For the 

case of two confocal horizontal elliptical cylinders, the internal 

and external eccentricities were taken 0.9 and 0.4, respectively, 

and the Rayleigh number was 104 (Figure.2).The local Nusselt 
numbers of the inner and outer elliptical cylinders considered in 

this paper and those of ElShamy are plotted in Figure 3.The results 

indicate an acceptable agreement with the results that presented 

by ElShamy et al [24]. In these cases, the results show that two 

symmetrical recirculation cells are formed on the right and the left. 

This fact is due to the buoyancy force produced by the temperature 
gradient. 

                            

 

 
 

 
 

 
 

 
 

 
                                                                 (a)Present work                                 (b) Elshamy[24] 

 
                Figure 2. Streamline (left half) and isotherms (right half) to Rat = 104. 

 

 

 

 

 

 

 

 

 

 
   
     

Figure 3. Local Nusselt number along inner and outer ellipses 
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4.2. Rayleigh effect 

 

Figures 4, 5, and 6 show the isotherms and lines of current at 

different numbers of Rayleigh and tilt angle of the side wall of the 

inner cylinder. According to these results, it was observed that at 

Rat = 103, the isotherms and current lines are symmetrical with 

respect to the median fictitious vertical plane and change very 

slowly whatever the angle of inclination. The conduction heat 
transfer becomes the dominant transfer in all forms of internal 

cylinders. The current lines of the same figure show that the flow 

takes place in two main cells which rotate very slowly in opposite 

directions. The fluid particles move upward under the effect of 

Archimedes' thrust along the inner warm wall, and then descend 

under the action of gravity forces along the cold wall of the outer 
elliptical cylinder. For Rat = 104 and Rat = 105, the isothermal lines 

change and end up in the shape of a mushroom. The temperature 

distribution is decreasing from the hot wall to the cold wall. The 

direction of the deformation of the isotherms is in conformity with 

the direction of rotation of the current lines. In a laminar regime, 

it can be said that under the action of the movement of the particles 

that take off from the hot wall at the axis of symmetry, the 

isothermal lines move away from the wall at this point.  

The values of the current functions increase, which means that 

the convective heat transfer begins to take place. With the increase 
of the inclination angle of the side walls of the inner cylinder, the 

results presented above allow us to notice that whatever the 

annular space used (that is to say, whatever the value of d angle of 

inclination of the side wall of the inner cylinder used) when the 

value of the Rayleigh number is increased, the heat transfer rate 

and the values of the maximum current function increase, on the 
one hand, on the other hand, the increase of the inclination angle 

of the side wall causes an increase in the area of the hot roll, and 

therefore an increase in the heat transfer coefficient, for the current 

lines, the decrease of the inclination angle of the side wall causes 

a widening of the annular space between the two rolls, and an 

increase in the values of the current function.
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Figure 4. Isotherms and lines of currents for different    angles to Rat=103. 
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Figure 5. Isotherms and lines of currents for different angles to Rat=104 
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Figure 6. Isotherms and lines of currents for different angles to Rat=105 

 

4.3. Variation of the local Nusselt number along the hot wall: 
         Figures 7, illustrates the inclination influence of the hot side 

wall on the variation of the Nusselt numbers of the inner cylinder, 
these results confirms that with the increase of the Rayleigh 

number, the values of the local number Nusselt increase, 
regardless of the shape of the inner cylinder. For the case of an 

inclination angle α = 60o corresponding to an inner cylinder with 
a triangle shape, the variation of the local Nusselt number shows 

the existence of two maximum values corresponding to the two 
lower corners of the triangle. The minimum value appears near the 

top vertex of the triangle. For the case where, the inclination angle 

is other than 60o, it has noted in this enclosure that the local 
Nusselt number is important in all the corners of the trapezium, 

indeed, it maximum values on the two upper corners presenting 
the maximum value of the rate of heat by comparison to the two 

bottom corners. On the rest of the trapeze, the local Nusselt 
number presents weak value. Also, it has been noted that when the 

angle of inclination α increases, the maximum value of the local 
Nusselt number increase too. In these conditions, the range of 

values corresponding to the minimum local Nusselt number also 
increases. This fact is due to the increase of the length of the upper 

side of the hot wall. 
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                     Figure 7. Variation of the number of local Nusselt number 

along the hot wall for different angles. 

 
4.4. Variation of the local Nusselt number along the cold wall: 

          Fig 8 shows the variation of the local Nusselt number on the 
wall of the outer elliptical cylinder. According to these results, it 

is clear that the increase in the number of Rayleigh, and the value 
of the local Nusselt number increases. In addition, the variations 

along the walls are closely related to the isothermal and isocurrent 
distributions. 

For a low Rayleigh number, the heat transfer within the annulus 
is essentially controlled by simultaneous thermal conduction 

processes for all inner cylinder shapes. However, for large values 
of the Rayleigh number, the value of the local Nusselt number is 

reached at the angular position θ = 90° by a maximum value, and 
for a minimum value in the lower part of the elliptical cylinder (θ 

= 270°).In this range of Rayleigh numbers, most of heat transfers 
are done by convection, which is in accordance with figure 6. 

 

 

Figure 8.Variation of the local Nusselt number along the cold wallfor 

different angles. 

4.5. Variation of vorticity  
       Figure 9 illustrates the variation of the vorticity as a function 

of the inclination angle of the lateral hot walls. The curve can be 
divided into four different zones. In the first zone, vorticity 

decreases sharply with an increasing inclination angle. In this 
area, the upper rib is shorter than the lower rib. In the second zone 

the value of the vorticity remained constant with the increase of 
the inclination angle. Therefore, the increase of the angle does not 

affect the value of the vorticity in this angle interval (70°- 80°) 
and find an optimal angle α = 75o. However, in the third zone the 

vorticity also decreases with the increase of the inclination angle. 
In the fourth zone, the vorticity decreases slowly with the increase 

of the trapezoid angle since the upper side is shorter than the 
lower side of the trapezium. Therefore, the increase in the 

inclination angle of the side wall causes a decrease in the annular 
space between the two cylinders and a decrease in the values of 

the vorticity. 

 
Figure 9. Variation of vorticity according to the angle of inclination of the 

lateral hot wall. 
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5. Conclusion 
 

We have been able to highlight the fact of the study in a 
laminar regime inside a horizontal eccentric ring between a heated 

trapezoidal internal cylinder and a cold elliptical outer cylinder. 
Our investigation made it possible to highlight the effects of the 

inclination of the trapezoidal lateral walls on the intensity of the 
flow in the annular space and on the heat transfer through the 

lateral walls. 
The results show that the conduction mode is predominant in 

heat transfer as long as the Rayleigh number is not high. However, 
with the increase in Rayleigh number, it has been noted a birth of 

a boundary layer that is becoming thinner. As the thermal 
Rayleigh number is increased, thermal plumes appear over the hot 

wall, isotherms writhe increasingly to the top of the enclosure 
while remaining stratified beneath the hot wall involving that the 

convection’s mode dominates. With the increase of the inclination 
angle of the side walls of the inner cylinder, the obtained results 

above mentioned allow us to notice that whatever the annular 
space used (that is to say, whatever the value of angle of 

inclination of the side wall of the inner cylinder used) when the 
value of the Rayleigh number is increased, the heat transfer rate 

and the values of the maximum current function increase. On the 

other hand, the increase in the angle of inclination of the side wall 
causes an increase in the area of the hot cylinder, therefore an 

increase in the heat transfer coefficient, whereas for the current 
lines the decrease in the angle of inclination of the side wall, 

causes a widening of the annular space, and an increase of the 
values of the current function. 

      On the hot wall, we notice that when the angle of inclination 
α increases, the maximum value of the number of Nusselt 

increases. This fact is due to the increase in the length of the upper 
side of the hot wall. The local Nusselt number is minimal if the 

fluid moves away from the wall and, maximum, if the fluid is 
supplied to the wall. It is found that, large values of the Rayleigh 

number, the local Nusselt number reached a maximum at θ = 90° 
and minima at θ = 270°.   

These results will be used for the design of engineering and 
the process improvement of the heat exchangers, the drying 

processes, the cooling of electronic circuits and the cooling of 
nuclear reactors. In the future, we propose to study double-

diffusive natural convection. 
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