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Abstract

The purpose of this paper is the study of direct limits in category of Krasner (m, n)-
hyperrings. In this regards we introduce and study direct limit of a direct system in

category (m, n)-hyperrings. Also, we consider fundamental relation I as the smallest
equivalence relation on an (m, n)-hyperring R such that the quotient space R /T"is an
(m, n)-ring, to introduce the fundamental functor from category of Krasner (m, n)-
hyperrings to the category of (m, n)-rings. Finally, we study the relationship between
fundamental functor and direct limit on Krasner (m, n)-hyperrings. In particular, we
prove that the fundamental functor is exact and obtain some its basic properties.
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Introduction

An n — ary hyperoperation is a mapping
fiHx---xH—P (H), where P"(H)is
%/_/
n

the set of all nonempty subsets of H . In this case,
(H , f ) is said to be an 7 — ary hypergroupoid. This

is a generalization of a hypergroupoid (when n =2),
that was defined by Marty in [1] as founder of
hyperstructure theory (for more details refer to [ 2],
(31, [4], [5] [6], [7], [8] and [9]. An n —ary
hyperoperation initiated an 7 —ary hyperstructure.
Nowadays, 7 —ary hyperstructures is a well-known
field of researches on hyperstructures theory( for more
see [10], [11], [12], [13], [14], [15], [16] and [17]).
Also, recently some researchers studied direct systems

and direct limit on (fuzzy) hyperstructures (for instance
see [18], [19], [20], [21], [22] and [23]).
In this paper, we consider category of Krasner

(m , n ) -hyperrings ([11]), introduce, and study
direct limit of a direct system in this category. In this
regards, we introduce the fundamental functor from

category of (m, n)—hyperrings into category of

(m, n)-rings, via the fundamental relation. In

particular, we prove that this functor preserves all
direct limits.

Preliminaries
In this section, we present some basic concepts of
n —ary hyperstructures which we need to
development our paper.
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In dealing with 7 —ary hyperstructures, for
abbreviation, we will show the sequence
XXX bY x/,and we put x/ = for

J <Ui.Hence f (X ,csX ;s Y sV 152 jaseesZ )
will be written as f(xf,yij+1,zj'7+1). Also, if

then it is shown by

Yin=""=YV; =)V,
f(xli,y(j_i),z;lﬂ). Moreover, if f is an n-ary
hyperoperation and ¢ =/(n —1)+1, for some / =0,

then ¢ -ary hyperoperation f o0 is given by

o@D =1( Caf (F ()

2n-1 [ (n—-1)+1
s X il )9 ---),x (;_1)(n_1)+1) . For nonempty subsets
A4,,..,4 of H we

Fn=Ur e, ed, i =10},
(H,f) is an n—ary semihypergroup if f is

associative, that is, f (xli_l af ()C ,-n+i _l)a-x,fzi_l)

=f /7 (e T,x ), holds,
I<i<j<nand all
(H,f) is semihypergroup and
f(x{"H,x!)=H for all xeH and
1<i<n, (H,f)is called an n—ary
hypergroup. (H ,f ) is said to be commutative, if for
all o0€S, and for

define

We say

for every

X 5X 55Xy, € HIf

an N —ary
then

every a' € H,we have

f(@")=f (a,y»--As(,,) - moreover, a nonempty
subset B of an n — ary hypergroup (H ,f ) is called
an 1 —ary subhypergroup of H , if (B,f ) is an

n — ary hypergroup.
Let (H,f) be a n —ary

hypergroup. (H ,f ) is called a canonical n —ary

hypergroup ([12]), if
i) there exists a unique € € H such that for every

xeH.,f(x,e")={x};

ii) for all x € H there exists a unique x '€ H
suchthat e € f (x ,x ',e"7%);

iii)if x € f (x,") then, forall 1<i <n we have

commutative

1 -1

-1 - -1
X, €L (XX X X X, )

A. Asadi and R. Ameri.

76

J. Sci. . R.Iran

Definition [16] (R ,f ,g)is said to be an (m,n)
-hyperring, if:

i) (R,f) isan m -ary hypergroup.

ii) (R,g) Isan n -ary semihypergroup.

The 7 -ary hyperoperation g is distributive with

respect to the m -ary hyperoperation f | i.e., for all
1<i<n

i—-1 n

m
a ,a;.,,x; €R,

gla " f " )al) =1 (g(a " xal,),

eng(a”',x, ,a’,)). A nonempty subset S of

and

R is called an (m,n) -subhyperring, if (R ,f ,g) is
an (m,n)-hyperring. Let i € {l,..,n}. An i -
hyperideal / of R is an (m,n)-subhyperring of

Rsuch that g(x|',1,x! )< for

. every
x/€R. I is called a hyperideal, if [is a 7 -

hyperideal, forall 1<i <n .

An (m,n)-hyperring (R,f ,g)is said to be
Krasner if (R,f ) is a canonical 7 -ary hypergroup
and (R,g) is an n -ary semigroup such that 0 is a
zero element (absorbing element) of the n -ary

operation g, ie. for all x, € R we have
g0,x7)=g(x,,0,x5)=-=g(x;,0).
Example [16] Suppose that (L,V,A) is a

relatively complemented distributive lattice. Define f
and g on L as follows: f(a,,a,)=
{ceLla rnc=a,rc=a ra,},and
ga')=vi,a ;Va' €L.

It is easy to verify that (L,f ,g) is a Krasner

(2,n) -hyperring.

Definition [24] A category consists of the following
data:

e Objects 4,B,C

e Arrows: f,g,h

e For each arrow f, there are given objects
dom( f),cod(f) called the domain and codomain
of f. We write f:4—B to indicate that
A=dom(f) and B=cod(f).

e Given arrows f:A— B and g:B—>C,
that is, with cod(f)=dom(g) there is given an
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arrow go f 1 A— C called the composite of f* and
g.

e For each object A, there is given an arrow
1,:4— A called the identity arrow of A. These
data are required to satisfy the following laws:

e Associatively: ho(go f)=(hog)o f for all
f:A—>B,g:B—>C, h:C—>D.

e Unitt fol,=f=1,0f forall f:4— B.

Example [24] group and group homomorphisms is
a category.

Definition [24] In any category C, an object

e 0 is initial if for any object ¢ there is a unique
morphism 0 — ¢

e 1 is terminal if for any object ¢ there is a unique
morphism ¢ — 1.

Definition [24] A functor F :C — D between
categories C' and D is a mapping of objects and
arrows to arrows, in such a way that

F(f:A—>B)=
F(f):F(4)— F(B),

® F(IA):IF(A)’

o F(gof)=F(g)F(f).

Definition [24] Let J and C be categories. A
diagram of type J in C is a functor F':J — C.

We write the objects in the index category J lower
case, 1I,J,... and the values of the functor

D:J—C i the form D;> D5 ete.

A cone to a diagram D consists of an object ¢in
C and a family of arrows in C, ¢; :C — D, one

for each object j€ J, such that for each arrow

a:1—> j in J, the following triangle commutes:

. . ’orN
A morphism of cones ¢:(C,c;) = (C’,¢}) isan

arrow ¢} in C making each triangle,
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D,

commute. Thus we have evident

Cone(D) ofconesto D .

Definition [24] A limit for a diagram D :J — C
is a terminal object in category Cone(D) .

category

We often denote a limit in the form
p;:limD, — D,.
u
g v ~ lim D;

J

D; D
D, d

In general, a colimit for a diagram D :J — C is
of course, an initial object in the category of cocones.
We write such a colimit in the form limD) .

Results

Direct System (Limit) (m,n)-
Hyperrings

We say a partially ordered set [ is a directed set if
for each (i,j)e€ I X1 there exists k € I such that

i <kand j<k. Let Ibe a directed set and
(m,n)—KH, the category of Krasner (m,n)-
hyperrings  with
(R,.f,,8;);c; be a family of Krasner (m,n)-

of Krasner

strong  homomorphisms. Let

hyperrings indexed by [ . For each pair i,j €[
such that i <, let ¢/l :R, >R, be a strong

homomorphism  where ¢f is the identity

homomorphism for all i € I and ¢,§ = ¢,f °¢J’ for
i <j <k .Then R =(Ri,¢);)is said to be a direct

system over the direct set /1 .
The direct limit of a direct system R =(R,, ¢/’ )

in (m,n)—KH denoted by limR, , is a Krasner

(m,n)-hyperring and a family of strong

homomorphisms
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a R, — limR, |, =0(j¢;;i <j}, which for
every Krasner (m,n)-hyperrings K and every
family of strong homomorphisms
{,ul.:Rl.—>K‘ﬂi=ﬂj¢;;iﬁj}there is a
unique strong homomorphism /4 :limR, — K such

that the following diagram is commutated:

and define the

Let X =R,

iel

following

equivalence relation on X for @, € R, and a; € Rj
a, ~a; & @.a, :¢,jaj for kK 21i,j . Suppose

that X ={[a,]la. € X Y where [a,] is the

equivalent class of @, . It is clear that a, ~ ¢j’ a; for

j=iin X .

Theorem 1.1. (X ,F) is an m -ary canonical

Jlxef @):a, =dla}
=@a fork >1,1<]1<m .

Proof. First we show that /' is well-defined. Let
([ ], 1) = (b, 1+ [b, 1), then [a,1=[b,]
for all 1<7 <m .Thus, for every 1<i <m there
exist kK, =i such that ¢,§ a, = ¢,§ b, Hence, we have

hypergroup where {[x

and a,

[x]e F([al] [am ])<:>x Ef(¢k i) ag,:: 7¢1<W:mmam)
for k(m+l) 2l om & x Ef(¢ka1a"':¢kmam)
fork 2k, .k, k. <

X Ef(¢Ifl¢kla1"”’¢km¢kmam)<:>
x Ef(¢:'¢,§lb1,---,¢:"’¢,f:]bm)<:>
x ef (@b, 9'b,) & [x]€ F([b],--,[b, ).
So, F is well-defined. Now, let [a]lzm_1 € X and
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k=>1--,2m—1. Also, let
[x1e F(lal ", F([a]""").[al)) for all

1<i <m . So, there exists [y ]€ F([a]"™™") such

that[x ] F([a] ™[y 1,[@]2";") Therefore

m+i
y €f(ay ""’a(mﬂ'—l)k) for some
k>2i,-- m+i-1 such that
i _ m+i —1 _
$a, =a, .9 a,., =Aonsi-k - Also
xef (a1k"":a(i—l)kabkaa(mﬂ)ka ) ’a(Zm—l)k) for
some k =>1,---,i —1,m+1i,---,2m —1 such that
1 = _ o+ _
Gty =ay 0 4, =,y O Ay = A
2m—1 _ .
SO g =Aom- - Since YER,,

=¢,f y =y . Thus by associativity of R, we
have x ef(alk,~~~,a(i,l)k,bk :a(mmka“"a(zm—nk)
=f (alk’.”’a(i—l)kﬂy s ik a"'aa(zm—nk)
cf (alk 2y S (aika”"a(m+i—1)k)
’a(szl)k) =f (alk 5" Ak
af (ajk AR ’a(Zm—l)k)' So

there exist Ef(ajk,---,a(m+j_l)k) such that

’a(m+i)k [

2+ j -1k ) 2 jyk>""

-k 2m-1)k ’ m+j—
xef(ai™.y aémmk).Then, [v'1e F([al'"™)

and sincegf y =y, we have
[x]e F(la){™.[y Llal}") Hence

[x]e F([a L F ([al) ) el ‘) and then for any

m+j

m 2 j >i 21 F([a} F (™ )lal))

m+i

c F([a]lj—l,1’7([61].’;.””‘_1 )‘,[a]szl). Similarly, we

m+j
can prove the converse of above inclusion. So
(X ,F)is associative.

Now, we prove the reproduction axiom. It is clear

that

F(lal™ X, [al')c X, for alla]"eX
Assume that[a]1 € X . Then

¢,{aj =a, € R, for any k =>1,---,m where

1<j <m.Since R, is an m -ary hypergroup, so
for all 1<i<m, a, € R, =f(a,, "
R, ,a a,.).

ko> (m+i)k > T

58 1)k
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Then, there exists a,; S R such  that
(i -k o
a, €f (ay ak, (m+,)k) and ¢k ak =a, .
i—1

Thus[g, J€ F([a], ™, [g; L[a]",)
CF(la} . X .[a],)- Thus, X =F(la}™.X [a],)
for all [a]~,[a]’, € X So (X,F) is an m -ary
hypergroup.

Since (R, ,f ) is a canonical 7 -ary hypergroup,
there exists a unique element Ok € R, such that
{a,}=f(a,,0"™") for all a, €R,. Now let
[a,]e X . Then there exists k =i such that

#.a, =a, € R, , since (R, ,f)is canonical. Hence
{a,} =1 (a,,0"™") such that ¢} 0
0, is unique, so {[a, 1} =F([a,],[0, 1" ") . Also,

since (R, ,f ) has canonical property, there exists

0, . Since

uniquely @ € R, such that 0, € f (a, ,a, ,0" ).

PR
Since @, a, =a, , and hence

[0, 1€ F([g, 1.[a, 1[0, 1"7).
show [a,;] as the inverse of [a, ] is in X . Finally,

Let

such

Therefore, we

we investigate the reversibility property.
[x ]e F([a]). Then there exist k =1,---,n

that xef(q™) and @ a, =a, ,---,@/'a, =a
Since X € R, , so @ x =x and since (R, ,f) is
ay €f (@, a
,X 9a£i+1)k ,a;nk)for all 1<i<m. Hence
[a,]e F((&],la, ], [x Lla T, [a, 1) .
Theorem 1.2. (X ,F,G) is a Krasner (m,n)-

b, =[g®,)] such
:¢/£b1 fork 2/ and 1</ <n.

(X ,F) is an m -ary
hypergroup. Similarly,

have

canonical,  we (i—1)k

hyperring whereG ([D, ],
that b,

Proof. By Theorem 1.1.
canonical we can prove

(X ,G) is an n -ary semigroup. We prove that G is

distributive with respect to F . Assume that
[a]i_1 [x]1", [a]fHGX and for any 1<i<n,
leG([al ", F([x]"),[al’,,). Then there exists

[b]e F(lx ]I") such that [y ]=G ([a];",[bL.[a]}.,) -
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Hence, bef(xy,x,,) for GiX =X BN, =X,
with
-k nk
k21,-,m.Also y =g(al™ 5Cr >y )» Such
-1
that ¢ka1 =4 s""¢1i a;_ = A
i +1
Dy =y 9a, =a, for some
k>1-,i-1i+1,-,n Since, beR,,
= @b =b . Therefore, by distributivity onR _k ,
. ~Dk k
we obtain that Y = g(a(’ ) ,C ,a(nl- )k
(i-k nk
=g(ay " .b.ay)
-k
€ g(a NACH! a(z+1)k)
-k
=f (g (a 5X 1 >4 (1+1)k )
-0k .
g @™ xsalt ), for all 1<i<n.

Since, x,, ,-++,X,, €R, . ¢/ x. =x, . It follows that

v 1e F(G(al ™ [x, Llal.). .G (@) lx, Llall,) -
Similarly, the converse of above inclusion can be
obtained.

Theorem 1.3. X is limR, in (R, ,¢;), the direct

system of Krasner (m , n ) -hyperrings indexed by 1 .

Proof. Consider ¢, :R, — X defined by
o (a,)=[a;] and the following diagram:
R; d R j
\
\\ //
oy \* ] %/ a;
X
For all a, € R, we have

a; °¢]l' (a,)= [¢]l'a[ I=la;]1=;(a;) and so the
diagram is commutative. Now, let R be a Krasner
(m N ) -hyperring and {4, | g, : R, — R} a family
of strong homomorphism with £, = K, 0¢j' . Define
B:X >Ry

B(la, )= (a,). We show that S is a strong

homomorphism and so the universal mapping property
holds. First we show that [ is well defined. Let

[ai]Z[b j] then there exists k =i,/ such that
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dla, =¢/b, . Thus 1, (¢a,) =, (/D). and so
f;(a;)=p;(b;). Hence, [ is well defined. Now
et [a],.[a,]eX B(F([al") =
{BUxDIxef @)

a, =dla, fork 21,1<1 Sm}
=1, (f @™));a, =¢la, for k21,1<1<m
=/ (4, (@), 1, (a,,)) (since g1, s strong
=/ (u, (Ba). .1, (@'a,))
=/ (@)1, (,)) =f (B D, Bla, D).

similarly, we can show that

BG11)) =2 (B, Ba, D) S0, B is a

strong homomorphism such that o, = (L. .

then

homomorphism)

I -Relation and Direct systems

Let (R, ,g) be an Krasner (m N ) -hyperring.
Mirvakili and Davvaz in [16] introduced the strongly
compatible relation I on (m N/ ) -hyperrings as
follow:
I'eZ",
Y if and only if

For every ke Z' and where

s =k (m —1)+1 we have er;lls

oyycfuy,.u) with
u, =g(ll_)(x,."{) for some x;tf €R | where

t,=1,(n-1+1
rk = U rk;lf‘
IJeN

the transitive closure of I', denoted by F*, is the
smallest strongly compatible relation on R , such that

(R/T",F,G) is an (m,n)—ring, where the m -

and 1<i<s. Now, set

andI" = U Fk . It is shown that
kel ™

ary and 71 -ary operations F and G in R /T are
defined as follows: F (I (x)/")=T"(c), for all

cef (T'(X)"); G (x))=T"(d) for al
de g (x)'). Consider ¢:R —-R /T and

suppose @, ={x € R [@#(x)=0_ .}, where 0 is

RIT

the unit element of m -ary group (R /T, F). Then
the unit element of (R /T, F) is equal to @, , i.e.,
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FIT (x),@"™")=T"(x) forallx € R .

Proposition 2.1. If (R,,@®;) is a direct system of
Krasner (m /] ) -hyperrings indexed by a direct set ] ,
then (R, /F:?,- ,¢;i) is a direct system of (m,n ) -
rings, where ¢;’ 'R, /l_‘;_ —R, /F; defined by
¢ (T}, (@) =T, (ga,)-

Proof. It is clear that (R, / F;l_ ,¢;i ) is a family of
(m ,n ) -rings and strong homomorphisms. Clearly,

¢:i is the identity for all i€ l. Now, for

i<j<k, we

@ 20 (T, @)=, (T}, @))
=T}, (¢la)=T; (¢ °4(a))
=T}, (¢ (#a)) =4 (T, (#a))
=4 297 (T, (@)

Therefore, one concludes (¢/ o¢; Y =¢, =¢,’ g,
For [a,],[b;]e X et
[a,10[b;] if ¢,ﬁail—‘Rk ¢,fbj for kK >i,j . Then
0=T,.

Proof. Let [aj,]l—‘)? [b;], then there exist

have

*i

Proposition  2.2.

[X ]7{ (S AXT and h,lf € 7" where ti = li (m _1)
{la, 16,1} <

where[u,]=G,, (x11)-
-, X, €R, where <7 <s .

and 1<7 <5 such that

F(h)([ul]a"'a[”s 1)
Suppose X, € R

i1’

SinceG(li)([x 1 ) =g )(x Bk )] such  that
Xik = ,ilxl.l,...,xl.t’_k = ;ﬁtixi,i for some
k>ilit,,j ], then
{la, 10,1} ={18 0, 119/b, |1
Fouo (G (1T )G (1))

Hence for some n=>k we obtain
{¢r{ aj’a¢;jbj} -
Foy (G(,l)([x I ); =G ([x I )) , which implies
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that ¢/ laj,FRn ¢/ b; Thus [aj,]ﬁ[bj ]. Conversely, if
[a/,]@[b ;] then there exists k 2 j',j such that
¢kf'/a_,1“R ¢kf'bj and so there exist xl”l ER, ;URI_ and
j k

h,l; €] where t, =I,(m —1)and 1 <i <& such
that{@/'aj"%/.b/} gf(h)(“l””’“s) , Where u; :g(/’)(x;’l')-
Thus { [/ @, 1.06{b, 1} < Fy, ([, -+, [u,])
where [, 1=G,, ([x]'7). Hence [a, ¢ [b,],
andsoI', =6.

Theorem 2.3. Let (R, ,¢j’) be a direct system of
Krasner (m SN ) -hyperrings indexed by a direct set /
,and let T be the fundamental relation of limR, .
Therfore, im (R, /T )= (limR,)/T".

Proof. Define u: lim (R, /F*R[ )= (limR,)/T"
by [T, ()] T ([a,]) for anya, € R, . Since
C'([q,)=T"([b,]) & ¢aT, ¢/b,
for somek =i, j
&Iy (ga,)=T, (9b;)

S 4T, @) =T} (b))
&[T, (@)1=IT; ®,)]

M is well defined and one to one. Now, we show
that U is a

1(F (T @) = w([F (6T}, @))])

ki, = u([F (T, (9la)r)])
=u([T}, (7 (@a))]) -=u(r, o)), for
xef (#a))=T"([x1) where x e f ((9/a,)]").

On the other hands, one obtains

F(u(ry, @n)r) =F( (16, 1)7) =T'(x D).
[x]ef (a.]") =T"(x D,
xef((da)l') for some k =i ,-,i, . So
u(F(T; @)1)= F(u(IT @)1)y).  Similarly,
#(G (T, @)1)) = G ([T @)1);) -

Proposition 2.4.1f @, € @, then [1_‘;[ (a,)] is the

strong homomorphism:

for some

where

zero element in Lim (R, /T, ) and [a, ]€ Wy -

81

Proof.  LetF ([l“;i (@)n", [F;/, b, )]) =[X],
where X=F ((q),;k ‘ F;i (@)" ™", ¢'T, ’ o, )) for
kzij. so (@ (o))" " 4'T, b))

=F((@,)"".¢'T, (b,))=¢'T; (b;) Thus
F(IT;, @)1 [T, 6,)1) =[6,' Ty b)1=[T5 ®))].
Hence [F;‘ (a,)] is the zero element in /im (R, / F;’_ ).
By Theorem 3.3. it concludes l“*([al. ]) is the zero
element in (limR,) /T andso [a; ]€ Dy -

It is easy to verify that if (R,f,g) is an
Krasner (m N ) -hyperring, then @, , is an (m N ) -

subhyperring.
Corollary 2.5. Let (R, ,¢jz ) be a direct system of

Krasner (m N/ ) -hyperrings indexed by a direct set /
Then (@, ,¢; lo, ) i a direct system and

(lim @, )/T" is a zero (m,n)-ring.

Proof. Using Theorem 2.3.

a)l’l’Ri :{[ai]‘ai € URi’
d,a, € @, forsome k Zi},

D ={[a,.]|a,. GURi

.Ba, € @ forsome k >i } Clearly,

Lemma 2.6.

Proof. Set

D C @, - Let [4,]€ @, » then 4 e|JR,
and T ([4, ]) = O(ﬁﬂR, '

By Theorem 2.3, it concludes that
[T (a)]=[T"(0;)] - Thus [@a, ]=[T" (0, )] for
some k =i and so @, a; € Wy, for somek 21 .
Therefore, @), €D .

Theorem 2.7. Let Dir(l)be the category of all
direct systems of Krasner (m,n)—hyperrings and

strong homomorphisms I and
(m,n)—KH, be the category of Krasner (m N ) -

over direct set

hyperrings and strong homomorphisms. Suppose
lim :Dir(I) — (m,n)—KH, by
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and whenever

R ¢} {la)lae [ JR;}
t :{R[,¢;}—>{Hi,¢}[} is a morphism in Dir (1)
limt =t :limR, — limH, where a=a, € R,
and f([a])=[tiai] , where ¢, 1R, — H . Then
lim_is an exact functor.

Proof. It is easy to see that [im is a functor. We
prove that if{Ai,¢_;} —>{Bi,¢_7}—>{Ci,¢;i} is a

sequence of morphisms of direct systems over / , such

n; L Si ST U
that @, A, B, C, @
(*) is  exact for any iel, then
n . r
@y 4 ——liM A, ——>
lim B, — > lim C,— >, is an exact

sequence of Krasner (72,7 ) -hyperrings. Hence,

() Kert =Imii; suppose[a]e Kert , then

tlale @, . Let , a=a,€A,, then

Qa= a. . p Whic implies
Flal=It,a, 1€ @, ; which o
@ (ta)e Wy, for some k 2i, and so
¢ (t,a)=t, ¢ (a,)e @ Since the sequence (*)

is exact for

Kert, =Imn, =0,

iel, o
then

every
and

t, ¢, (a,)e Im n; =y,

Hence [q,]1=[¢|a,]e lim @, =limImn, =Im7 .
Kert < Imii .
lale Imn =limw, ,

Therefore, Conversely, if

then a, € @, and so
t,a; € @, which implies tla,1=[t,a e Dy, -
Thus [a, ]€ Kert .
(ii) Kers =Imt ;let
[x]=[b,]€ Kers , then
s[b,1=[sb,]e Dy, -
Thus ¢kl (s,0,)e Wy, ¢, for some k =i . We

have ¢kl (Sl.bl.)=Sk¢,;i (bl.)e (()Ck . Since (*) is

exact for every i€, we obtain that
@ (b,)e Kers, =Imt, and so there exists
a, €A, such that ¢,a, = @, (b,). Thus

A. Asadi and R. Ameri.
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tla, 1=[t,a, 1=[8/b,1=[b,] and  so
[b,]e Imi . Conversely,soia,1=5([t,a,]) =[s, ot,a,]-
(*) s then

S, °1,a;, € @, and hence[s, °t,a,]€ @y, .

Since exact for anyi €l

Thus$ of [a, |€ @, ¢, and Imt cKers .

(iii) Kerit = Ims ; the proof is similar to (ii).
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