Direct Limit of Krasner (m, n)-Hyperrings

A. Asadi¹ and R. Ameri^{2*}

Department of Mathematics, Payame Noor University, Tehran, Islamic Republic of Iran
School of Mathematics, Statistic and Computer Sciences, University of Tehran, Tehran, Islamic Republic of Iran

Received: 25 June 2018 / Revised: 9 November 2019 / Accepted: 21 December 2019

Abstract

The purpose of this paper is the study of direct limits in category of Krasner (m, n)-hyperrings. In this regards we introduce and study direct limit of a direct system in category (m, n)-hyperrings. Also, we consider fundamental relation Γ^* , as the smallest equivalence relation on an (m, n)-hyperring R such that the quotient space R / Γ^* is an (m, n)-ring, to introduce the fundamental functor from category of Krasner (m, n)-hyperrings to the category of (m, n)-rings. Finally, we study the relationship between fundamental functor and direct limit on Krasner (m, n)-hyperrings. In particular, we prove that the fundamental functor is exact and obtain some its basic properties.

Keywords: Krasner (m, n)-hyperrings; Direct system; Fundamental functor; Direct limit.

Mathematics Subject Classification 2010: 20N20, 20N25.

Introduction

An n – ary hyperoperation is a mapping $f: \underbrace{H \times \cdots \times H}_{n} \to \operatorname{P}^{*}(H)$, where $\operatorname{P}^{*}(H)$ is

the set of all nonempty subsets of H. In this case, (H,f) is said to be an n – ary hypergroupoid. This is a generalization of a hypergroupoid (when n=2), that was defined by Marty in [1] as founder of hyperstructure theory (for more details refer to [2], [3], [4], [5], [6], [7], [8] and [9]. An n – ary hyperoperation initiated an n – ary hyperstructure. Nowadays, n – ary hyperstructures is a well-known field of researches on hyperstructures theory(for more see [10], [11], [12], [13], [14], [15], [16] and [17]). Also, recently some researchers studied direct systems

and direct limit on (fuzzy) hyperstructures (for instance see [18], [19], [20], [21], [22] and [23]).

In this paper, we consider category of Krasner (m, n)-hyperrings ([11]), introduce, and study direct limit of a direct system in this category. In this regards, we introduce the fundamental functor from category of (m, n)-hyperrings into category of (m, n)-rings, via the fundamental relation. In particular, we prove that this functor preserves all direct limits.

Preliminaries

In this section, we present some basic concepts of n – ary hyperstructures which we need to development our paper.

^{*} Corresponding author: Tel / Fax: +98216641217; Email: rameri@ut.ac.ir

In dealing with n-ary hyperstructures, for abbreviation, we will show the sequence $x_i, x_{i+1}, ..., x_j$ by x_i^j , and we put $x_i^j = \emptyset$ for j < i. Hence $f(x_1, ..., x_i, y_{i+1}, ..., y_j, z_{j+1}, ..., z_n)$ will be written as $f(x_1^i, y_{i+1}^j, z_{j+1}^n)$. Also, if $y_{i+1} = \cdots = y_j = y$, then it is shown by $f(x_1^i, y^{(j-i)}, z_{j+1}^n)$. Moreover, if f is an n-ary hyperoperation and t = l(n-1)+1, for some $l \ge 0$, then t-ary hyperoperation f(t) is given by

 $f_{(l)}(x_1^{l(n-1)+1}) = \underbrace{f(f(...,f(f)(x_1^n)))}_{l}$

 $(x_{n+1}^{2n-1}),...), x_{(l-1)(n-1)+1}^{l(n-1)+1}$. For nonempty subsets $A_1,...,A_n$ H we define $f(A_1^n) = \bigcup \{ f(x_1^n) | x_i \in A_i, i = 1,...,n \}.$ $(H_{\lambda}f)$ is an n-ary semihypergroup if f is associative, that is, $f\left(x_{1}^{i-1}, f\left(x_{i}^{n+i-1}\right), x_{n+i}^{2n-1}\right)$ $=f(x_1^{j-1},f(x_j^{n+j-1}),x_{n+j}^{2n-1}),$ holds, for every $1 \le i < j \le n$ and all $x_1, x_2, ..., x_{2n-1} \in H$ If (H, f) is an n-ary semihypergroup and $f(x_1^{i-1}, H, x_{i+1}^n) = H$ for all $x_1^n \in H$ and $1 \le i \le n$, then (H, f) is called an n-ary hypergroup. (H, f) is said to be commutative, if for all $\sigma \in S_n$ and for every $a_1^n \in H$, we have $f(a_1^n) = f(a_{\sigma(1)}, ..., a_{\sigma(n)})$. moreover, a nonempty subset B of an n – ary hypergroup (H, f) is called an n – ary subhypergroup of H, if (B, f) is an n – ary hypergroup.

Let (H,f) be a commutative n-ary hypergroup. (H,f) is called a canonical n-ary hypergroup ([12]), if

- i) there exists a unique $e \in H$ such that for every $x \in H$, $f(x, e^{n-1}) = \{x\}$;
- ii) for all $x \in H$ there exists a unique $x^{-1} \in H$ such that $e \in f(x, x^{-1}, e^{n-2})$;
- iii)if $x \in f(x_1^n)$ then, for all $1 \le i \le n$ we have $x_i \in f(x_i, x_{i-1}^{-1}, \dots, x_{i-1}^{-1}, x_{i+1}^{-1}, \dots, x_n^{-1})$.

Definition [16] (R, f, g) is said to be an (m, n)-hyperring, if:

- i) (R, f) is an m-ary hypergroup.
- ii) (R,g) Is an n -ary semihypergroup.

The n-ary hyperoperation g is distributive with respect to the m-ary hyperoperation f, i.e., for all $a_1^{i-1}, a_{i+1}^n, x_1^m \in R$, and $1 \le i \le n$ $g(a_1^{i-1}, f(x_1^m), a_{i+1}^n) = f(g(a_1^{i-1}, x_1, a_{i+1}^n), \ldots, g(a_1^{i-1}, x_m, a_{i+1}^n))$. A nonempty subset S of R is called an (m, n)-subhyperring, if (R, f, g) is an (m, n)-hyperring. Let $i \in \{1, ..., n\}$. An i-hyperideal I of R is an (m, n)-subhyperring of R such that $g(x_1^{i-1}, I, x_{i+1}^n) \subseteq I$ for every $x_1^n \in R$. I is called a hyperideal, if I is a i-hyperideal, for all $1 \le i \le n$.

An (m,n)-hyperring (R,f,g) is said to be Krasner if (R,f) is a canonical n-ary hypergroup and (R,g) is an n-ary semigroup such that 0 is a zero element (absorbing element) of the n-ary operation g, i.e. for all $x_2^n \in R$ we have $g(0,x_2^n) = g(x_2,0,x_3^n) = \cdots = g(x_2^n,0)$.

Example [16] Suppose that (L, \vee, \wedge) is a relatively complemented distributive lattice. Define f and g on L as follows: $f(a_1, a_2) = \{c \in L \mid a_1 \wedge c = a_2 \wedge c = a_1 \wedge a_2\}$, and $g(a_1^n) = \bigvee_{i=1}^n a_i$, $\forall a_1^n \in L$.

It is easy to verify that (L, f, g) is a Krasner (2, n)-hyperring.

Definition [24] A category consists of the following data:

- Objects A, B, C
- Arrows: f, g, h
- For each arrow f, there are given objects dom(f), cod(f) called the domain and codomain of f. We write $f: A \rightarrow B$ to indicate that A = dom(f) and B = cod(f).
- Given arrows $f: A \rightarrow B$ and $g: B \rightarrow C$, that is, with cod(f) = dom(g) there is given an

arrow $g \circ f : A \to C$ called the composite of f and g.

- \bullet For each object A, there is given an arrow $1_A: A \to A$ called the identity arrow of A. These data are required to satisfy the following laws:
- Associatively: $h \circ (g \circ f) = (h \circ g) \circ f$ for all $f: A \to B, g: B \to C, h: C \to D$.
 - Unit: $f \circ 1_A = f = 1_A \circ f$ for all $f : A \to B$.

Example [24] group and group homomorphisms is a category.

Definition [24] In any category C, an object

- 0 is initial if for any object c there is a unique morphism $0 \rightarrow c$
- 1 is terminal if for any object c there is a unique morphism $c \rightarrow 1$.

Definition [24] A functor $F: C \rightarrow D$ between categories C and D is a mapping of objects and arrows to arrows, in such a way that

$$F(f:A \rightarrow B) =$$

- $F(f:A \rightarrow B) =$ $F(f):F(A) \rightarrow F(B),$
- $F(1_A) = 1_{F(A)}$,
- $F(g \circ f) = F(g) \circ F(f)$.

Definition [24] Let J and C be categories. A diagram of type J in C is a functor $F: J \to C$.

We write the objects in the index category J lower case, i, j, ... and the values of the functor $D: J \to C$ in the form D_i, D_j , etc.

A cone to a diagram D consists of an object c in C and a family of arrows in C, $c_i: C \to D_i$ one for each object $j \in J$, such that for each arrow $\alpha: i \to j$ in J, the following triangle commutes:

A morphism of cones $\vartheta:(C,c_i)\to(C',c_i')$ is an arrow ϑ in C making each triangle,

commute. Thus we have evident category Cone(D) of cones to D.

Definition [24] A limit for a diagram $D: J \rightarrow C$ is a terminal object in category Cone(D).

We often denote a limit in the form $p_i: \underline{\lim} D_i \to D_i$.

In general, a colimit for a diagram $D: J \to C$ is of course, an initial object in the category of cocones. We write such a colimit in the form $\underline{\lim}D_i$.

Results

Direct System (Limit) of Krasner (m,n)-Hyperrings

We say a partially ordered set I is a directed set if for each $(i, j) \in I \times I$ there exists $k \in I$ such that $i \le k$ and $j \le k$. Let I be a directed set and (m,n)-KH, the category of Krasner (m,n)with strong homomorphisms. Let $(R_i, f_i, g_i)_{i \in I}$ be a family of Krasner (m, n)hyperrings indexed by I. For each pair $i, j \in I$ such that $i \leq j$, let $\phi_i^i : R_i \to R_i$ be a strong homomorphism where ϕ_i^i is the identity homomorphism for all $i \in I$ and $\phi_k^i = \phi_k^{j \circ} \phi_i^i$ for $i \leq j \leq k$. Then $R = (R_i, \phi_i^i)$ is said to be a direct system over the direct set I.

The direct limit of a direct system $R = (R_i, \phi_i^l)$ in (m,n) – KH denoted by $\underline{\lim}R_i$, is a Krasner (m,n) -hyperring and a family of strong homomorphisms

 $\alpha_i: R_i \to \underline{\lim} R_i \mid \alpha_i = \alpha_j \phi_j^i; i \leq j \}$, which for every Krasner (m,n)-hyperrings K and every family of strong homomorphisms $\{\mu_i: R_i \to K \mid \mu_i = \mu_j \phi_j^i; i \leq j \}$ there is a unique strong homomorphism $\beta: \underline{\lim} R_i \to K$ such that the following diagram is commutated:

Let $X = \bigcup_{i \in I} R_i$ and define the following equivalence relation on X for $a_i \in R_i$ and $a_j \in R_j$: $a_i \sim a_j \iff \phi_k^i a_i = \phi_k^j a_j$ for $k \geq i$, j. Suppose that $\overline{X} = \{[a_i] \mid a_i \in X\}$ where $[a_i]$ is the equivalent class of a_i . It is clear that $a_i \sim \phi_j^i a_j$ for $j \geq i$ in \overline{X} .

Theorem 1.1. (\overline{X},F) is an m-ary canonical hypergroup where $\{[x] | x \in f(a_{1k}^{mk}); a_{lk} = \phi_k^l a_l \}$ and $a_{lk} = \phi_k^l a_l$ for $k \ge l$, $1 \le l \le m$.

Proof. First we show that F is well-defined. Let $([a_1],\cdots,[a_m])=([b_1],\cdots,[b_m])$, then $[a_i]=[b_i]$ for all $1\leq i\leq m$. Thus, for every $1\leq i\leq m$ there exist $k_i\geq i$ such that $\phi_{k_i}^ia_i=\phi_{k_i}^ib_i$. Hence, we have $[x]\in F([a_1],\cdots,[a_m])\Leftrightarrow x\in f(\phi_{k_{(m+1)}}^1a_1,\cdots,\phi_{k_{(m+1)}}^ma_m)$ for $k_{(m+1)}\geq 1,\cdots,m\Leftrightarrow x\in f(\phi_k^1a_1,\cdots,\phi_k^ma_m)$ for $k\geq k_1,\cdots,k_m,k_{(m+1)}\Leftrightarrow x\in f(\phi_k^{k_1}\phi_{k_1}^1a_1,\cdots,\phi_k^{k_m}\phi_{k_m}^ma_m)\Leftrightarrow x\in f(\phi_k^{k_1}\phi_{k_1}^1a_1,\cdots,\phi_k^{k_m}\phi_{k_m}^ma_m)\Leftrightarrow x\in f(\phi_k^{k_1}\phi_{k_1}^1b_1,\cdots,\phi_k^{k_m}\phi_{k_m}^mb_m)\Leftrightarrow x\in f(\phi_k^{k_1}b_1,\cdots,\phi_k^{k_m}b_m)\Leftrightarrow [x]\in F([b_1],\cdots,[b_m])$. So, F is well-defined. Now, let $[a]_1^{2^m-1}\in \overline{X}$ and

 $k \ge 1, \dots, 2m-1$. let $[x] \in F([a]_1^{i-1}, F([a]_i^{m+i-1}), [a]_{m+i}^{2m-1})$ all $1 \le i \le m$. So, there exists $[y] \in F([a]_i^{m+i-1})$ such that $[x] \in F([a]_1^{i-1}, [y], [a]_{m+i}^{2m-1})$ Therefore $y \in f\left(a_{ik}, \cdots, a_{(m+i-1)k}\right)$ some $k \geq i, \dots, m+i-1$ that $\phi_k^i a_i = a_{ik}, \dots, \phi_k^{m+i-1} a_{m+i-1} = a_{(m+i-1)k}$ Also $x \in f(a_{1k}, \dots, a_{(i-1)k}, b_k, a_{(m+i)k}, \dots, a_{(2m-1)k})$ for some $k \ge 1, \dots, i-1, m+i, \dots, 2m-1$ such that $\phi_k^1 a_1 = a_{1k}, \dots, \phi_k^{i-1} a_{i-1} = a_{(i-1)k}, \dots, \phi_k^{m+i} a_{m+i} = a_{(m+i)k},$ $\cdots, \phi_k^{2m-1} a_{2m-1} = a_{(2m-1)k} . \qquad \text{Since} \qquad y \in R_k ,$ $b_k = \phi_k^k y = y$. Thus by associativity of R_k we have $x \in f(a_{1k}, \dots, a_{(i-1)k}, b_k, a_{(m+i)k}, \dots, a_{(2m-1)k})$ $= f\left(a_{1k}, \dots, a_{(i-1)k}, y, a_{(m+i)k}, \dots, a_{(2m-1)k}\right)$ $\subseteq f\left(a_{1k}, \dots, a_{(i-1)k}, f\left(a_{ik}, \dots, a_{(m+i-1)k}\right)\right)$ $(a_{(m+i)k}, \dots, a_{(2m-1)k}) = f(a_{1k}, \dots, a_{(j-1)k})$ $f(a_{jk}, \dots, a_{(m+j-1)k}), a_{(m+j)k}, \dots, a_{(2m-1)k}$. So there exist $y' \in f(a_{jk}, \dots, a_{(m+j-1)k})$ such that $x \in f(a_{1k}^{(j-1)k}, y', a_{(m+j)k}^{(2m-1)k})$. Then, $[y'] \in F([a]_i^{m+j-1})$ since $\phi_{k}^{k} v' = v'$, have $[x] \in F([a]_1^{j-1},[y'],[a]_{m+i}^{2m-1})$ Hence $[x] \in F([a]_1^{j-1}, F([a]_i^{m+j-1}), [a]_{m+i}^{2m-1})$ and then for any $m \ge j > i \ge 1 F([a]_1^{i-1}, F([a]_i^{m+i-1}), [a]_{m+i}^{2m-1})$ $\subseteq F([a]_1^{j-1}, F([a]_j^{m+j-1}), [a]_{m+j}^{2m-1})$. Similarly, we can prove the converse of above inclusion. So (X,F) is associative. Now, we prove the reproduction axiom. It is clear that $F([a]_1^{i-1}, \overline{X}, [a]_{i+1}^m) \subseteq \overline{X}$, for $\text{all}[a]_1^m \in \overline{X}$. Assume that $[a]_1^m \in \overline{X}$. Then $\phi_k^j a_j = a_{jk} \in R_k$ for any $k \ge 1, \dots, m$ where $1 \le j \le m$. Since R_k is an m-ary hypergroup, so

 $\text{for all } 1 \leq i \leq m \;, \;\; a_{ik} \in R_k = f \; (a_{1k} \,, \cdots \,, a_{(i-1)k} \,)$

 $, R_{k}, a_{(m+i)k}, \cdots, a_{mk}).$

Then, there exists $a_{k}^{'} \in R_{k}$ such that $a_{ik} \in f\left(a_{1k}^{(i-1)k}, a_{k}^{'}, a_{(m+i)k}^{mk}\right)$ and $\phi_{k}^{k} a_{k}^{'} = a_{k}^{'}$. Thus $[a_{i}] \in F([a]_{1}^{i-1}, [a_{k}^{'}], [a]_{i+1}^{m})$ $\subseteq F([a]_{1}^{i-1}, \overline{X}, [a]_{i+1}^{m})$. Thus, $\overline{X} = F([a]_{1}^{i-1}, \overline{X}, [a]_{i+1}^{m})$ for all $[a]_{1}^{i-1}, [a]_{i+1}^{m} \in \overline{X}$. So (\overline{X}, F) is an m-ary hypergroup.

Since (R_k, f) is a canonical n-ary hypergroup, there exists a unique element $0_k \in R_k$ such that $\{a_k\} = f(a_k, 0_k^{(m-1)})$ for all $a_k \in R_k$. Now let $[a_i] \in \overline{X}$. Then there exists $k \ge i$ such that $\phi_k^i a_i = a_k \in R_k$, since (R_k, f) is canonical. Hence $\{a_k\} = f(a_k, 0_k^{(m-1)})$ such that $\phi_k^k 0_k = 0_k$. Since 0_k is unique, so $\{[a_i]\} = F([a_i], [0_k]^{(m-1)})$. Also, since (R_k, f) has canonical property, there exists uniquely $a' \in R_k$ such that $0_k \in f(a_k, a'_k, 0_k^{(m-2)})$. Since $\phi_{k}^{k} a_{k}^{'} = a_{k}^{'}$, $[0_{k}] \in F([a_{i}], [a_{k}], [0_{k}]^{(m-2)})$. Therefore, show $[a_{k}^{'}]$ as the inverse of $[a_{i}]$ is in \overline{X} . Finally, we investigate the reversibility property. Let $[x] \in F([a]_1^m)$. Then there exist $k \ge 1, \dots, n$ such that $x \in f(a_{1k}^{mk})$ and $\phi_k^1 a_1 = a_{1k}, \dots, \phi_k^m a_m = a_{mk}$. Since $x \in R_k$, so $\phi_k^k x = x$ and since (R_k, f) is canonical, we have $a_{ik} \in f(a'_{1k}, \dots, a'_{(i-1)k})$ $(x, a'_{(i+1)k}, a'_{mk})$ for all $1 \le i \le m$. Hence $[a_i] \in F([a_1], \dots, [a_{i-1}], [x], [a_{i+1}], \dots, [a_m])$

Theorem 1.2. (\bar{X}, F, G) is a Krasner (m, n)-hyperring where $G([b_1], \cdots, [b_n]) = [g(b_{1k}^{nk})]$ such that $b_{lk} = \phi_k^l b_l$ for $k \ge l$ and $1 \le l \le n$.

Proof. By Theorem 1.1. (\overline{X}, F) is an m-ary canonical hypergroup. Similarly, we can prove (\overline{X}, G) is an n-ary semigroup. We prove that G is distributive with respect to F. Assume that $[a]_1^{i-1}, [x]_1^m, [a]_{i+1}^n \in \overline{X}$ and for any $1 \le i \le n$, $[y] \in G([a]_1^{i-1}, F([x]_1^m), [a]_{i+1}^n)$. Then there exists $[b] \in F([x]_1^m)$ such that $[y] = G([a]_1^{i-1}, [b], [a]_{i+1}^n)$.

Hence, $b \in f(x_{1k}, \dots, x_{mk})$ for $\phi_k^1 x_1 = x_{1k}, \dots, \phi_k^m x_m = x_{mk}$ with $k \ge 1, \dots, m$. Also $y = g(a_{1k}^{(i-1)k}, c_k, a_{(i+1)k}^{nk})$, such that $\phi_k^1 a_1 = a_{1k}, \dots, \phi_k^{i-1} a_{i-1} = a_{(i-1)k}$, $\phi_k^{i+1} a_{i+1} = a_{(i+1)k}, \dots, \phi_k^n a_n = a_{nk}$ for some $k \ge 1, \dots, i-1, i+1, \dots, n$. Since, $b \in R_k$, we obtain that $y = g(a_{1k}^{(i-1)k}, c_k, a_{(i+1)k}^{nk})$ $= g(a_{1k}^{(i-1)k}, b, a_{(i+1)k}^{nk})$ $\in g(a_{1k}^{(i-1)k}, f(x_{1k}^{mk}), a_{(i+1)k}^{nk})$ $= f(g(a_{1k}^{(i-1)k}, x_{1k}, a_{(i+1)k}^{nk}), \dots, g(a_{1k}^{(i-1)k}, x_{mk}, a_{(i+1)k}^{nk})$, for all $1 \le i \le n$.

 $[y] \in F(G([a]_1^{i-1},[x_1],[a]_{i+1}^n), \dots, G([a]_1^{i-1},[x_m],[a]_{i+1}^n)).$ Similarly, the converse of above inclusion can be obtained

Since, $x_{1k}, \dots, x_{mk} \in R_k$, $\phi_k^k x_i = x_i$. It follows that

Theorem 1.3. \overline{X} is $\underline{\lim} R_i$ in (R_i, ϕ_j^i) , the direct system of Krasner (m, n)-hyperrings indexed by I.

Proof. Consider $\alpha_i : R_i \to \overline{X}$ defined by $\alpha_i(a_i) = [a_i]$ and the following diagram:

For all $a_i \in R_i$ we have $\alpha_j \circ \phi_j^i(a_i) = [\phi_j^i a_i] = [a_i] = \alpha_i(a_i)$ and so the diagram is commutative. Now, let R be a Krasner (m,n)-hyperring and $\{\mu_i \mid \mu_i : R_i \to R\}$ a family of strong homomorphism with $\mu_i = \mu_j \circ \phi_j^i$. Define $\beta : \overline{X} \to R$ by

 $\beta([a_i]) = \mu_i(a_i)$. We show that β is a strong homomorphism and so the universal mapping property holds. First we show that β is well defined. Let $[a_i] = [b_j]$ then there exists $k \ge i, j$ such that

 $\begin{aligned} \phi_k^i a_i &= \phi_k^j b_j \text{ . Thus } \mu_k \left(\phi_k^i a_i \right) = \mu_k \left(\phi_k^j b_j \right), \text{ and so } \\ \mu_i \left(a_i \right) &= \mu_j \left(b_j \right). \text{ Hence, } \beta \text{ is well defined. Now } \\ \text{let } & \left[a_1 \right], \cdots, \left[a_m \right] \in \overline{X} \text{ then } \beta \Big(F([a]_1^m) \Big) = \\ \Big\{ \beta([x\]) \, \big| \, x \in f \left(a_{1k}^{mk} \right); \\ a_{1k} &= \phi_k^l a_l \text{ for } k \geq l \,, 1 \leq l \leq m \Big\} \\ &= \mu_k \left(f \left(a_{1k}^{mk} \right) \right); a_{1k} &= \phi_k^l a_l \text{ for } k \geq l \,, 1 \leq l \leq m \\ &= f \left(\mu_k \left(a_{1k} \right), \cdots, \mu_k \left(a_{mk} \right) \right) \text{ (since } \mu_k \text{ is strong } \\ \text{homomorphism)} &= f \left(\mu_k \left(\phi_k^1 a_1 \right), \cdots, \mu_k \left(\phi_k^m a_m \right) \right) \\ &= f \left(\mu_1(a_1), \cdots, \mu_m \left(a_m \right) \right) = f \left(\beta([a_1]), \cdots, \beta([a_m]) \right). \\ \text{similarly, we can show that } \\ \beta \left(G \left([b \right]_1^n \right) \right) = g \left(\beta([a_1]), \cdots, \beta([a_n]) \right) \text{ So, } \beta \text{ is a strong homomorphism such that } \beta \circ \alpha_i = \mu_i \,. \end{aligned}$

Γ^* -Relation and Direct systems

Let (R, f, g) be an Krasner (m, n)-hyperring. Mirvakili and Davvaz in [16] introduced the strongly compatible relation Γ^* on (m, n)-hyperrings as follow:

For every $k \in \mathbf{Z}^+$ and $l_1^s \in \mathbf{Z}^+$, where $s = k \ (m-1)+1$ we have $x \ \Gamma_{k;l_1^s} y$ if and only if $\{x\,,y\,\} \subseteq f_{(k)}(u_1,...,u_s)$ with $u_i = g_{(l_i)}(x_{i1}^{it_i})$ for some $x_{i1}^{it_i} \in R$, where $t_i = l_i \ (n-1)+1$ and $1 \le i \le s$. Now, set $\Gamma_k = \bigcup_{l_1^s \in N} \Gamma_{k;l_1^s}$ and $\Gamma = \bigcup_{k \in \mathbb{D}^+} \Gamma_k$. It is shown that

the transitive closure of Γ , denoted by Γ^* , is the smallest strongly compatible relation on R, such that $(R/\Gamma^*,F,G)$ is an (m,n)-ring, where the m-ary and n-ary operations F and G in R/Γ^* are defined as follows: $F(\Gamma^*(x)_1^m) = \Gamma^*(c)$, for all $c \in f(\Gamma^*(x)_1^m)$; $G(\Gamma^*(x)_1^n) = \Gamma^*(d)$ for all $d \in g(\Gamma^*(x)_1^n)$. Consider $\phi: R \to R/\Gamma^*$ and suppose $\omega_R = \{x \in R \mid \phi(x) = 0_{R/\Gamma^*}\}$, where 0 is the unit element of m-ary group $(R/\Gamma^*,F)$. Then the unit element of $(R/\Gamma^*,F)$ is equal to ω_R , i.e.,

 $F(\Gamma^*(x), \omega_R^{(m-1)}) = \Gamma^*(x)$ for all $x \in R$.

Proposition 2.1. If (R_i, ϕ_j^i) is a direct system of Krasner (m, n)-hyperrings indexed by a direct set I, then $(R_i / \Gamma_{R_i}^*, \phi_j^{*i})$ is a direct system of (m, n)-rings, where $\phi_j^{*i} : R_i / \Gamma_{R_i}^* \to R_j / \Gamma_{R_j}^*$ defined by $\phi_i^{*i} (\Gamma_{R_i}^* (a_i)) = \Gamma_{R_i}^* (\phi_j^i a_i)$.

Proof. It is clear that $(R_i / \Gamma_{R_i}^*, \phi_j^{*i})$ is a family of (m,n)-rings and strong homomorphisms. Clearly, ϕ_i^{*i} is the identity for all $i \in I$. Now, for $i \leq j \leq k$, we have $(\phi_k^j \circ \phi_j^i)^* \left(\Gamma_{R_i}^*(a_i)\right) = \phi_k^{*i} \left(\Gamma_{R_i}^*(a_i)\right) = \Gamma_{R_k}^* \left(\phi_k^j a_i\right) = \Gamma_{R_k}^* \left(\phi_k^j \circ \phi_j^i(a_i)\right) = \Gamma_{R_k}^* \left(\phi_k^j (\phi_j^i a_i)\right) = \phi_k^{*j} \left(\Gamma_{R_j}^* (\phi_j^i a_i)\right) = \phi_k^{*j} \circ \phi_j^{*i} \left(\Gamma_{R_i}^*(a_i)\right).$

Therefore, one concludes $(\phi_k^j \circ \phi_j^i)^* = \phi_k^{*i} = \phi_k^{*j} \circ \phi_j^{*i}$. **Proposition 2.2.** For $[a_i], [b_j] \in \overline{X}$ let

 $[a_i]\theta[b_j]$ if $\phi_k^ia_i\Gamma_{R_k}\phi_k^jb_j$ for $k\geq i$, j. Then $\theta=\Gamma_{\bar{X}}$.

Proof. Let $[a_i]\Gamma_{\bar{x}}[b_i]$, then there exist $[x]_{i1}^{it_i} \in \overline{X}$ and $h, l_1^s \in \mathbf{Z}^+$ where $t_i = l_i (m-1)$ and $1 \le i \le s$ such that $\{[a_i], [b_i]\} \subseteq$ $F_{(h)}([u_1], \dots, [u_s])$ where $[u_i] = G_{(l_i)}([x]_{i1}^{u_i})$. Suppose $x_{i,1} \in R_{i,1}, \dots, x_{it} \in R_{it}$ where $1 \le i \le s$. Since $G_{(l_i)}([x]_{i1}^{il_i}) = [g_{(l_i)}(x_{i1k}^{il_ik})]$ that $x_{i1k} = \phi_k^{i1} x_{i1}, ..., x_{it,k} = \phi_k^{it_i} x_{it_i}$ for some $k \geq i 1, \dots, i t_i, j', j$ then $\{[a_{i'}],[b_{i}]\} = \{[\phi_k^j a_{i'}],[\phi_k^j b_{i}]\} \subseteq$ $F_{(h)}(G_{(l_1)}([x]_{11}^{l_1}),\cdots,G_{(l_s)}([x]_{s1}^{st_s}))$ some Hence for obtain $\{\phi_n^j a_{\perp}, \phi_n^j b_i\} \subseteq$

 $F_{(h)}(G_{(l)}([x]_{11}^{lt_1}), \cdots, G_{(l)}([x]_{s1}^{st_s}))$, which implies

that $\phi_n^{j'}a_{j'}\Gamma_{R_n}\phi_n^jb_j$ Thus $[a_{j'}]\theta[b_j]$. Conversely, if $[a_{j'}]\theta[b_j]$ then there exists $k\geq j', j$ such that $\phi_k^{j'}a_{j'}\Gamma_{R_k}\phi_k^jb_j$ and so there exist $x_{i1}^{u_i}\in R_k\subseteq\bigcup R_i$ and $h,l_1^s\in \square$ where $t_i=l_i\ (m-1)$ and $1\leq i\leq s$ such that $\{\phi_k^{j'}a_{j'},\phi_k^jb_j\}\subseteq f_{(h)}(u_1,\cdots,u_s)$, where $u_i=g_{(l_i)}(x_{i1}^{u_i})$. Thus $\{[\phi_k^{j'}a_{j'}],[\phi_k^jb_j]\}\subseteq F_{(h)}([u_1],\cdots,[u_s])$ where $[u_i]=G_{(l_i)}([x]_{i1}^{u_i})$. Hence $[a_{j'}]\Gamma_{\overline{X}}[b_j]$, and so $\Gamma_{\overline{X}}=\theta$.

Theorem 2.3. Let (R_i, ϕ_j^i) be a direct system of Krasner (m, n)-hyperrings indexed by a direct set I, and let Γ^* be the fundamental relation of $\underline{\lim} R_i$. Therfore, $\underline{\lim} (R_i / \Gamma_{R_i}^*) \cong (\underline{\lim} R_i) / \Gamma^*$.

Proof. Define $\mu: \underline{\lim}(R_i / \Gamma_{R_i}^*) \to (\underline{\lim}R_i) / \Gamma^*$ by $[\Gamma_{R_i}^*(a_i)] \mapsto \Gamma^*([a_i])$ for any $a_i \in R_i$. Since $\Gamma^*([a_i]) = \Gamma^*([b_j]) \iff \phi_k^i a_i \Gamma_{R_k}^* \phi_k^j b_j$ for some $k \ge i$, j

$$\Leftrightarrow \Gamma_{R_k}^* (\phi_k^i a_i) = \Gamma_{R_k}^* (\phi_k^j b_i)$$

$$\Leftrightarrow \phi_k^{*_i} \Gamma_{R_i}^* (a_i) = \phi_k^{*_j} \Gamma_{R_i}^* (b_j)$$

$$\Leftrightarrow [\Gamma_{R_i}^*(a_i)] = [\Gamma_{R_i}^*(b_j)],$$

 $\mu \text{ is well defined and one to one. Now, we show that } \mu \text{ is a strong homomorphism:} \\ \mu \Big(F\big([\Gamma_{R_i}^*(a_i)]_1^m \big) \Big) = \mu \Big(\Big[F\big(\phi_k^{*i} \Gamma_{R_i}^*(a_i)_1^m \big) \Big] \Big) \\ \text{ for some } k \geq i_1, \cdots, i_m = \mu \Big(\Big[F\big(\Gamma_{R_k}^*(\phi_k^i a_i)_1^m \big) \Big] \Big) \\ = \mu \Big(\Big[\Gamma_{R_k}^* \Big(f\big((\phi_k^i a_i)_1^m \big) \Big) \Big] \Big) \cdot = \mu \Big([\Gamma_{R_k}^*(x)] \Big), \quad \text{for } x \in f \big((\phi_k^i a_i)_1^m \big) = \Gamma^* \Big([x] \Big) \text{ where } x \in f \big((\phi_k^i a_i)_1^m \big). \\ \text{On the other hands, one obtains } F\Big(\mu \Big([\Gamma_{R_i}^*(a_i)] \Big)_1^m \Big) = F\Big(\Gamma^* \Big([a_i] \Big)_1^m \Big) = \Gamma^* \big([x] \big), \\ [x] \in f \big([a_i]_1^m \big) = \Gamma^* \big([x] \big), \quad \text{where } x \in f \big((\phi_k^i a_i)_1^m \big) \text{ for some } k \geq i_1, \cdots, i_m. \quad \text{So } \mu \Big(F\big([\Gamma_{R_i}^*(a_i)]_1^m \big) \Big) = F\Big(\mu \Big([\Gamma_{R_i}^*(a_i)]_1^m \big). \quad \text{Similarly, } \mu \Big(G\big([\Gamma_{R_i}^*(a_i)]_1^n \big) \Big) = G\Big(\mu \Big([\Gamma_{R_i}^*(a_i)]_1^n \big). \end{aligned}$

Proposition 2.4. If $a_i \in \omega_{R_i}$ then $[\Gamma_{R_i}^*(a_i)]$ is the zero element in $\underline{\lim}(R_i/\Gamma_{R_i}^*)$ and $[a_i] \in \omega_{\underline{\lim}R_i}$.

Proof. Let $F\left([\Gamma_{R_i}^*(a_i)]^{(m-1)}, [\Gamma_{R_j}^*(b_j)]\right) = [X]$, where $X = F\left((\phi_k^{*i}\Gamma_{R_i}^*(a_i))^{(m-1)}, \phi_k^{*j}\Gamma_{R_j}^*(b_j)\right)$ for $k \geq i$, j. So $\left((\phi_k^{*i}(\omega_{R_i}))^{(m-1)}, \phi_k^{*j}\Gamma_{R_j}^*(b_j)\right) = F\left((\omega_{R_k})^{(m-1)}, \phi_k^{*j}\Gamma_{R_j}^*(b_j)\right) = \phi_k^{*j}\Gamma_{R_j}^*(b_j)$ Thus $F\left([\Gamma_{R_i}^*(a_i)]^{(m-1)}, [\Gamma_{R_j}^*(b_j)]\right) = [\phi_k^{*j}\Gamma_{R_j}^*(b_j)] = [\Gamma_{R_j}^*(b_j)]$. Hence $[\Gamma_{R_i}^*(a_i)]$ is the zero element in $\underline{\lim}(R_i/\Gamma_{R_i}^*)$. By Theorem 3.3. it concludes $\Gamma^*\left([a_i]\right)$ is the zero element in $(\underline{\lim}R_i)/\Gamma^*$ and so $[a_i] \in \omega_{\lim}R_i$.

It is easy to verify that if (R, f, g) is an Krasner (m, n)-hyperring, then ω_R , is an (m, n)-subhyperring.

Corollary 2.5. Let (R_i, ϕ_j^i) be a direct system of Krasner (m, n)-hyperrings indexed by a direct set I. Then $(\omega_{R_i}, \phi_j^i|_{\omega_{R_i}})$ is a direct system and $(\underline{\lim} \omega_{R_i})/\Gamma^*$ is a zero (m, n)-ring.

Proof. Using Theorem 2.3. $(\underline{\lim} \omega_R) / \Gamma^* \cong \underline{\lim} (\omega_R / \Gamma_R^*) = 0$

Lemma 2.6. $\omega_{\underline{lim}R_i} = \{ [a_i] | a_i \in \bigcup R_i, \\ \phi_k^i a_i \in \omega_{R_k} \text{ for some } k \ge i \}.$

Proof. Set $D = \{[a_i] | a_i \in \bigcup R_i, \phi_k^i a_i \in \omega_{R_k} \text{ for some } k \ge i\}$ Clearly,

$$\begin{split} \mathbf{D} &\subseteq \pmb{\omega}_{\underline{lim}R_i} \quad \text{. Let } [a_i] \in \pmb{\omega}_{\underline{lim}R_i} \text{ , then } a_i \in \bigcup R_i \\ \text{and } \Gamma^*([a_i]) &= \mathbf{0}_{(\underline{lim}R_i)/\Gamma^*} \, . \end{split}$$

By Theorem 2.3, it concludes that $[\Gamma^*(a_i)] = [\Gamma^*(0_{R_i})]$. Thus $[\phi_k^i a_i] = [\Gamma^*(0_{R_k})]$ for some $k \geq i$ and so $\phi_k^i a_i \in \omega_{R_k}$ for some $k \geq i$. Therefore, $\omega_{limR_i} \subseteq D$.

Theorem 2.7. Let Dir(I) be the category of all direct systems of Krasner (m,n)-hyperrings and strong homomorphisms over direct set I and (m,n)-KH $_r$ be the category of Krasner (m,n)-hyperrings and strong homomorphisms. Suppose $\underline{lim}:Dir(I) \rightarrow (m,n)$ -KH $_r$ by

$$\begin{split} \{R_i,\phi_j^i\} &\mapsto \{[a] \,|\, a \in \bigcup R_i\} \qquad \text{and} \qquad \text{whenever} \\ t: \{R_i,\phi_j^i\} &\to \{H_i,\phi_j^{'i}\} \quad \text{is a morphism in } \mathit{Dir}(I) \\ \underline{\mathit{limt}} &= \vec{t}: \underline{\mathit{lim}}R_i \to \underline{\mathit{lim}}H_i \quad \text{where} \quad a = a_i \in R_i \\ \text{and} \quad \vec{t}\left([a]\right) &= [t_ia_i] \quad \text{, where} \quad t_i: R_i \to H_i \,. \text{ Then} \\ \underline{\mathit{lim}} \quad \text{is an exact functor.} \end{split}$$

Proof. It is easy to see that \underline{lim} is a functor. We prove that if $\{A_i, \phi_j^i\} \to \{B_i, \phi_j^{'i}\} \to \{C_i, \phi_j^{''i}\}$ is a sequence of morphisms of direct systems over I, such that $\omega_{A_i} \xrightarrow{n_i} A_i \xrightarrow{t_i} B_i \xrightarrow{s_i} C_i \xrightarrow{u_i} \omega_{C_i}$ (*) is exact for any $i \in I$, then $\omega_{\underline{lim}, A_i} \xrightarrow{\bar{n}} \underline{lim}, A_i \xrightarrow{\bar{i}} \omega_{\underline{lim}, C_i}$ is an exact sequence of Krasner (m, n)-hyperrings. Hence,

(i) $Ker\vec{t} = Im\vec{n}$; suppose $[a] \in Ker\vec{t}$, then \vec{t} $[a] \in \omega_{\underline{lim}B_i}$. Let , $a = a_i \in A_i$, then \vec{t} $[a] = [t_i a_i] \in \omega_{\underline{lim}B_i}$ which implies $\phi_k^{'i}(t_i a_i) \in \omega_{\underline{lim}B_k}$ for some $k \geq i$, and so $\phi_k^{'i}(t_i a_i) = t_k \phi_k^i(a_i) \in \omega_{B_k}$ Since the sequence (*) is exact for every $i \in I$, so $Ker\ t_k = Im\ n_k = \omega_{A_k}$ and then $t_k \phi_k^i(a_i) \in Im\ n_k = \omega_{A_k}$.

Hence $[a_i] = [\phi_k^i a_i] \in \underline{\lim} \ \omega_{A_k} = \underline{\lim} \ \operatorname{Im} \ n_k = \operatorname{Im} \ \vec{n}$. Therefore, $Ker\vec{t} \subseteq \underline{Im}\vec{n}$. Conversely, if $[a] \in \underline{Im}\vec{n} = \underline{\lim} \omega_{A_i}$, then $a_i \in \omega_{A_i}$ and so $t_i a_i \in \omega_{B_i}$ which implies $\vec{t}[a_i] = [t_i a_i] \in \omega_{\underline{\lim} B_i}$. Thus $[a_i] \in Ker\vec{t}$.

(ii) $Ker\vec{s} = Im\vec{t}$; let $[x] = [b_i] \in Ker\vec{s}$, then $\vec{s}[b_i] = [s_ib_i] \in \omega_{limC_i}$.

Thus $\phi_k^{''i}(s_ib_i) \in \omega_{\underline{lim}C_k}$ for some $k \geq i$. We have $\phi_k^{''i}(s_ib_i) = s_k\phi_k^{'i}(b_i) \in \omega_{C_k}$. Since (*) is exact for every $i \in I$, we obtain that $\phi_k^{'i}(b_i) \in Kers_k = Imt_k$ and so there exists $a_k \in A_k$ such that $t_ka_k = \phi_k^{'i}(b_i)$. Thus

$$\begin{split} \vec{t} \left[a_k \right] &= \left[t_k a_k \right] = \left[\phi_k^{'i} b_i \right] = \left[b_i \right] \quad \text{and} \quad \text{so} \\ \left[b_i \right] &\in Im \ \vec{t} \quad \text{Conversely}, \ \vec{s} \circ \vec{t} \left[a_i \right] = \vec{s} \left(\left[t_i a_i \right] \right) = \left[s_i \circ t_i a_i \right] \cdot \\ \text{Since} \quad (*) \quad \text{is} \quad \text{exact} \quad \text{for} \quad \text{any} \ i \in I \quad , \quad \text{then} \\ s_i \circ t_i a_i \in \omega_{C_i} \quad \text{and} \quad \text{hence} \left[s_i \circ t_i a_i \right] \in \omega_{\underline{lim} C_i} \quad . \end{split}$$
 $\text{Thus} \ \vec{s} \circ \vec{t} \left[a_i \right] \in \omega_{\underline{lim} C_i} \quad \text{and} \quad Im \ \vec{t} \subseteq Ker \ \vec{s} \quad . \end{split}$

(iii) $Ker\vec{u} = Im\vec{s}$; the proof is similar to (ii).

References

- 1. Marty F. Sur une generalization de la notion de groupe, 8^{iem} congress des Mathematiciens Scandinaves, Stockholm . 45-49 (1934).
- Corsini P., Leoreanu-Fotea V. Applications of hypersrtucture theory. Advances in Mathematics. Vol. 5: Kluwer Academic Publishers, (2003).
- 3. Connes A., Consani C. The hyperring of adele classes. *J. Number Theory.* **131** (2): 159-194 (2011).
- Cristea I., Jancic-Rasovic S. Compositions hyperrings. An. Stiint. Univ. 261 \Ovidius" Constanta Ser. *Mat.* 21(2): 81-94 (2013).
- 5. Dudek W.A., and Mirvakili S. Neutral elements, fundamental relations and *n* -ary hypersemigroups. *Int. J. Algebra Comput.* **19**: 567-583 (2009).
- 6. Krasner M. A class of hyperrings and hyperfields. *Int. J. Math. Math. Sci.* **6** (2): 307-311 (1983).
- Shojaei H., Ameri R. Various kinds of quotient of a canonical hypergroup. Eng. & Nat Sci. 9 (1): 133-141 (2018)
- 8. Soltani Z., Ameri R. An introduction to zero-divisor graphs of a commutative multiplicative hyperring. *Sigma J. Eng. & Nat Sci.* 9 (1): 101-106 (2018).
- 9. Vougiouklis T. Hyperstructures and their representations. *Riv. Mat. Pura e Appl.* **2:** 1-180 (1994).
- 10. Ameri R., Norouzi M. Prime and primary hyperideals in Krasner (*m*, *n*)-hyperrings. *Eur. J. Combin.* **34**: 379-390 (2013).
- Ameri R., Aivazi M., Hoskova-Mayerov S. Superring of Polynomials over a Hyperring. J. Math. 7 (902): 1-15 (2019).
- 12. Davvaz B., Vougiouklis T. *n* -ary hypergroups. *Iran. J. Sci. Technol. Trans. A Sci.* **30** (A2): 165-174 (2006).
- 13. Dehkordi S. O., Davvaz B. A strong regular on Γ -semihyperrings. *J. Sci. I. R. Iran.* **22**(3): 257-266 (2011).
- 14. Mirvakili S., Davvaz B. Relations on Krasner (*m*, *n*)-hyperrings. *Eur. J. Combi.* **31**: 790-802 (2010).
- 15. Pelea C. Hyperrings and α^* -relations: A general approach. *J. Algebra*. **383** 104-128 (2013).
- 16. Mirvakili S., Davvaz B. Constructions of (m, n)-hyperrings. *Mat. Vesnik.* **67** (1): 1-16 (2015).
- 17. Jafarzadeh N., Ameri R. On the relation between categories of (m, n)-aryhypermodules and (m, n)-ary modules. *Sigma J. Eng. Nat. Sci.* **9** (1): 85-99 (2018).
- 18. Pelea C. On the direct limit of the direct system of multialgebras. Discrete Math. **306**: 2916-2930 (2006).
- 19. Hoskova S. Topological hypergroupoids. Compute. Math.

- *Appl.* **64**: 2845-2849 (2012). 20. Pelea C. A note on the direct limit of a direct system of multialgebras in a subcategory of multialgebras. Carpathian J. Math. 22(1-2): 121-128 (2006).
- 21. Pre-semihyperadditive Categories. An. St. Univ. Ovidius Constanta. 27(1): 269-288 (2019).
- 22. Leoreanu-Fotea V. The direct and the inverse limit of
- hyperstructures associated with fuzzy sets of type 2. Iran. J. Fuzzy Syst. 5(3): 89-94 (2008).
- 23. Leoreanu V. Direct limit and inverse limit of join spaces associated with fuzzy sets. Pure Math. Appl. 113: 509-516 (2000).
- 24. Awodey S. Category theory. Oxford University Press Inc. New York, Second Edition. 336 P. (2010).