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Abstract 
Seismic interferometry is an efficient technique to extract the Empirical Green's Function (EGF) 
between station pairs when the source is considered at one of the stations. The geometry and 
energy flux of asymmetric noise sources have unavoidable impacts on the extracted EGFs, 
deduced from ambient seismic noise recorded in pairs of stations. In this study, to consider these 
effects, three methods of noise correlation functions stacking (linear, root mean square, root mean 
square ratio) are investigated using synthetic and real data processing. During synthetic data 
processing, effects of the noise sources geometry and energy flux inside and outside the Fresnel 
zone are examined. After separating stationary and non-stationary sources, the results have shown 
that the root mean square ratio contains the least effects of non-stationary signals compared to 
other methods of stacking. Moreover, comparison of the EGFs from the recorded data in 
Azerbaijan (NW Iran), indicates that the signal retrieved by root mean square ratio is more reliable 
than the other stacking methods' signals (e.g., linear, root mean square). 
 

Keywords: Asymmetric distribution of noise energy flux, Empirical Green's functions, Fresnel 
zone, Non-stationary signals, Root Mean Square Ratio stacking. 

 

1. Introduction 
Seismic interferometry is a method that 
predicts the cross-correlations of all 
combinations of noise recorded yields to the 
Green's function between two receivers. In 
recent years, extracting empirical Green's 
functions (hereafter EGFs) from long-time 
recorded ambient seismic noise have been 
increasingly  important (e.g. Lobkis and 
Weaver, 2001; Derode et al., 2003; 
Wapenaar, 2004; Snieder, 2004; Roux et al., 
2005; Wapenaar et al., 2006; Snieder et al., 
2007). These studies show that ambient 
seismic noise contains valuable information 
regarding wave propagation in the medium 
(Shapiro et al., 2005; Roux et al., 2005; Sabra 
et al., 2005). In the ideal uniform sources 
distribution, cross-correlations of ambient 
seismic noise recorded at two stations, yield 
an inter-station EGF (Weaver and Lobkis, 
2001; Snieder, 2004; Gouédard et al., 2008; 
Tsai, 2009). The results produced by this 
cross-correlation technique have been applied 
in reconstruction of the Earth's velocity and 
anisotropy structures in different regions 
especially in the aseismic area (e.g. Shapiro 
and Campillo, 2004; Prieto et al., 2009).  
Uniform distribution of noise sources or 
energies in different azimuths is the main 

condition in determining the accurate EGF 
between the station pairs using the 
interferometry methods (Wapenaar, 2004; 
Stehly et al., 2006). Obviously, the condition 
for the homogeneous distribution of sources 
and energies is not always established in real-
world conditions. In other words, the 
distribution of sources and energies around 
the station pairs is sufficiently symmetrical 
only in rare cases. Recent studies regarding 
noise source distribution show the dominant 
presence of them in oceanic regions 
(Stutzmann et al., 2009; Landes et al., 2010). 
Due to the presence of noise sources in 
oceanic areas and their severe seasonal 
variations (Sens-Schönfelder and Wegler, 
2006; Meier et al., 2010), the distribution of 
sources is anisotropic and directional (Stehly 
et al., 2008). Failure to properly distribute 
these parameters leads to an inaccurate 
determination of the Green's function 
(Snieder and Sens-Schönfelder, 2015; Liu 
and Ben-Zion, 2016). 
Many researchers (e.g. Schuster et al., 2004; 
Snieder, 2004; Wapenaar et al., 2004; Roux 
et al., 2005; Snieder et al., 2006) believe that 
the existence of sources located near the 
receiver line (inside the Fresnel zone) has a 
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As shown in Figure 5b, although EGF signals 
are approximately similar within the signal 
window, the RMS values within the zero-lag 
window are very different. For more 
scrupulously explanation, the retrieved EGF 
using RMS stacking avoids only one signal 
(S105), which is indicated in the left side of 
Figure 5a. Whereas the RMS-R method 
rejects three signals (S105, S05+S030+S105, 
S030+S105+S072) that they have 
RMSexpected_signal_window/RMSzero_lag_window less 
than 1. RMS amplitude within the expected 
signal window gives information about the 
energy of emitted signals by sources. Our 
investigation indicated that the RMS value 
ratio depends directly on frequency contents 
and the energy level in the study area. 
Moreover, the RMS-R method can lead to the 
enhancement of the stationary signal and  
also cancel out sufficiently non-stationary 
signals as it is clearly shown in Figure 7a. 
The figure illustrates the retrieved EGFs 
using three stacking methods (LIN, RMS, 
RMS-R) in the period band of 3-10 s for 
SHB-SRB station pair. The expected 
Rayleigh wave fundamental mode is shown 
by gray window. Figure 7b shows all 
available inter-station EGFs retrieved by 
RMS-R stacking method wherein the gray 
lines indicate velocity range of Rayleigh 
waves between 1.5 and 2.7 km/s. 
 
5. Conclusion 
This study compares different stacking 
methods (LIN, RMS and RMS-R) for 
extracting EGFs within a relatively small 
regional array in NW of Iran. The result 
(Figure 5b) demonstrate that in the study 
area, RMS-R method improved the quality 
and stability of the inter-station EGF 
significantly and decreased the effects of 
non-stationary NCF signals in comparison 
with LIN and RMS stacking methods. In 
addition, the RMS-R stacking method can be 
used for dependent sources, whereas the LIN 
and RMS stacking methods are more suitable 
for independent sources. To extract reliable 
EGFs and apply an automatic method to 
minimize the effect of energy flux and 
stations geometry that may lead to some 
artifacts on final resultant signals, RMS-R 
stacking method would be considered as an 
easy and fast way in the related data 
processing. 
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