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1. Introduction  

Shell, plate and beam are important structures in engineer-

ing [1-13]. A shell is a type of structural element which is 

characterized by its geometry, being a three-dimensional 

solid whose thickness is very small when compared with 

other dimensions [9, 14-19]. Thin structural shells are used 

to reduce the overall weight and increase the buckling load 

to weight ratio. Shells are structures whose thicknesses are 

small compared with the other dimensions and unlike the 

plates, they have an initial curvature. As thin structures, 

shells have many applications from water and oil tanks, pipe-

lines, silos, wind turbine towers, to nanotubes. For this rea-

son, the application of these structures becomes very im-

portant. Based on this need, many researchers have studied 

shell like tanks, including cylindrical, spherical and conical 
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tanks, using finite element analysis. Their analytical and nu-

merical results have shown good agreements with the exper-

imental data. Consequently, numerical studies such as finite 

element analysis have proved to be reliable methods for pre-

dicting the buckling behavior of such structures. 

On this basis, Galletly and Machut [20] presented a code 

for predicting the failure of torispherical shells under internal 

pressure due to buckling. Błachut and  Wang [21], studied 

the buckling behavior of mild steel barreled shells under ex-

ternal hydrostatic pressure. They obtained failure loads using 

BOSOR5 and ABQUES. Jasion and Magnucki [22] investi-

gated elastic buckling of barreled shells of revolution with 

constant mass and volume under external pressure. They 

used the finite element method (FEM) to present the buck-

ling loads for a family of shells. In another work [23], they 

calculated the elastic buckling load of clothoidal–spherical 
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This study investigates the buckling behavior of short cylindrical shells with hemispheri-
cal heads subjected to hydrostatic pressure. It is assumed that the length of the cylindrical 
part is smaller than or equal to its diameter while its material may be different from that of 
hemispherical heads. Finite element analysis was used to seek out the effect of geometric 
parameters such as thickness, length, and volume of the tank on the ultimate buckling load. 
Results indicate that the buckling load is directly proportional with the thickness and in-
versely proportional with the volume of the vessel. A close examination of the buckling 
modes reveals that under uniform hydrostatic pressure, the cylindrical part undergoes the 
most critical deformation compared with its hemispherical heads. This behavior was ob-
served for the two loading cases of (a), a hydrostatic pressure applied to the whole structure 
and (b), the hydrostatic pressure was only applied to the cylindrical part of the vessel. 
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shells and the related buckling modes under external pres-

sure using ANSYS finite element commercial software. 

Wang et al. [24] used finite element analysis to determine 

the buckling loads of thin-walled torispherical heads in a res-

idential electric water heater tank and compared their results 

with the laboratory  buckling  loads. Portela and  Godoy 

[25]  presented an  experimental – computationa lstrategy 

for evaluating the buckling loads of steel tanks with domed 

roofs subjected to wind pressure. Błachut [26] utilized a nu-

merical method along with experimental results to determine 

the elastic and elastic-perfectly plastic buckling loads of 

knuckle troispherical shells subjected to external pressure. In 

another study, Błachut and Vu [27] used ABAQUS finite el-

ement commercial software to obtain the burst pressure of 

shallow spherical caps and troisphers under uniform static 

pressure. The effect of geometric and material properties on 

the elastic-plastic buckling loads of torispherical shells under 

internal pressure was investigated by Galletly and Radhamo-

han [28]. Evkin et al. [29] presented an asymptotic solution 

for buckling loads of spherical shells subjected to external 

pressure and compared their results with those of ANSYS 

commercial software. Athiannan and Palaninathan [30] ex-

perimentally studied the buckling behavior of cylindrical 

shells subjected to axial and transverse shear loads. Bennur 

et al. [31] presented a 2-D static stress analysis using 

ANSYS. Nonlinear buckling behavior of spherical shells 

was studied by Hutchinson and Thompson [32]. Magnucki 

and Jasion [33] proposed an analytical model for pre-buck-

ling and elastic buckling of barreled shells with constant 

thickness, made of a homogeneous and isotropic material, 

subjected to uniform radial pressure. Błachut [34] performed 

a comparison between the experimental and numerical re-

sults for buckling of cylindrical steel shells under external 

load. Niezgodzinski and Swiniarski [35] used the finite ele-

ment method to investigate the static and dynamic stability 

of thin-walled spherical shells under external pressure. A se-

ries of experimental tests on the buckling of torispherical 

shells under internal pressure were conducted by Adachi and 

Benicek [36]. Additional work on the buckling behavior of 

the shells, by other researchers, can be found in Refs. [37-

50]. 

The literature survey performed by the authors indicates 

that the studies performed on the buckling behavior of cylin-

drical shells with hemispherical heads are very limited. This 

may be due to the complexity of the resulting governing 

equations in such structures which leads to a lack of an ana-

lytical solution. For this reason, many researchers have used 

the finite element method (available in many software pro-

grams) as an alternative method to seek out a solution. Fol-

lowing this idea, the present work investigates the buckling 

behavior of short cylindrical shells with two hemispherical 

heads, subjected to uniform hydrostatic pressure. It is worth 

to mention that in this analysis, the material properties of the 

cylindrical shell and its hemispherical heads are allowed to 

be different.  

2. Geometry, materials, and method 

The short tank of interest is made of a cylindrical shell 

with two hemispherical heads on both sides, as shown in Fig. 

1. The radius, thickness, and length of the cylindrical part are 

r, h, and l, respectively. Both shells (hemispherical heads and 

cylindrical body) are made of homogeneous and isotropic 

materials. The material property of the cylindrical part is al-

lowed to be different from that of the hemispherical heads. 

The length of the cylindrical shell is considered to be smaller 

than or equal to its diameter. In other words, 

l≤2r 
(1) 

Additionally, using the dimensions shown in Fig. (1), one 

can write, 

H=l+2r (2) 

The minimum total potential energy principle is used to de-

rive the equilibrium equation of the tank. The change in po-

tential energy due to the hydrostatic load can be written as; 

1P p V   (3) 

where ∆V is the change in volume of the tank (vessel) and P 

is the hydrostatic pressure. 

 

  
Fig. 1. Geometry and material of the tank. 

 

Additionally, work down by the principle stresses on the 

strains can be written as;  
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where εi and Ni are the strains and membrane stresses, re-

spectively. In addition, the strain energy due to displace-

ments for cylindrical and spherical shells are as; 
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(5) 

In these equations, h, E, υ and κi are the shell thickness, elas-

ticity modulus, and curvatures, respectively. The strains and 

curvatures in the cylindrical part are; 
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(7) 

According to the principle of minimum total potential energy, 

at the onset of buckling, the first variation in the total poten-

tial energy must be zero. That is, 

 

δπ = δU + δV= δ(P1C+P1S+P2C+P2S+P3C+P3S)= 0  (8) 

in which δU and δV represent the variations in strain energy 

and virtual potential energy of membrane stresses, respec-

tively. Solving Eq. (8) leads to the equilibrium equations and 

the associated boundary conditions, results in very complex 

relations that are very difficult to solve. Consequently, a fi-

nite element scheme is implemented to determine the buck-

ling loads, the results of which are presented in the next sec-

tion. 

3. Results and discussions 

During modeling process, it is assumed that the tank is 

subjected to hydrostatic pressure. Accordingly, the buckling 

load is obtained for different thicknesses and tank volumes. 

The selected material properties for the heads and cylindrical 

wall are given in Table 1. SHELL281 which is suitable for 

analyzing thin to moderately-thick shell structures was used 

to mesh the model and investigate the shell’s buckling be-

havior. This element has eight nodes, each of which has six 

degrees of freedom and is well-suited for linear, large rota-

tion, and/or large strain nonlinear applications [51]. 
 
Table 1. Material properties of selected materials. 

Material Young’s modulus (GPa) Poisson’s ratio (υ) 

Steel (cylindrical wall and/or 

hemispherical heads) 
210 0.25 

Aluminum (cylindrical wall 

and/or hemispherical heads) 
71 0.33 

3.1. Length effect of the cylindrical part 

     3.1.1  l = 2r 

In the first model, it is assumed that the hemispherical 

shell is made of aluminum and steel cylindrical shell is made 

of steel. The buckling loads for different vessel volumes are 

shown in Fig. 2. As the thickness of the shell increases the 

buckling load increases, with any change in buckling mode. 

Also, the buckling load has an inverse relation with the vol-

ume of the tank. 

 

 
(a) 
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(b) 

Fig. 2. The buckling load and buckling mode in a tank 

with l=2r. (a) Buckling load for different tank thicknesses 

and volumes and, (b) Buckling mode. The hemispherical 

shell is made of aluminum and the cylindrical part is made 

of steel. 

In the second model, the whole structure was made of 

steel. The buckling load and buckling mode for various 

thicknesses and volumes are shown in Fig. 3. As in the first 

model, increasing the thickness and volume of the vessel, di-

rectly and inversely affect the buckling load, respectively. 

Comparing the buckling loads of the two models reveals that 

any change in the elastic modulus of the hemispherical heads 

does not have a substantial effect on the buckling behavior 

of the tank (vessel). Consequently, one may conclude that 

the buckling behavior of the tank mainly depends on the ma-

terial of the cylindrical part rather than that of the hemispher-

ical heads. This result has manifested itself in buckling mode 

which has mainly occurred in the cylindrical part. 
 

 

(a) 

 

(b) 

Fig. 3. Buckling load and buckling mode in a tank with 

l=2r, (a) buckling load for different tank thicknesses and 

volumes and, (b) buckling mode. The whole structure is 

made of steel. 

  3.1.2. l = r 

The buckling load and buckling mode for a tank with an 

aluminum hemispherical head and steel cylindrical shell are 

shown in Fig. 4. Comparing Fig. 4 and Fig. 2, it can be ob-

served that the reduction in length of the cylindrical part 

leads to an increase in buckling load. However, the change 

in length of the cylindrical part from l = 2r to l = r does not 

affect the buckling mode, when the same hydrostatic pres-

sure is applied to the whole structure. 
 

 

(a) 

 

(b) 

Fig. 4. The buckling load and buckling mode in a tank 

with l=r, (a) buckling load for different tank thicknesses 

and volumes and, (b) buckling mode. The hemispherical 

shell is made of aluminum and the cylindrical part is made 

of steel. 

3.2. Comparison between buckling modes under different ex-

ternal pressure 

A comparison between the buckling modes of a tank with 

hydrostatic pressure applied to its whole structure, and the 

one with a similar load applied to only to its hemispherical 

load is shown in Fig. 5. As observed, for different thick-

nesses and volumes, there is only one buckling mode for the 

case in which the whole structure sustains a uniform hydro-

static pressure. However, for hemispherical heads being 
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pressurized under a uniform load, different buckling modes 

occur.  

 
Fig. 5. A comparison between the buckling modes, based 

on different external loads. 

 

 

 

4. Conclusions  

Nonlinear buckling behavior of short cylindrical shell 

(tank) with two hemispherical heads was investigated. The 

finite element models were prepared and subjected to uni-

form hydrostatic pressures. The material of the cylindrical 

wall was allowed to be different from that of the hemispher-

ical heads while its length was assumed to be smaller than or 

equal to its diameter. Results show that when the vessel is 

externally pressurized, the buckling load increases with an 

increase in the tank thickness. However, the adverse effect 

was observed as the tank volume increased. In addition, re-

sults show that the critical deformations occur in the cylin-

drical part (with only one buckling mode), provided the 

whole structure is subjected to uniform hydrostatic pressure. 

Moreover, if the hemispherical heads are the only pressur-

ized components, depending on the magnitude of the applied 

load, different buckling modes occur in the cylindrical body 

of the tank. Such behavior means that in a short thin vessel, 

the critical portion of the whole structure appears to be the 

cylindrical wall (as opposed to its hemispherical heads). 

Also, based on a uniform pressure, the buckling mode re-

mained intact for different vessel thicknesses, lengths, and 

volumes, provided the whole structure was hydrostatically 

pressurized. According to these results, to increase the over-

all buckling load capacity of a short vessel, it is recom-

mended to use higher elastic moduli for the cylindrical shell, 

or even apply reinforcement ribs and/or struts to strengthen 

this portion of the structure.    
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