تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,508 |
تعداد مشاهده مقاله | 124,128,384 |
تعداد دریافت فایل اصل مقاله | 97,235,889 |
مقایسه روشهای مختلف دادهکاوی در پیشبینی ذخیره کربن آلی خاک در برخی اراضی شهرستان بهبهان | ||
تحقیقات آب و خاک ایران | ||
مقاله 19، دوره 51، شماره 4، تیر 1399، صفحه 1041-1054 اصل مقاله (1.39 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.288526.668308 | ||
نویسندگان | ||
صاحب خورده بین* 1؛ سعید حجتی2؛ احمد لندی3؛ ایمان احمدیان فر4 | ||
1دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
2دانشیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
3استاد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
4استادیار، گروه عمران، دانشکده فنی و مهندسی، دانشگاه صنعتی خاتم الانبیاء بهبهان، بهبهان، ایران | ||
چکیده | ||
ذخیره کربن نقش مهمی در تعیین چرخه جهانی کربن و تنظیم اقلیم جهانی ایفا میکند و از طرفی خاک منبع ورودی یا خروجی کربن به اتمسفر است، که به نوع کاربری اراضی وابسته است. از این رو، این مطالعه با هدف مقایسه روشهای مختلف دادهکاوی در پیشبینی ذخیره کربن آلی خاک در کاربریهای کشاورزی آبی، کشت مخلوط (آبی- دیم)، مرتع و نخلستان موجود در بخشی از اراضی شهرستان بهبهان انجام گرفت. نمونهبرداری از خاک به روش هایپرکیوب انجام و پس از تعیین موقعیت مکانی نقاط نمونهبرداری، حفر پروفیل و برداشت نمونههای خاکی از عمق 30-0 و 60-30 سانتیمتر انجام گرفت. کربن آلی نمونههای خاکی به روش والکیبلک و وزن مخصوص ظاهری آنها به روش پارافین مذاب تعیین شد و سپس ذخیره کربن آلی خاک در نقاط نمونهبرداری محاسبه گردید. پارامترهای کمکی مورد استفاده شامل اجزای سرزمین، دادههای تصویر سنجنده OLI لندست 8 و نقشه کاربری اراضی بود. نتایج نشان داد که شاخصهای SAVI، NDVI، شوری، کربنات، گچ و رس بیشترین همبستگی را با مقادیر ذخیره کربن دارند. نتایج همچنین نشان داد که در همه کاربریها، مدل جنگل تصادفی (RF) با بالاترین ضریب تبیین (966/0=R2) و کمترین مجذور میانگین مربعات خطا (032/2=RMSE) بیشترین کارآیی را در پیشبینی ذخیرهکربن آلی خاک دارد و پس از آن مدل شبکه عصبی مصنوعی (788/0= R2 و 257/4=RMSE) و در نهایت مدل ماشین بردار پشتیبان (SVR) (499/0= R2و 344/7 =RMSE) قرار دارد. | ||
کلیدواژهها | ||
واژههای کلیدی: بهبهان؛ جنگل تصادفی؛ شبکه عصبی مصنوعی؛ ذخیره کربن؛ ماشین بردار پشتیبان | ||
عنوان مقاله [English] | ||
Comparison of Different Data Mining Methods in Predicting Soil Organic Carbon Storage in Some Lands of Behbahan City | ||
نویسندگان [English] | ||
saheb khordehbin1؛ Saeid Hojati2؛ Ahmad Landi3؛ iman Ahmadianfar4 | ||
1PhD Student, Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
2Associate Professor, Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
3Professor, Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
4Assistant Professor, Department of civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of technology, Behbahan, Iran, | ||
چکیده [English] | ||
Abstract: Soil organic carbon is an important factor in determining the global carbon cycle and global climate regulation. Soil is also the input/output source of carbon to the atmosphere which is depended on the land use. For this purpose, the objective of this study was to compare different methods of data mining in predicting soil organic carbon storage in irrigated, mixed cultivation (irrigated and rainfed), pasture and palm trees lands in some parts of Behbahan city in southwestern of Iran. Soil sampling from depths of 0-30 and 30-60 cm was carried out using conditional Latin hypercube square method. Organic carbon content of the soil samples was determined by Walky-Black method. Bulk density of the soils was determined using paraffin method. The auxiliary parameters used in this study included territory components, OLI sensor image data from landsat 8 and land use map. The results showed that the SAVI, NDVI, NDSI, salinity, carbonate, gypsum and clay indices have the highest correlation with the soil organic carbon stock values. The results also showed that the random forest (RF) (R2= 0.983, RMSE=2.32) was the best model to predict soil organic carbon storage followed by artificial neural network model (R2= 0.887, RMSE= 4.257) and Support Vector Regression Machine model (SVR) (R2 = 0.707, RMSE=7.344). | ||
کلیدواژهها [English] | ||
Keywords: behbahan, artificial neural network, carbon store, random forest, support vector machine | ||
مراجع | ||
Adhikari, K., Hartemink, A.E., Minasny, B., Kheir, R.B., Greve, M.B., and Greve, M.H.J.P.O. (2014). Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One. 9(8), 105519. Aitkenhead, M.J., and Coull, M.C. (2016). Mapping soil carbon stocks across Scotland using a neural network model. Geoderma, 262, 187-198 Akpa, S.I.C., Odeh, I.O.A., Bishop, T.F.A., Hartemink, A.E., and Amapu, I.Y. (2016). Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 271, 202-215. Amirian Chakan, A., Taghizadeh-Mehrjardi, R., Kerry, R., Kumar, S., Khordehbin, S., and Khanghah, S.Y. (2017). Spatial 3D distribution of soil organic carbon under different land use types. Environmental Monitoring and Assessment, 189(3), 131. Blake, G.R., and Hartge, K.H. (1986). Bulk density 1. Methods of soil analysis: part 1—physical and mineralogical methods, (methodsofsoilan1), 363-375. Brahim, N., Blavet, D., Gallali, T., and Bernoux, M. (2011). Application of structural equation modeling for assessing relationships between organic carbon and soil properties in semiarid Mediterranean region. International Journal of Environmental Science and Technology, 8(2), 305-320. Bohn, H. L. (1976). Estimate of organic carbon in world soils 1. Soil Science Society of America Journal, 40(3), 468-470. Chahouki, M. A. Z., Ahvazi, L. K., and Azarnivand, H. (2011). Environmental factors affecting distribution of vegetation communities in Iranian rangelands. Vegetos, 24(1), 1-15. Chen, S., Arrouays, D., Angers, D. A., Martin, M. P., and Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research, 188, 53-58. Cortes, C., and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. Dharumarajan, S., Hegde, R., and Singh, S. K. (2017). Spatial prediction of major soil properties using Random Forest techniques-A case study in semi-arid tropics of South India. Geoderma Regional, 10, 154-162. Eswaran, H., Van Den Berg, E., and Reich, P. (1993). Organic carbon in soils of the world. Soil Science Society of America journal, 57(1), 192-194. Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G., and Fernandes Filho, E. I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340, 337-350. Grimm, R., Behrens, T., Märker, M., and Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis. Geoderma, 146(1-2), 102-113. Hengl, T., Heuvelink, G.B.M., and Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1-2), 75-93. Jenny, H. (1994). Factors of soil formation: a system of quantitative pedology. Courier Corporation. Kuang, B., Tekin, Y., and Mouazen, A. M. (2015). Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil and Tillage Research, 146, 243-252. Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22. Ließ, M., Glaser, B., and Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models. Geoderma, 170, 70-79. Luo, Y. and Zhou, X., 2006. Soil Respiration and the Environment. 320pp. McBratney, A. B., Santos, M. M., and Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1-2), 3-52. Mingjun, T., Lixiong, Z., Wenfa, X., Zhiling, H., Zhixiang, Z., Zhaogui, Y., and Pengcheng, W.J.S.O.T.T.E. (2017). Spatial variability of soil organic carbon in Three Gorges Reservoir area, China. Science of the Total Environment, 599, 1308-1316. Mishra, U. (2009). Predicting storage and dynamics of soil organic carbon at a regional scale (Doctoral dissertation, The Ohio State University). Mitran, T., Mishra, U., Lal, R., Ravisankar, T., and Sreenivas, K. (2018). Spatial distribution of soil carbon stocks in a semi-arid region of India. Geoderma Regional, 15, e00192. Minasny, B., and McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 32(9), 1378-1388. Minasny, B., McBratney, A. B., Malone, B. P., and Wheeler, I. (2013). Digital mapping of soil carbon. In Advances in Agronomy (Vol. 118, pp. 1-47). Academic Press. Minasny, B., Setiawan, B. I., Arif, C., Saptomo, S. K., and Chadirin, Y. (2016). Digital mapping for cost-effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands. Geoderma, 272, 20-31. Padilla, F. M., Vidal, B., Sánchez, J., and Pugnaire, F. I. (2010). Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: implications for land management. Journal of Environmental Management, 91(12), 2688-2695. Pouladi, N., Møller, A. B., Tabatabai, S., and Greve, M. H. (2019). Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma, 342, 85-92. Shataee, S., Kalbi, S., Fallah, A., and Pelz, D. (2012). Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms. International journal of remote sensing, 33(19), 6254-6280. Somaratne, S., Seneviratne, G., and Coomaraswamy, U. (2005). Prediction of soil organic carbon across different land-use patterns. Soil Science Society of America Journal, 69(5), 1580-1589. Tiessen, H. J. W. B., and Stewart, J. W. B. (1983). Particle-size fractions and their use in studies of soil organic matter: II. Cultivation effects on organic matter composition in size fractions 1. Soil Science Society of America Journal, 47(3), 509-514. Tiryaki, S., and Aydın, A. (2014). An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62, 102-108. Vapnik, V.N., Lerner A. Ya. (1963) “Recognition of Patterns with help of Generalized Portraits”, Avtomat. i Telemekh., 24(6), 774–780 Walkley, A., and Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. Wang, Y. F., Liu, L., and Shangguan, Z. P. (2017). Carbon storage and carbon sequestration potential under the Grain for Green Program in Henan Province, China. Ecological Engineering, 100, 147-156. Wang, Z. (2019). Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state. Ecological Modelling, 401, 94-110. Yigini, Y., and Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environment, 557, 838-850. Zhang, C., Liu, G., Xue, S., and Sun, C. (2013). Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. European Journal of Soil Biology, 54, 16-24. Zhang, H., Wu, P., Yin, A., Yang, X., Zhang, M., and Gao, C. (2017). Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the Total Environment, 592, 704-713. | ||
آمار تعداد مشاهده مقاله: 613 تعداد دریافت فایل اصل مقاله: 523 |