
تعداد نشریات | 162 |
تعداد شمارهها | 6,622 |
تعداد مقالات | 71,539 |
تعداد مشاهده مقاله | 126,869,991 |
تعداد دریافت فایل اصل مقاله | 99,909,796 |
تخمین عمق کوری با استفاده از آنالیز طیفی دادههای مغناطیسی هوابرد جهت پتانسیلیابی منابع زمینگرمایی؛ مطالعه موردی: شرق استان کرمان | ||
فیزیک زمین و فضا | ||
مقاله 2، دوره 46، شماره 1، اردیبهشت 1399، صفحه 21-34 اصل مقاله (1015.42 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2020.284503.1007134 | ||
نویسندگان | ||
محمدفهیم آویش1؛ حجتاله رنجبر2؛ آزاده حجت* 3؛ سعید کریمینسب4 | ||
1دانشجوی کارشناسی ارشد، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
2استاد، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
3استادیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
4دانشیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
چکیده | ||
در این مطالعه از آنالیز طیفی دادههای مغناطیسی هوابرد در محدودهای در شرق استان کرمان جهت شناسایی مناطق دارای شار زمینگرمایی استفاده شد. ابتدا تصحیح مربوط به میدان مغناطیسی مرجع با مدل IGRF انجام و سپس فیلتر برگردان به قطب بر روی دادهها اعمال شد. سپس بهمنظور حذف اثرات ناشی از توپوگرافی، خصوصیات زمینشناسی و میدانهای مغناطیسی هسته، از فیلتر میانگذر استفاده شد. پس از بلوکبندی محدوده و انتقال دادهها به فاز فوریه، طیف توان هر بلوک محاسبه شد. عمق بالایی ( ) و عمق مرکزی ( ) هر بلوک از منحنیهای لگاریتمی طیف توان بهدست آمدند. عمق کف منابع مغناطیسی ( ) که بهعنوان عمق کوری در نظر گرفته میشود از رابطه محاسبه و برای تخمین گرادیان زمینگرمایی و شار زمینگرمایی منطقه استفاده شد. نتایج نشان داد کمترین عمق کوری (5/9-5/8 کیلومتر) با بیشترین گرادیان دما و شار زمینگرمایی در جنوب کویر لوت (جنوب شرق محدوده) و جنوب غرب گلباف در محدوده راین با واحدهای آذرین متنوع و بیشترین عمق کوری در کویر لوت و واحدهای رسوبی شمال منطقه قرار دارد. | ||
کلیدواژهها | ||
دادههای مغناطیسی هوابرد؛ عمق نقطه کوری؛ زمینگرمایی؛ کرمان؛ طیف توان | ||
عنوان مقاله [English] | ||
Curie point depth from spectral analysis of aeromagnetic data for reconnaissance exploration of geothermal potential; Case study: east of Kerman Province | ||
نویسندگان [English] | ||
Mohammad Fahim Avish1؛ Hojjatollah Ranjbar2؛ Azadeh Hojat3؛ Saeed Karimi-Nasab4 | ||
1M.Sc. Student, Department of Mining Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran | ||
2Professor, Department of Mining Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Assistant Professor, Department of Mining Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran | ||
4Associate Professor, Department of Mining Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده [English] | ||
In the recent decade, there has been an increasing interest in developing various resources of renewable energy as an alternative to fossil fuels in Iran. Geothermal energy is one of the promising reservoirs and exploration of geothermal favorability has become one of the main research interests in most parts of the country. Some reconnaissance studies have shown that the Kerman Province can be one of the geothermal potential regions in Iran. Different studies are being performed to prepare the geothermal favorability map for Kerman Province. The aim of this study is to estimate the Curie point depth (CPD), heat flow and geothermal gradient from spectral analysis of aeromagnetic data for reconnaissance exploration of geothermal resources in the east of Kerman Province, southeast of Iran. This area is selected because it is characterized by thermal manifestations such as several hot springs with temperatures between 20–73°C, faults, and igneous rocks in the southern and southwestern parts. Aeromagnetic data were first processed for removing the geomagnetic main field (using the International Geomagnetic Reference Field (IGRF)), reduced to pole (RTP) and band-pass filter. Then, we used spectral analysis technique to estimate the top and bottom boundaries of the magnetized crust. Comparison of magnetic map with geologic map shows a good correlation between the exposed geological units and magnetic signatures. Strong variations in magnetic intensity suggest a variety of magnetic properties. Bandpass filtered data were produced from the RTP aeromagnetic anomalies to isolate near surface and undesired deep effects. Then, the map was divided into thirty blocks, each having 50% of overlap with the adjacent block. A first-order trend was removed from each block, and grids were expanded by 10% using the maximum entropy method to make the edges continuous. Then, each block was analyzed using the spectral centroid method to obtain the depths to the top, centroid and bottom of magnetic sources. First, we calculated the radially averaged log power spectrum of each block. To compute the spectrum of the data, the magnetic anomaly of the area was transformed by 2D Fourier to obtain the average Curie depth. From the slope of the very long wavelength part of the spectrum, the centroid depth (Z0) was estimated, while the average depth to the top (Zt) was estimated from the second longest wavelength part of the spectrum. Using the values obtained for Z0 and Zt, the depth to the bottom (Zb) was calculated for each block using the equation Zb=2Z0−Zt. The depths obtained for the bottom of the magnetized crust are assumed to correspond to Curie point depths where the magnetization of the layer disappears. Variations of the Curie isotherm level can correlate to some indices of geothermal activity (e.g., geothermal gradient and near-surface heat flow) in the study area. The results showed that Curie point depth in the study area varies from 8.5km to 18.2km, and accordingly, the geothermal gradient ranges between 31-67°C/km. The heat flow was estimated in the range 139-294mW/m2 in the study area. The results showed the shallowest Curie depths occurring in the southern part of the area. This is the zone which mainly hosts volcanic rocks and hot springs. | ||
کلیدواژهها [English] | ||
Aeromagnetic data, Curie point depth, geothermal, Kerman, power spectrum | ||
مراجع | ||
آقانباتی، س. ع.، 1385، زمینشناسی و توان معدنی استان کرمان، رشد آموزش زمینشناسی، 46، 13-8. آویش، م. ف.، رنجبر، ح.، حجت، آ. و کریمی نسب، س.، 1396، مطالعات سنجش از دور و مغناطیسسنجی جهت اکتشاف منابع ژئوترمال در منطقه سیرچ-گلباف استان کرمان، پژوهشهای ژئوفیزیک کاربردی، 3(1)، 118-99. امیرپور، ا. و قدس، ع.، 1389، تخمین عمق کوری در ایران با استفاده از دادههای مغناطیس هوایی، چهاردهمین کنفرانس ژئوفیزیک ایران، موسسه ژئوفیزیک دانشگاه تهران. حجت، آ.، حسینزاده گویا، ن. و فاکس ماول، ک.، 1389، ارائه روشی جدید برای شناسایی مناطق دارای پتانسیل زمینگرمایی (ژئوترمال) با استفاده از مدلهای ماهوارهای میدان مغناطیسی پوسته، مجله ژئوفیزیک ایران، 4(1)، 43-33. حسامی، خ.، جمالی، ف. و طبسی، ه.، 1382، نقشه گسلهای فعال ایران، پژوهشگاه بینالمللی زلزلهشناسی و مهندسی زلزله، گروه لرزه، زمینساخت، پژوهشکده زلزلهشناسی. حیدرآبادی پور، ن.، حجت، آ.، رنجبر، ح. و کریمی نسب، س.، 1396، تخمین عمق نقطه کوری با استفاده از تحلیل طیفی دادههای مغناطیسی هوابرد بهمنظور اکتشاف مقدماتی پتانسیل زمینگرمایی در محدوده مرکزی استان کرمان، پژوهشهای ژئوفیزیک کاربردی، 3(2)، 176-167. حیدرنژاد صنمی، پ. و نجاتی کلاته، ع.، 1398، تخمین پارامتر فرکتالی و عمق کوری منابع مغناطیسی با استفاده از آنالیز طیف توان دی-فرکتال شده دادههای مغناطیس هوابرد، آذربایجان شرقی، ایران، پژوهشهای ژئوفیزیک کاربردی، 5(1)، 57-72. سهندی، م. ر.، 1370، نقشه زمینشناسی کرمان، مقیاس 1:250000، سازمان زمینشناسی و اکتشافات معدنی کشور. شجاعی، م. ر.، 1382، مجموعه اطلاعات پیرامون چشمههای آبگرم استان کرمان، مطالعه هیدروژئولوژی شرکت سهامی آب منطقهای کرمان. فردوسی، ح. و مرادزاده، ع.، 1397، تخمین عمق کوری و جریان حرارتی استان زنجان جهت شناسایی مناطق مستعد منابع زمینگرمایی بهکمک دادههای مغناطیس هوابرد با قدرت تفکیک بالا، مجموعه مقالات هجدهمین کنفرانس ژئوفیزیک ایران، 878-881. نوراللهی، ی.، جمال الدینی، م. و غضبان، ف.، 1377، پروژه پتانسیلسنجی انرژی زمینگرمایی ایران، بررسی روشهای پتانسیلسنجی انرژی زمینگرمایی در جهان، سازمان انرژیهای نو ایران، گروه زمینگرمایی، تهران.
Aghanabati, A., 1993, Geological quadrangle map of Iran, No. J11, (Bam Quadrangle Map 1:250000), Geological Survey of Iran. Aydın, İ., Karat, H. İ. and Koçak, A., 2005, Curie-point depth map of Turkey, Geophysical Journal International, 162(2), 633-640. Bansal, A. R., Gabriel, G., Dimri, V. P. and Krawczyk, C. M., 2011, Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany, Geophysics, 76(3), L11-L22. Bhattacharyya, B. K., 1965, Two-dimensional harmonic analysis as a tool for magnetic interpretation, Geophysics, 30(5), 829-857. Bhattacharyya, B. K., 1966, Continuous spectrum of the total-magnetic-field anomaly due to a rectangular prismatic body, Geophysics, 31(1), 97-121. Bhattacharyya, B. K. and Leu, L. K., 1975a, Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance, Journal of Geophysical Research, 80(32), 4461-4465. Bhattacharyya, B. K. and Leu, L. K., 1975b, Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures, Geophysics, 40(6), 993-1013. Bhattacharyya, B. K. and Leu, L. K., 1977, Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies, Geophysics, 42(1), 41-50. Blakely, R. J., 1988, Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada, Journal of Geophysical Research, 93, 817-832. Blakely, R. J., 1995, Potential theory in gravity and magnetic applications, Cambridge University Press, Cambridge, 441 p. Bouligand, C., Glen, J. M. and Blakely, R. J., 2009, Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, Journal of Geophysical Research: Solid Earth, 114(B11), 1-25. Chopping, R. and Kennett, B. L. N., 2015, Maximum depth of magnetisation of Australia, its uncertainty, and implications for Curie depth, GeoResJ, 7, 70–77. Georgsson, L. S., 2009, Geophysical methods used in geothermal exploration. Presentation in short course IV on exploration for geothermal resources, UNU-GTP KenGen, GDC, Naivasha, Kenya, 1-16. Hisarli, Z. M., Dolmaz, M. N., Okyar, M., Etiz, A. and Orbay, N., 2012, Investigation into regional thermal structure of the Thrace Region, NW Turkey, from aeromagnetic and borehole data, Studia Geophysica and Geodaetica, 56(1), 269-291. Hojat, A., Fox Maule, C. and Hemant Singh, K., 2016, Reconnaissance exploration of potential geothermal sites in Kerman province, using Curie depth calculations, Journal of the Earth and Space Physics, 41 (4), 95-104. Hsieh, H. H., Chen, C. H., Lin, P. Y. and Yen, H. Y., 2014, Curie point depth from spectral analysis of magnetic data in Taiwan, Journal of Asian Earth Sciences, 90, 26-33. Lanza, R. and Meloni, A., 2006, The Earth's magnetism, Springer-Verlag Berlin Heidelberg, 278 p. Maden, N., 2010, Curie-point depth from spectral analysis of magnetic data in Erciyes stratovolcano (Central Turkey), Pure and Applied Geophysics, 167(3), 349-358. Nwankwo L. I. and Shehu, A. T., 2015, Evaluation of Curie-point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria, Journal of Volcanology and Geothermal Research, 305, 45–55. Okubo, Y., Graf, R., Hansen, R., Ogawa, K. and Tsu, H., 1985, Curie point depths of the island of Kyushu and surrounding areas, Japan, Geophysics, 53(3), 481–494. Ravat, D., Pignatelli, A., Nicolosi, I. and Chiappini, M., 2007, A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int., 169, 421–434. Shuey, R. T., Schellinger, D. K., Tripp, A. C. and Alley, L. B., 1977, Curie depth determination from aeromagnetic spectra, Geophysical Journal International, 50(1), 75-101. Spector, A. and Bhattacharyya, B. K., 1966, Energy density spectrum and autocorrelation function of anomalies due to simple magnetic models, Geophysical Prospecting, 14(3), 242-272. Spector, A. and Grant, F. S., 1970, Statistical models for interpreting aeromagnetic data, Geophysics, 35(2), 293-302. Stampolidis, A. and Tsokas, G. N., 2002, Curie point depths of Macedonia and Thrace, N. Greece, Pure and Applied Geophysics, 159, 2659–2671. Tanaka, A., Okubo, Y. and Matsubayashi, O., 1999, Curie point depth based on spectrum analysis of the magnetic anomaly data in east and southeast Asia, Tectonophysics, 306, 461–470. Tezcan, A. K., 1979, Geothermal studies, their present status and contribution to heat flow contouring in Turkey. In (Cermak, V., Rybach, L. eds.), Terrestrial Heat Flow in Europe, Springer, Berlin, 283–291. Turcotte, D. L. and Schubert, G., 1982, Geodynamics applications of continuum physics to geologic problems, Wiley, New York, 450 p. Yousefi, H., Ehara, S. and Noorollahi, Y., 2007, Geothermal potential site selection using gis in Iran, Thirty-Second workshops on geothermal reservoir engineering, Stanford University, California, pp. 174-182. | ||
آمار تعداد مشاهده مقاله: 1,353 تعداد دریافت فایل اصل مقاله: 841 |