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Abstract

In this paper, a new simple, efficient and semi-automatic algorithm including depth weighting
constraint is introduced for 2-D DC resistivity data inversion. Inversion procedure is linear;
however, DC resistivity data inversion is generally nonlinear due to the nonlinearity of Maxwell’s
equation relative to resistivity (conductivity). We took the advantage of the 2-D forward operator
formula obtained based on integral equations (IE) by Perez- Flores et al. (2001), for the inversion
algorithm. Inversion algorithm is iterative and regularization parameter and depth weighting
exponent are the critical parameters that have default values of 0.1 and 1, respectively. The
presented technique was used only for dipole-dipole array by Perez-Flores et al. (2001), but here in
addition to improving results for dipole-dipole array, its productivity is demonstrated for other
geo-electrical arrays such as Wenner alfa, Wenner Schlumberger. Three synthetic data sets
computed by Res2dmod software are utilized to investigate the performance of the algorithm
through comparing the results with Res2dinv software output sections. Finally, the algorithm is
applied on an archeological data set of Pompeii, which was collected by dipole-dipole array. IE
inversion algorithm lead to satisfactory inversion models for both synthetic and real cases which

reconstruct the subsurface better than or as well as that of the software.
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1. Introduction

The direct current (DC) resistivity method is
one of the most common methods for the
exploration of the earth’s subsurface due to
being a cost-effective and well-established
method (Wei et al., 2013). The purpose of
electrical resistivity tomography (ERT)
surveys is to determine the subsurface
resistivity distribution both horizontally and
vertically by making measurements on the
ground surface. Introducing an efficient
algorithm for inversion of resistivity data is
necessary because quantitative interpretation
cannot be made from the non-inversed data
and interpretation based on pseudo-section is
qualitative.

The DC resistivity quantitative interpretation
has been developed largely over the years
and various techniques have been proposed
for DC resistivity inversion (e.g., Loke and
Dahlin, 1997; Jackson et al., 2001; Pérez-
Flores et al., 2001; Loke et al., 2003; Giinther
et al., 2006; Boonchaisuk et al., 2008; Li et
al., 2012; Wei et al., 2013; Timothy et al.,
2015). The numerical calculation of the
electric field started in the late 1960s using

the techniques of integral equations (Dieter et
al., 1969), which is the case here, then other
numerical techniques such as finite element
(FE) (Coggon, 1971) and finite difference
(FD) (Mufti, 1976) were introduced to DC
resistivity forward modeling. The Integral
Equation (IE) method is a powerful tool in
electromagnetic = (EM)  modeling  for
geophysical applications especially for those
models that have a background conductivity
with simple structure (Zhadanov, 2009). The
main advantage of the IE method in
comparison with the FD and FE methods is
the fast and accurate simulation of the
response in models with compact 2-D or 3-D
bodies in a layered background (Varfinezhad
and Oskooi, 2019). Resistivity data inversion
is generally nonlinear, but here, a linear
method proposed by Perez-Flores et al.
(2001) is used.

During the past few decades, there have been
different algorithms for resistivity data
inversion, most of which solved the problem
in nonlinear form. General formula of their
objective  function is as  follows:
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min - [[W,(F(m) — d)|13 + allW,,(m —my)|I3
where d, F(m), mp and m are observed data
vector, calculated forward response, initial
model and updated model obtained from
adding updating term dm to mo; W, and W,
are data and model weighting matrices and «
is regularization parameter. Smith and
Vozoff (1984) used just the first term without
data weighting matrix and instead of the
second term they used Truncated Singular
Value Decomposition (TSVD) as another
way of regularization. Narayan et. al (1994)
used both terms but with some differences.
Model weighting matrix is not used and
regularization =~ parameter  adoption  is
different. Sasaki (1994) applied model
weighting matrix, which was the second
smoothness operator; Gunther et al. (2006) as
well as Perez-Flores et al. (2001) utilized
both data and model weighting matrices,
which were data covariance matrix and
smoothness operator, respectively. However,
Perez-Flores et al. solved a linear problem
that was based on integral equation. In
addition to smoothness constraint. It can be
said that these weights act as depth weighting
function, but their mathematic formulas are
not known. A 2-D inversion scheme with
lateral constraint and sharp boundaries was
introduced by Auken and Christiansen
(2004). They believed that quasi-layered
model can show actual geology more
accurately in sedimentary environments. In
general, the algorithm used by Loke and
Barker it for RES2DINV software which is
the most versatile one for different cases.
Depth weighting function introduced by Li
and Oldenberg (1996 and 1998) for 3-D
inversion of magnetic and gravity data that
were utilized to compensate for the natural
decay of the kernel matrix values with
increasing depth. The exponent of this
function generally depends on the depth of
the anomaly; therefore, a reliable priori
information about possible depth range of the
anomaly is required. Li and Oldenberg (1996
and 1998) suggested exponent 2 and 3 for
gravity and magnetic methods, respectively.
In the absence of this, constraint cells that are
near to the surface have larger weights in the
inversion procedure. Depth weighting is
going to be inserted into the inverse
algorithm as weighting matrix with clear
determination of its exponent.

In this paper, the 2-D formula of DC
resistivity kernel obtained by Perez-Flores et
al. (2001) is going to be manipulated, but
they used it just for dipole-dipole array. Here
we extend it for other geoelectric arrays.
Weighted damped least-squares solution
including depth weighting function as
weighting matrix is adopted for inversion
algorithm. Regularization parameter and the
exponent of depth weighting are the critical
parameters for this algorithm which are going
to be addressed how to be determined. This
technique is applied on different synthetic
and real data sets and the results will be
compared with Res2dinv software, which is
the most widespread and standard software
for 2-D DC resistivity data. Exact synthetic
data are calculated by Res2dmod.

2. Methodology

2-1. 2-D forward operator

3-D formula of DC resistivity Kernel
obtained by Perez-Flores et al. (2001) is as
Equation (1):

Kpp = CZZ [(rc _ ri)(rj _ rc) with i
71

3
Ire — 1|1 — x|
=A.B and j=M.N

where

-nn+1)(n+2)a
am

C= )

where re, r; and r; are vectors defining
coordinates of cell centers, current and
potential electrodes, respectively, a is dipole
separation and n is the values multiplied by
dipole separation to increase the distance
between current and potential electrodes in
order investigate greater depths. Vectors rg,
r; and rj are generally defined as:

re = x4+ yj+zk

Ir; = Xii + yl] + Zl'k (2)
In fact, the integral form of the interested
forward problem can be considered as a
Fred-Holm Integral Equation of the first kind
(IFKs). Integrating the Equation (1) in y
direction from -oo to o leads to the 2-D form
of IFKs (Varfinezhad and Oskooi, 2019):

d(s) = [ G(s.x..z.)m(x..z.)dxdz 3)

where s represents current and potential



A Semi-Automatic 2-D Linear Inversion Algorithm Including Depth ... 67

electrodes, d is the logarithm of apparent
resistivity values, (x..z.) are coordinates of
points of the interested area, G is kernel and
m is the model.

Dividing the subsurface to n, X n, cells and
discretizing the previous equation gives rise

to the following matrix  equation
(Varfinezhad and Oskooi, 2019):
d=Am 4)

where A is the 2-D forward operator, and
readers are referred to the forward modeling
paper by Varfinezhad and Oskooi (2019) for
efficient calculation of forward operator.

2-2. Inversion algorithm

Solving Equation (4) in order to find the
model parameters m is made by inversion.
For an initial model m, and from Equation
(4), forward response is computed as:

Ama = do (5)
Subtracting Equation (5) from (4), we have:

Alm-m,) =d —d,
or AAm =Ad since Am=m —
m,. Ad=d—-d, (6)

By multiplying W,, AT on the both sides of
Equation (6), Equation (7) is obtained:

W,,ATA(m —m,) = W,,AT(d—d,) (7)

W, is the weighting matrix.
Updated term Am = m —m, is calculated
as:

(m - ma) =
Wn,ATA) (W AT)(d — dy) 8)

Regularizing Equation (8) by taking
advantage of the zeroth-order Tikhonov
regularization technique leads to Equation

(9):

m=m, + (W,ATA + a2 (W,,AT)
(d - Ama) (9)

I and a are identity matrix and
regularization parameter, respectively. W,,
representing depth weighting matrix and is
defined as:

1
Wn =15 (10)

where z. is the z coordinates of cell
centers and [ is depth weighting exponent
and we are trying to address how this to
be chosen. The algorithm is started with an
initial model m, that assumed here to be
a homogenous model with apparent
resistivity equal to the background wvalue
of observed data, but it should be said
that other initial models derived from
any other geophysical methods or a priori
information can also be used, which is
not the case in both synthetic and real
cases of this paper. Iterative inversion
procedure stops after four iterations, and it
rarely needs to be changed to the other
values, but desired solution is always
captured during 10 iterations. @ and f are
mostly constant values and only for some
cases replacement of other values are
required. These replacements are also very
easy to be made as will be shown in the
following sections. Ultimately, in addition to
simplicity, effectiveness, the IE code is a
semi-automatic code.

3. Synthetic models

Three different synthetic models are
considered to investigate the efficiency of the
suggested technique, and Res2dmod software
is used for calculating model forward
responses to produce exact synthetic data.
Inversion result derived from the IE
technique are compared with the results of
Res2dinv  software to demonstrate its
productivity. Res2dinv results are shown in
MATLAB to have an identical representation
system for both methods and comparisons
can be made better. For all cases, if the
profile length is L, and a is the smallest
electrode spacing, then the number of cells in
x and z directions (ny, n,) and the cell lengths
Ix and |, are determined as n,=L/a, n,=L/(4a)
and l,=l=a.

3-1. Four conductive anomalies (Dipole-
Dipolearray)

First, the synthetic model is composed of
four conductive anomalies with the same
resistivity value of 20 Q.m surrounded by a
homogenous background with resistivity 100
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Q.m (see Figure 1). Dipole-dipole array with
dipole separation of 10 m was used
to calculate synthetic data and the computed
apparent resistivities are made for n from 1
to 9. It should be mentioned that the forward
modeling of this case using linear integral
equation was made by Varfinezhad
and Oskooi (2019) and the result is compared
with that of Res2dmod software for which
RMS value was 7.5%. Here our
concentration is on inversion of exact
data using linear integral equation
to investigate its productivity. Retrieved
models by the algorithm, Res2dinv
and Perez-Flores et al. (2001) technique
are shown in Figure 2. Comparing the results
is suggestive of presented algorithm
productivity and it can be asserted that
its result is somewhat better than Res2dinv.
It can also be observed that the inversion
model obtained from the algorithm

Ps.2

is significantly superior to the reconstructed
model derived by Perez-Flores et al.
Regularization parameter, depth weighting
exponent and number of iterations are 0.1, 1
and 4, respectively. For most synthetic
and real cases, these values are constant,
and they need to be changed rarely.
Therefore, these values can be chosen as
default values for inverse procedure and
inversion algorithm is a semi-automatic one.
Two notes are suggested for changing default
values: (i) if you think your recovered model
is mnoisy, 0.5 can be considered for
regularization parameter (ii) if you expect to
see anomaly (anomalies) in less depth
(depths) or subsurface is layered earth, 0.5 is
suggested for the exponent of depth
weighting function. RMS error values of the
forward responses computed from IE
algorithm and Res2dinv are 4.6% and 5.1%,
respectively.

Perez model (Dipole-Dipole array)
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Figure 1. Four conductive anomalies surrounded by a resistive homogenous medium (top) and its forward response

(bottom) calculated by RES2DMOD software.
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Figure 2. Reconstructed model derived by (a) IE code (b) Res2dinv software and (c) Perez-Flores et al. (2001). RMS
error values of the forward responses computed from IE algorithm and Res2dinv are 4.6% and 5.1%,
respectively.

3-2. block and dykes (Wenner Alfa)

The second synthetic case is a model of 12
blocks and dykes with different sizes and
depths immersed in a homogeneous
background with resistivity 1 Q.m. The
interested blocks and dyke resistivity
values are 5 or 25 Q.m. Wenner alfa array

with unit electrode spacing is used for
this complicated model. Figure 3 shows
the synthetic model and computed data
by Res2dmod software. Inverting synthetic
data with IE code and inverse software leads
to the results represented in Figure 4. Both
methods recover 10 from 12 anomalies
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and the first two blocks close to the start
of the profile and thick dykes located at 40
and 48 m are retrieved as one anomaly
because all of them are resistive relative to
the background, and their effects are mixed
with each other. It should be noted that,
however, the two thick dykes are enough
separated from each other, in contrast to the
first two blocks, but their discriminations are
not made because (i) penetrating to deeper
depths demands the increase of electrode
separations and consequently losing lateral
resolution, and (i) deeper dyke is less
resistive  despite its more thickness.
Therefore, recovered anomaly is much more
correlated with dykes positioned at 40 m and
the dyke located at 48 m made the retrieved
anomaly to be as an inclined one. This result
can be seen well in IE inversion section.
Comparing both IE and Res2dinv results is
generally indicative of more resolved
subsurface section derived by IE code. It can
be asserted that the dyke place at 8 m and the
small block at 20 m are the only anomalies
retrieved better by the software and its
advantage is related to its better depth
extension recovery and clearer anomaly for
the dyke and block, respectively. Default
values of 0.1, 1 and 4 were chosen for
regularization parameter, depth weighting
exponent and number of iteration,
respectively.

3-3.  Fault and block
Schlumber ger)

The last considered numerical example is the
model of fault and block using Wenner-
Schlumberger array (Figure 5). Fault is made

(Wenner -

Ps.2
0.0 16.0
:

up of two areas with resistivity values of 10
and 40 Q.m, and the block resistivity was
considered to be 1 Q.m. Depth to the top of
both of them are assumed to be 0.75 m, and
horizontal ranges of fault and block are from
0 to 17 and 24 to 26, respectively. Vertical
extension of block is to 1.8 m, while fault is
continued to the end of the area. Data are
computed with 10 electrode spacing from 1
to 10 m. Figure 6 demonstrates the inversion
section obtained by IE code and Res2dinv
software. Horizontal position of the fault
vertical boundary retrieved by IE code and
software are close to 17 m (horizontal
position of vertical boundary of the true
fault), but recovered boundary by IE code is
clearer than the software, while left side of it
is recovered better by the software. Depth to
top of the fault obtained by IE code and the
software are close to 1 and 1.5 m,
respectively, indicating better reconstruction
by IE code; however, the transition area is
smoothly changing especially for Res2dinv
model. Comparing blocks in both inversion
images with true block is demonstrative of
well recovery of depth to top of the anomaly
and horizontal position and extension
obtained by both methods but vertical
extension of the block derived by IE code is
in more correspondence with the true one
than the block reconstructed by the software.
RMS error values of the forward responses
derived from inversion solutions by IE and
software are 3.5% and 3.8%, respectively,
expressing insignificant difference between
two methods and it is consistent with relative
better result draw out from IE inversion
algorithm.
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Figure 3. True model of some blocks and dykes in a uniform background and its pseudo-section for Wenner Alfa array.
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Figure 6. Inversion model attained from (a) IE, (b) RES2DINV software.
4. Discussion same can be done for others.

In this section, we are going to examine the
effect of depth weighting exponent and noise
on IE algorithm and it will be demonstrated
that why: i) depth weighting exponent is
chosen to be 1, ii) regularization parameter
can be increased to 0.5 for noisy data;
however, it should be generally selected
depending on the noise level. We know noise
level in the synthetic cases but complexity of
the interested model is also important. Here,
we want to show that for a relatively complex
model and for Gaussian noise with the level
of 5% and 7.5%, 0.5 is a good choice. First
synthetic case (Perez-Flores model) is
adopted for this examination; however, the

4-1 Depth weighting effect

At first, the effect of depth weighting
exponent on inversion result of IE algorithm
is investigated, while other inverse
parameters are fixed  (regularization
parameter and number of iterations are
assumed to 0.1 and 4, respectively). Figure 7
shows the inversion results for exponent
values of 0, 0.5, 1 and 1.5 and two important
conclusions can be made from this figures: 1)
increasing depth weighting exponent leads to
recovering anomalies in deeper depths and as
we suggested 1 is a good choice. In other two
synthetic cases, it was shown that exponent



A Semi-Automatic 2-D Linear Inversion Algorithm Including Depth ... 73

equal 1 results in satisfying retrieved
sections, II) increasing depth weighting
produces more resolved models and for
higher values than 1 this increased resolution
is at the cost of losing stability of the
solution. In other words, depth weighting
function has a contribution in regularization
term so that the larger exponent value leads
to more resolved but more unstable solution.
The same occurs when we use small values
for regularization parameter. These changes
in reconstructed models due to the presence
of depth weighting function can be justified
according to Equation (10). W, is a diagonal
matrice and after multiplication by ATA it
changes only the diagonal elements of ATA
which is the same that is done by
regularization parameter in terms of
regularization term.

First, real case shows that 0.5 for layered
case is an appropriate choice and
demonstrating the proper exponent of 1 for
non-layered mediums will be made by the
second real data set.

4-2 Noise effect

regularization parameter
Now, the effect of noise on IE inversion
algorithm and adopting regularization
parameter are probed. Gaussian noise with
two levels 5% and 7.5 % of maximum value
of data were added to the data, and we
increased regularization parameter from 0.05

and  choosing
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reconstructed models from 5% noisy data for
regularization parameters of 0.05, 0.1, 0.5, 1
and 1.5, respectively. Increasing
regularization parameter solves the problem
of instability of the inverse solution but
resolution is limited as we expect, and
considering trade-off between resolution and
stability of the solution result in choosing 0.5
as a desired value for regularization
parameter. Augmentation of noise level to
7.5% make inverse solution more unstable
and the same procedure are repeated for
mentioned regularization parameter values
(Figure 8(f-))), and our optimal value can be
0.5. Therefore, 0.5 can be a good choice for
noisy data at these levels considered here,
which are logical levels for many data sets,
but for less noisy data smaller values and for
noisier data larger values must be used. It
should be said that relatively high level of
noise (7.5%) was considered for a relatively
complicated model, and we should take into
account that we are using a linear operator.
Considering  the  difference  between
computed data by exact method, using finite-
difference or finite-element numerical
techniques in nonlinear form or this linear
method, by adding this level of noise, we can
say that this simple algorithm is an efficient
enough technique to be used for inverting DC
resistivity data.
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5. Real data: Archeological data (dipole-
dipole)

Resistivity data set of a profile in the
archeological area of Pompeii are used as the
second real case to examine the performance
of the this IE code. Resistivity profile is 35.5
m. Apparent resistivity data are collected by
dipole-dipole array with three different
dipole separations of 0.5, 1 and 2 m, which
satisfies the required resolution and depth of
exploration for the case. Number of the
acquired apparent resistivity data for this
profile is 597. Positions of the underground
walls and the adopted profile can be observed
in the map shown in Figure 9. The subsurface
is discretized into 71 by 8 regular square cells
in x and z directions, respectively, with the
length of 0.5 m. The process is started with
the homogenous models with the background
value of 50 Q.m. Regularization parameter
and depth weighting exponent are chosen
based on the mentioned experimental method
and their fixed wvalues are 0.1 and 1,
respectively. Resistivity retrieved models by
IE code and Res2dinv are presented in Figure
10, and wall positions are plotted on both
figures. RMS error values are 3.6% and 4.7%
for computed data from the IE and Res2dinv
inversion models, respectively, indicating
better fit of the computed data from IE result.

According to the map, wall positions are at
the distances 9, 12, 16, 18, 29, 31 and 34 m
from the start of the profile. Recovered
anomaly centers by IE code are at 2, 7, 9,
12.5, 15.5, 18, 25 and 34 m. Except the first
and second anomalies which are not related
to the walls, all other wall positions are in
very good agreement with real positions of
the walls, but it should be said that we lost
the wall at 31 m, and the first and fifth walls
situated at 8 and 29 m are not retrieved as
clear as other walls. Res2dinv results consist
of four major anomalies. First one with the
center at 5 m elongated to 7 m, because
maybe the effect of the first anomaly, which
cannot be a wall, is mixed with the first wall
at 8 m. Second anomaly starts after 10 m and
continue to 15 m indicative of walls at 12 and
15, which are not differentiated from each
other. Third one with the center at 18 m is
exactly recovering wall at this position.
Finally, the last anomaly from 29 to 35 m is
representing the walls at 29, 31 and 34,
which are also not discriminated. It can be
concluded that IE code result retrieves the
walls with more resolution than Res2dinv
software; however, the inverse procedure
used for the code 1is relatively an
uncomplicated semi-automatic algorithm.
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Figure 10. Inversion model derived by (a) IE code, (b) Res2dinv. RMS errors of IE and Res2dinw are 3.6 % and 4.7%,

respectively.

6. Conclusion

A linear semi-automatic inversion algorithm
including depth weighting function was
introduced for 2-D DC resistivity data
inversion around the axis of the formula
extracted by Perez-Flores et al., for the 2-D
linear forward operator of dipole-dipole
array. The algorithm has four parameters:
resistivity of homogeneous initial model that
is equal to the background value of the
measured data, number of iterations,
regularization parameter and depth weighting
exponent for which default values are 4, 0.1
and 1, respectively. For most cases, adopting
these values leads to a desired inversion
model. For the depth weighting function 0.5
is the only replacement value used when the
medium is layered or we know from a priori
information that the exponent equal to 1
produce anomaly or anomalies deeper than
what they must be. The efficiency of the IE
inversion algorithm was examined by
applying it on synthetic and real data sets.
Exact synthetic apparent resistivities for the
three considered synthetic models were
calculated by Res2dmod software. Three

synthetic cases were considered: 1) four
conductive  blocks immersed in a
homogenous background using dipole-dipole
array, II) block and dykes using Wenner alfa
array, and III) fault and block model for
Wenner-Schlumberger array. For the real
case, an archeological data sets of a region in
Pompeii was utilized. The performance of the
algorithm on these synthetic and real cases
were investigated and the results were
compared with corresponding Res2dinv
inversion sections. Generally speaking, IE
inversion algorithm results were superior to
their counterparts derived by Res2dinv.
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