تعداد نشریات | 194 |

تعداد شمارهها | 4,922 |

تعداد مقالات | 53,846 |

تعداد مشاهده مقاله | 89,931,370 |

تعداد دریافت فایل اصل مقاله | 72,744,714 |

## Nonlocal elasticity theory for static torsion of the bi-directional functionally graded microtube under magnetic field | ||

Journal of Computational Applied Mechanics | ||

مقاله 3، دوره 51، شماره 1، شهریور 2020، صفحه 30-36
اصل مقاله (730.06 K)
| ||

نوع مقاله: Research Paper | ||

شناسه دیجیتال (DOI): 10.22059/jcamech.2019.294263.462 | ||

نویسندگان | ||

Abbas Barati ^{} ^{1}؛ Saeed Norouzi^{2}
| ||

^{1}Department of Mechanical Engineering, University of Guilan, Rasht, Iran | ||

^{2}School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran | ||

چکیده | ||

The microtubes are important structures in nano electromechanical system .in this study a nonlocal model is presented to investigate the static torsion behavior of microtubes made of bi-directional factionally graded material (BDFGM) subjected to a longitudinal magnetic field. Mechanical properties of BDFGM microtube varies in the radial and longitudinal direction according to an arbitrary function. The governing equation is obtained using the principle of minimum potential energy. a sinusoidal distributed torque and uniform magnetic field with clamped boundary condition are considered to capture the effects of nonlocal parameter, FGM indexes and intensity of longitudinal magnetic field on the torsional angle of BDFGM microtube. The numerical solution of generalized differential quadrature (GDQ) is compared with Galerkin method which a reasonable agreement is observed. Result indicates that intensity of longitudinal magnetic has important role on the torsional angle of microtubes such that when intensity of longitudinal magnetic field increases the torsional angle of microtubes decreases | ||

کلیدواژهها | ||

Static torsion؛ Magnetic field؛ Microtube؛ Nonlocal elasticity theory؛ Bi-directional functionally graded materials (BDFGMs)؛ Generalized differential quadrature method (GDQM) | ||

مراجع | ||

[1] F.-X. Ma, L. Yu, C.-Y. Xu, X. W. D. Lou, Self-supported formation of hierarchical NiCo 2 O 4 tetragonal microtubes with enhanced electrochemical properties, [2] R. Halaui, E. Zussman, R. Khalfin, R. Semiat, Y. Cohen, Polymeric microtubes for water filtration by co‐axial electrospinning technique, [3] A. Setoodeh, M. Rezaei, M. Z. Shahri, Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory, [4] A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, [5] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, [6] A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, [7] M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory, [8] M. Mousavi Khoram, M. Hosseini, M. Shishesaz, A concise review of nano-plates, [9] A. C. Eringen, Nonlocal polar elastic continua, [10] A. C. Eringen, Theory of micromorphic materials with memory, [11] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, [12] R. Toupin, Elastic materials with couple-stresses, 1962. [13] D. C. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, [14] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, [15] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, [16] A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, [17] M. Z. Nejad, A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams, [18] M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, [19] M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, [20] M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour, Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms, [21] M. M. Adeli, A. Hadi, M. Hosseini, H. H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory, [22] M. Shishesaz, M. Hosseini, K. N. Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, [23] M. Z. Nejad, A. Hadi, A. Omidvari, A. Rastgoo, Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory, [24] M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, [25] E. Zarezadeh, V. Hosseini, A. Hadi, Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory, [26] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, [27] A. Soleimani, K. Dastani, A. Hadi, M. H. Naei, Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory, [28] A. Hadi, A. Rastgoo, A. Bolhassani, N. Haghighipour, Effects of stretching on molecular transfer from cell membrane by forming pores, [29] H. H. Gorgani, M. M. Adeli, M. Hosseini, Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches, [30] M. Shishesaz, M. Hosseini, Mechanical behavior of functionally graded nano-cylinders under radial pressure based on strain gradient theory, [31] M. Z. Nejad, A. Rastgoo, A. Hadi, Exact elasto-plastic analysis of rotating disks made of functionally graded materials, [32] Z. Mazarei, M. Z. Nejad, A. Hadi, Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials, [33] M. Gharibi, M. Zamani Nejad, A. Hadi, Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius, [34] M. Z. Nejad, A. Rastgoo, A. Hadi, Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique, [35] M. Zamani Nejad, M. Jabbari, A. Hadi, A review of functionally graded thick cylindrical and conical shells, [36] M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, [37] S. Sahmani, M. M. Aghdam, Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory, [38] F. Ebrahimi, M. R. Barati, Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory, [39] F. Ebrahimi, M. R. Barati, A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams, [40] A. G. Arani, E. Haghparast, Z. K. Maraghi, S. Amir, Nonlocal vibration and instability analysis of embedded DWCNT conveying fluid under magnetic field with slip conditions consideration, [41] T. Murmu, S. Adhikari, M. McCarthy, Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory, [42] T.-P. Chang, Nonlinear vibration of single-walled carbon nanotubes with nonlinear damping and random material properties under magnetic field, [43] G. Wu, The analysis of dynamic instability and vibration motions of a pinned beam with transverse magnetic fields and thermal loads, [44] H. Wang, K. Dong, F. Men, Y. Yan, X. Wang, Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix, [45] S. Narendar, S. Gupta, S. Gopalakrishnan, Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory, [46] C. Li, A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries, [47] R. Barretta, L. Feo, R. Luciano, F. Marotti de Sciarra, R. Penna, Nano-beams under torsion: a stress-driven nonlocal approach, [48] T. Murmu, M. McCarthy, S. Adhikari, Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach, [49] T.-P. Chang, 2018. Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory, | ||

آمار تعداد مشاهده مقاله: 232 تعداد دریافت فایل اصل مقاله: 241 |