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Abstract 
In this paper, a new simple, efficient and semi-automatic algorithm including depth weighting 
constraint is introduced for 2-D DC resistivity data inversion. Inversion procedure is linear; 
however, DC resistivity data inversion is generally nonlinear due to the nonlinearity of Maxwell’s 
equation relative to resistivity (conductivity). We took the advantage of the 2-D forward operator 
formula obtained based on integral equations (IE) by Perez- Flores et al. (2001), for the inversion 
algorithm. Inversion algorithm is iterative and regularization parameter and depth weighting 
exponent are the critical parameters that have default values of 0.1 and 1, respectively. The 
presented technique was used only for dipole-dipole array by Perez-Flores et al. (2001), but here in 
addition to improving results for dipole-dipole array, its productivity is demonstrated for other 
geo-electrical arrays such as Wenner alfa, Wenner Schlumberger. Three synthetic data sets 
computed by Res2dmod software are utilized to investigate the performance of the algorithm 
through comparing the results with Res2dinv software output sections. Finally, the algorithm is 
applied on an archeological data set of Pompeii, which was collected by dipole-dipole array. IE 
inversion algorithm lead to satisfactory inversion models for both synthetic and real cases which 
reconstruct the subsurface better than or as well as that of the software. 
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1. Introduction 
The direct current (DC) resistivity method is 
one of the most common methods for the 
exploration of the earth’s subsurface due to 
being a cost-effective and well-established 
method (Wei et al., 2013). The purpose of 
electrical resistivity tomography (ERT) 
surveys is to determine the subsurface 
resistivity distribution both horizontally and 
vertically by making measurements on the 
ground surface. Introducing an efficient 
algorithm for inversion of resistivity data is 
necessary because quantitative interpretation 
cannot be made from the non-inversed data 
and interpretation based on pseudo-section is 
qualitative. 
The DC resistivity quantitative interpretation 
has been developed largely over the years 
and various techniques have been proposed 
for DC resistivity inversion (e.g.,  Loke and 
Dahlin, 1997; Jackson et al., 2001; Pérez-
Flores et al., 2001; Loke et al., 2003; Günther 
et al., 2006; Boonchaisuk et al., 2008; Li et 
al., 2012; Wei et al., 2013; Timothy et al., 
2015). The numerical calculation of the 
electric field started in the late 1960s using 

the techniques of integral equations (Dieter et 
al., 1969), which is the case here, then other 
numerical techniques such as finite element 
(FE) (Coggon, 1971) and finite difference 
(FD) (Mufti, 1976) were introduced to DC 
resistivity forward modeling. The Integral 
Equation (IE) method is a powerful tool in 
electromagnetic (EM) modeling for 
geophysical applications especially for those 
models that have a background conductivity 
with simple structure (Zhadanov, 2009). The 
main advantage of the IE method in 
comparison with the FD and FE methods is 
the fast and accurate simulation of the 
response in models with compact 2-D or 3-D 
bodies in a layered background (Varfinezhad 
and Oskooi, 2019). Resistivity data inversion 
is generally nonlinear, but here, a linear 
method proposed by Perez-Flores et al. 
(2001) is used. 
During the past few decades, there have been 
different algorithms for resistivity data 
inversion, most of which solved the problem 
in nonlinear form. General formula of their 
objective function is as follows: 
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min		 (࢓)ࡲ)ௗࢃ‖		→ − ଶଶ‖(ࢊ +  ଶଶ‖(଴࢓−࢓)௠ࢃ‖ߙ
where d, F(m), m0 and m are observed data 
vector, calculated forward response, initial 
model and updated model obtained from 
adding updating term dm to m0; ࢃௗ and ࢃ௠ 
are data and model weighting matrices and ߙ 
is regularization parameter. Smith and 
Vozoff (1984) used just the first term without 
data weighting matrix and instead of the 
second term they used Truncated Singular 
Value Decomposition (TSVD) as another 
way of regularization. Narayan et. al (1994) 
used both terms but with some differences. 
Model weighting matrix is not used and 
regularization parameter adoption is 
different. Sasaki (1994) applied model 
weighting matrix, which was the second 
smoothness operator; Gunther et al. (2006) as 
well as Perez-Flores et al. (2001) utilized 
both data and model weighting matrices, 
which were data covariance matrix and 
smoothness operator, respectively. However, 
Perez-Flores et al. solved a linear problem 
that was based on integral equation. In 
addition to smoothness constraint. It can be 
said that these weights act as depth weighting 
function, but their mathematic formulas are 
not known. A 2-D inversion scheme with 
lateral constraint and sharp boundaries was 
introduced by Auken and Christiansen 
(2004). They believed that quasi-layered 
model can show actual geology more 
accurately in sedimentary environments. In 
general, the algorithm used by Loke and 
Barker it for RES2DINV software which is 
the most versatile one for different cases. 
Depth weighting function introduced by Li 
and Oldenberg (1996 and 1998) for 3-D 
inversion of magnetic and gravity data that 
were utilized to compensate for the natural 
decay of the kernel matrix values with 
increasing depth. The exponent of this 
function generally depends on the depth of 
the anomaly; therefore, a reliable priori 
information about possible depth range of the 
anomaly is required. Li and Oldenberg (1996 
and 1998) suggested exponent 2 and 3 for 
gravity and magnetic methods, respectively. 
In the absence of this, constraint cells that are 
near to the surface have larger weights in the 
inversion procedure. Depth weighting is 
going to be inserted into the inverse 
algorithm as weighting matrix with clear 
determination of its exponent.  

In this paper, the 2-D formula of DC 
resistivity kernel obtained by Perez-Flores et 
al. (2001) is going to be manipulated, but 
they used it just for dipole-dipole array. Here 
we extend it for other geoelectric arrays. 
Weighted damped least-squares solution 
including depth weighting function as 
weighting matrix is adopted for inversion 
algorithm. Regularization parameter and the 
exponent of depth weighting are the critical 
parameters for this algorithm which are going 
to be addressed how to be determined. This 
technique is applied on different synthetic 
and real data sets and the results will be 
compared with Res2dinv software, which is 
the most widespread and standard software 
for 2-D DC resistivity data. Exact synthetic 
data are calculated by Res2dmod. 
 
2. Methodology 
2-1. 2-D forward operator 
3-D formula of DC resistivity Kernel 
obtained by Perez-Flores et al. (2001) is as 
Equation (1): 
 ۹ୈୈ = C෍෍൥ ஼ܚ) − ௝ܚ௜)൫ܚ − ஼ܚ|஼൯ܚ − ௝ܚ௜|ଷหܚ − ஼หଷ൩ܚ ݅௜௝					ℎݐ݅ݓ					 = .ܣ ݆		݀݊ܽ				ܤ =  ܰ.ܯ
where C = ି௡(௡ାଵ)(௡ାଶ)௔ସగ                                       (1)	
where ܚ஼  ௝ are vectors definingܚ ௜ andܚ ,
coordinates of cell centers, current and 
potential electrodes, respectively, ܽ is dipole 
separation and n is the values multiplied by 
dipole separation to increase the distance 
between current and potential electrodes in 
order investigate greater depths. Vectors ܚ஼  :௝ are generally defined asܚ ௜ andܚ ,
஼ܚ  = ௖ܑݔ ܒ௖ݕ	+ + ௜ܚ ܓ௖ݖ = ௜ܑݔ ܒ௜ݕ	+ + ௝ܚ (2)                                   ܓ௜ݖ = ௝ܑݔ ܒ௝ݕ	+ +  ܓ௝ݖ
In fact, the integral form of the interested 
forward problem can be considered as a 
Fred-Holm Integral Equation of the first kind 
(IFKs). Integrating the Equation (1) in y 
direction from -∞ to ∞ leads to the 2-D form 
of IFKs (Varfinezhad and Oskooi, 2019): ݀(ݏ) = .ݏ)ࡳ׬ .௖ݔ .௖ݔ)࢓(௖ݖ  (3)         ݖ݀ݔ݀(௖ݖ

where ݏ represents current and potential 
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electrodes, ݀ is the logarithm of apparent 
resistivity values, (ݔ௖.  ௖) are coordinates ofݖ
points of the interested area, ࡳ is kernel and ࢓ is the model. 
Dividing the subsurface to ݊௫ × ݊௭ cells and 
discretizing the previous equation gives rise 
to the following matrix equation 
(Varfinezhad and Oskooi, 2019): ࢊ =  (4)                                                    		࢓࡭

where ࡭ is the 2-D forward operator, and 
readers are referred to the forward modeling 
paper by Varfinezhad and Oskooi (2019) for 
efficient calculation of forward operator. 
 
2-2. Inversion algorithm 
Solving Equation (4) in order to find the 
model parameters ࢓ is made by inversion. 
For an initial model ࢓௔ and from Equation 
(4), forward response is computed as: ࢓࡭௔ =  ଴                                                  (5)ࢊ

Subtracting Equation (5) from (4), we have: 
࢓)࡭  (௔࢓− = ࢊ − ࢓∆࡭			ݎ݋ 					଴ࢊ = ࢓∆						݁ܿ݊݅ݏ			ࢊ∆ = ࢊ∆				.	௔࢓−࢓ = ࢊ	 −  ଴                                  (6)ࢊ

By multiplying ࢃ௠்࡭ on the both sides of 
Equation (6), Equation (7) is obtained: 
࢓)࡭்࡭௠ࢃ  (௔࢓− = ࢊ)்࡭௠ࢃ −  ଴)     (7)ࢊ
 .௠ is the weighting matrixࢃ 
Updated term ∆࢓ =  ௔ is calculated࢓−࢓
as: 
࢓)  (௔࢓− ࢊ)(்࡭௠ࢃ)ଵି(࡭்࡭௠ࢃ) = −  ଴)                 (8)ࢊ
 
Regularizing Equation (8) by taking 
advantage of the zeroth-order Tikhonov 
regularization technique leads to Equation 
(9): 
࢓  = ௔࢓ + ࡭்࡭௠ࢃ) + ࢊ) (்࡭௠ࢃ)ଵି(ࡵଶߙ −  ௔)                                                 (9)࢓࡭
 are identity matrix  and ߙ and ࡵ 
regularization parameter, respectively. ࢃ௠ 
representing depth weighting matrix and is 
defined as: 

௠ࢃ = ଵࢠ೎ഁ                                                 (10) 

where ࢠ௖ is the z coordinates of cell  
centers and ߚ is depth weighting exponent 
and we are trying to address how this to  
be chosen. The algorithm is started with an 
initial model ࢇ࢓ that assumed here to be  
a homogenous model with apparent 
resistivity equal to the background value  
of observed data, but it should be said  
that other initial models derived from  
any other geophysical methods or a priori 
information can also be used, which is  
not the case in both synthetic and real  
cases of this paper. Iterative inversion 
procedure stops after four iterations, and it 
rarely needs to be changed to the other 
values, but desired solution is always 
captured during 10 iterations. ߙ and ߚ are 
mostly constant values and only for some 
cases replacement of other values are 
required. These replacements are also very 
easy to be made as will be shown in the 
following sections. Ultimately, in addition to 
simplicity, effectiveness, the IE code is a 
semi-automatic code. 
 
3. Synthetic models 
Three different synthetic models are 
considered to investigate the efficiency of the 
suggested technique, and Res2dmod software 
is used for calculating model forward 
responses to produce exact synthetic data. 
Inversion result derived from the IE 
technique are compared with the results of 
Res2dinv software to demonstrate its 
productivity. Res2dinv results are shown in 
MATLAB to have an identical representation 
system for both methods and comparisons 
can be made better. For all cases, if the 
profile length is L, and a is the smallest 
electrode spacing, then the number of cells in 
x and z directions (nx, nz) and the cell lengths 
lx and lz are determined as nx=L/a, nz=L/(4a) 
and lx=lz=a.  
 
3-1. Four conductive anomalies (Dipole- 
Dipole array) 
First, the synthetic model is composed of 
four conductive anomalies with the same 
resistivity value of 20 Ω.m surrounded by a 
homogenous background with resistivity 100 
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