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The parametric resonance of the axial vibrations of a cantilever pipe conveying
harmonically perturbed two-phase flow is investigated using the method of multiple
scale perturbation. The nonlinear coupled and uncoupled planar dynamics of the
pipe are examined for a scenario when the axial vibration is parametrically excited
by the pulsating frequencies of the two phases conveyed by the pipe. Away from
the internal resonance condition, the stability regions are determined analytically.
The stability boundaries are found to reduce as the void fraction is increasing. With
the amplitude of the harmonic velocity fluctuations of the phases taken as the
control parameters, the presence of internal resonance condition results in the
occurrence of both axial and transverse resonance peaks due to the transfer of
energy between the planar directions. However, an increase in the void fraction is
observed to reduce the amplitude of oscillations due to the increase in mass content
in the pipe and which further dampens the motions of the pipe.

1. Introduction

The vibration of pipes due to the dynamic interaction between
the fluid and the pipe is known to be a result of either instability or
resonance. The earlier which is because of the decrease in the
effective pipe stiffness with the flow speed Ibrahim [1], and when
the flow velocity attains a critical value, the stiffness vanishes, and
the instability occurs. However, the latter occurs when the pipe
conveys a pulsatile flow resulting in parametric resonance.

Ginsberg [2] is about the earliest publication on the dynamic
instability of pipes conveying pulsatile flow for a pinned-pinned
pipe. Chen [3] investigated the effect of small displacements of a
pipe conveying a pressurized flow with pulsating velocity.
Equations of motion were derived for general end conditions and
the Eigenfunction expansion method was used to obtain solutions
for the case of simple supports. It was discovered that in the
presence of pulsatile flow, the pipe has regions of dynamic
instability whose boundaries increase with the increased
magnitude of fluctuations. Paidoussis and Issid [4] investigated the
dynamics and stability of flexible pipes-conveying fluid where the
flow velocity is either constant or with a small harmonic
component superposed. For the harmonically varying velocity,
stability maps were presented for parametric instabilities using the
Eigenfunction expansion method for pinned or clamped ends
pipes, and also for cantilevered pipes. It was found that as the flow
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velocity increases for both clamped and pinned end pipes,
instability regions increase, while a more complex behavior was
obtained for the cantilevered pipes. For all cases, dissipation
reduces or eliminates zones of parametric instability. Paidoussis
and Sundararajan [5] worked on a pipe clamped at both ends and
revealed that the parametric and combination resonance is
exhibited by the pipe when is conveys single-phase flow at a
velocity that is harmonically perturbed. However, Neyfeh and
Mook [6] highlighted that nonlinearities are responsible for
various unusual phenomena in the presence of internal and/or
external resonance. Sequel to these early studies on the linear
dynamics of the system, many studies were also published on the
nonlinear dynamics of the subject, notable among these, are the
works of Semler and Paidoussis [7] on the nonlinear analysis of
parametric resonance of a planar fluid-conveying cantilevered
pipe. Namachchivaya and Tien [8] on the nonlinear behaviour of
supported pipes conveying pulsating fluid examined in the vicinity
of subharmonic and combination resonance using the method of
averaging. Pranda and Kar [9] studied the nonlinear dynamics of a
hinged-hinged pipe conveying pulsating flow with combination,
principal parametric and internal resonance, using the method of
multiple scales. Mohammadi and Rastagoo [10] investigated the
primary and secondary resonance phenomenon in an FG/lipid
nanoplate considering porosity distribution based on the nonlinear
elastic medium. Asemi, Mohammadi and Farajpour [11]
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considered nonlocality and geometric nonlinearity due to
nanosized effect and mid-plane stretching in the study of the
nonlinear stability of orthotropic single-layered graphene sheet.
Mohammadi and Rastagoo [12] studied the primary,
superharmonic and subharmonic resonances as a result of the
presence of nonlinearities in the modeling of the vibrations of a
viscoelastic composite nanoplate with three directionally
imperfect porous FG core using the Bubno-Galerkin method and
the multiple scale method. Danesh, Farajpour and Mohammadi
[13] investigated the axial vibrations of a tapered nanorod
considering elasticity theory and adopted the differential
quadrature method in solving the governing equations for various
boundary conditions. As demonstrated by various publications, the
effect of nonlinearities is known to be highly crucial in the
understanding of the dynamics and stability of pipes and porous
media conveying fluid.

Leaving aside the much more established analysis of the
dynamics of pipes conveying single-phase flows, the question
remains as to how a pulsatile two-phase through a pipe will
influence the dynamic behaviour of the pipe. As seen in the review
of literature, most of the existing publications focused on the
transverse vibrations, but the axial oscillations of the pipe can be
of interest also when considering pulsatile flow due to possible
amplification of oscillation amplitude as a result of resonance
phenomenon. This present study investigates the nonlinear axial
vibrations of a cantilever pipe conveying pulsating two-phase flow
with the pulsating frequencies of the two phases parametrically
exciting the axial vibrations of the pipe. An approximate analytical
approach will be used to resolve the governing equations by
imposing the method of multiple scales perturbation technique
directly to the systems equations (direct-perturbation method).

2. Problem formulation and modeling
2.1. Assumptions

Considering a cantilever pipe of length (L), with a cross-
sectional area (A), mass per unit length (m) and flexural rigidity
(EI), conveying multiphase flow; flowing parallel to the pipe’s
centre line. The flow is assumed to have a velocity profile can be
represented as a plug flow, the diameter of the pipe is small
compared to its length so that the pipe behaves like a Euler-
Bernoulli beam, the motion is planar, deflections of the pipe are
large, but the strains are small, rotatory inertia and shear
deformation are neglected and pipe centerline is assumed to be
extensible.
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Figure 1. System’s Schematics.

2.2. Equation of motion of an extensible cantilever pipe
conveying Two-phase flow

312

The coupled nonlinear equations of motion of a cantilevered
pipe conveying multiphase flow including the nonlinearity due to
midline stretching is giving by Adegoke and Oyediran [14]:

(m+ X My)ii+ X7, MU, + X7, 2M U +

T MU+ B MU — EAW — EI(v""'v' +v"'v"") +
(To — P — EA(aAT) — EA)v'v" — (Ty — P — EA(aAT)) +
(m+ Y}, M;)g =0, @
(m+ X7, Mo+ X7, 2MUpp" + 37, M; U v —

T aM; Uy + B MUY + EIv" — (Ty — P —
EA(aAT))v” — EI(3u’”v” +4v""u" + 2u'V"" +v'u"" +
20"y + 8v' Vv 4 2v""3) + (T, — P — EA(aAT) —
EA) (u’v” +v'u” + zv’z ")=0

2
With the associated boundary condition
u(0)=u'(L)=0 3
4

Where x is the longitudinal axis, v is the transverse deflection, u is
the axial deflection, # is the number of phases, m is the mass of the
pipe, M; is the masses of the internal fluid phases, £4 is axial
stiffness, EI is Bending stiffness, T, is the tension term, P is the
pressure term, « is the thermal expansivity term, AT relates to the
temperature difference and “a” relates to the Poisson ratio (r) as
a=I1-2r.

v(0)=v'(0)andv"(L) =v'""(L) =0

2.3. Dimensionless Equation of motion for two-phase Flow

The equation of motion may be reduced to that of two-phase
flow by considering n to be 2 and rendered dimensionless by
introducing the following non-dimensional quantities;

_u _ v f—[ El 1/Zt
YLV T M e My ml 12
= _[M1+M2]1/2UL U, = M1+M2]1/2UL
I_M E1\£I 1, Y2 — I\E/II 2

+M, +m
— 1 2 ng’ﬁl_ 1 ,

EI M, + M, +m
w = M, B, = 2 7 ZL
UM MR M+ M +m T M+ M
Tension: 1T _TL Flexibility: Il _ Bal?
ension:ll, = B’ exibility: II; = £
p - _ PI?
resure: 2= 5]

i + U [1\Br + UpJ P /B, + 204 [, B +
20, [P /Bli + WU 0" + WU, @ + Uy ([P /B +
Uz_m ﬁzar _ Hlﬂ” _ (‘[7””‘[7’ + ‘[7”‘[7”’) + (no _ nz _
M,(aAT) — M)5'5" — (M, — M, — M,(@AT)) +y =0 (5)

42U [V, [B " + 20Uy [Py Bt + W U, 7" +

P, U, 7" — a¥,U; 0" — a¥, Uy 0" + Uy JP1 /B0 +

U, P, /B." — (I, — T, — I, (@AT)) 5" + 7" — (35" 5" +
5 4 20T+ TR 4 2070 + 800 + 2077 +

4w +2u'v" +v'u
(Mo = 1T, — 11, (aAT) — 1) (75" + 53" +25"°5") =0 (6)

=11 =

In these equations, i and ¥ respectively, are the dimensionless
displacements in the longitudinal and transverse direction,
U,and U, are the flow velocities of the constituent phases,
B and B, are the mass ratios for each phase which are the same as
in single-phase flows as derived by Ghayesh, Paidoussis and
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Amabili [15], ¥; and ¥, are new mass ratios that are unique to
two-phase flow, relating the fluid masses independent of the mass
of the pipe.

Assuming that the velocities are harmonically fluctuating about
their constant mean velocities, the velocities of the phases can be
expressed as:

Uy =U; (1+ py sin(Q, TO)) Q)

U, = U, (1+ p,sin(Q,T0)) ©)

Using these notations,

C11= ¥, JB,, C12 = JW,\[B,, €21 =2[¥,/B,, C22 =
2JW,/B,, C31=W,,C32=Y,, C5=11I,, C6 = (Il,—II, —
1,(aAT) — I1,), C7 = I1, — I, — I, (@AT)

The equations are reduced as:

i +U,C11 4 U,C12 + U,C2110' + ﬁzczz*' +C31T; " +
€320, 0" + Uy C11% + U, C12% — C5a" — (8" +
77"+ C67' 7" —C7' +y =0, 9)
v+ 616216' + Uzczz + C31U1 7+ C3ZU2 ' —
aC31U1 7= aC32U2 v+ U1 C117’ + Uz C127' — C87" +
o' (3u”’v” + 49" a"" + 2u'v'"" + v'u"" + 217’2 " +
87'0"7" +20"*) + C6 (W" + 0" +25"°7") = 0. (10)
2.4. The empirical gas-liquid two-phase row model

The component’s velocities in terms of the superficial velocities
are expressed as:

V= Ugvf, Vi=U,(1—vf) (11)

Where U, and U, are the superficial flow velocities. Adopting the
Chisholm empirical relations as presented in [16],

Void fraction:

or =i a2

Volume of gas

)| -

Volume of gas+Volume of Liquid (12)
Slip Ratio:
1/2
—Ye_|[{1_ _n
5= [1 x(l pg)] (13)

Where: (x) is the vapor quality and (p; and p,g) are the densities of
the liquid and gas phases respectively.

The mixture velocity can be expressed as:

Vr = Ugvf + Uy (1 — vf) (14)
Individual Velocities:

VT y _ 5
Vi= S+1’ 87 s+1 15
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For various void fractions (0.1, 0.3, and 0.5) and a series of mixture
velocities, the corresponding slip ratio and individual velocities
are estimated and used for numerical calculations.

3. Method of Solution

Multiple-time scale perturbation technique is used to seek an
approximate solution; this approach is applied directly to the
partial differential equations (9) and (10).

i+0, C11+U2C12+U C21i + U,C220 + €310, 0"

€320, 0" + U, C110 + U C120' — C50" + s(—(v””v’ +
Y ’”)+C6" "_C7' +y) =0, (16)
V40, c21\7 +l‘12c22 +C310; 7" + €320, 7" —
aC310, v — acszu2 9" + U, C11¥' + U, C12¢' — C79" +
—HH ( (3—”! n —!H H + 2—/ rnrr + V,u”” + 2—/2 nrr +
8V'V V" + 2—”3) +C6 (ﬁ’v” +7E + 297 )) =0 (17)

Also, perturbing the harmonically fluctuation of the velocity about
the constant mean velocity;

U; =U; (1 + ey, sin(Q,T0)) (18)
U, = U, (1 + &, sin(Q,T0)) (19)
We seek approximate solutions in the form:

0 =0y(Ty, Ty) + €0, (Ty, Ty) + €20, (Ty, Ty) + O(¢) (20)
¥ =9o(To, Ty) + €7, (Ty, Ty) + €27,(Ty, Ty) + O(e) (21)

Two-time scales are needed T, =t and T; = et. Where € is a
small dimensionless measure of the amplitude of @ and v, used as
a book-keeping parameter.

The time derivatives are:

(22)

= = Dy +eD, + €D, + 0(e)
: (23)

2

—7 = Do* +2eDyD; + €% (D; 24 2D,D,) + 0(¢)
-9

Where D, = poe

Substituting Equation (20), Equation (21), Equation (22) and
Equation (23) into Equation (16) and Equation (17) and equating
the coefficients of (€) to zero and one respectively:

U-Equation:

0(°). Dy iy + C21D,ii,'U, + C22Dy1," U, +
€314,"U," + €321,"'T," — C5%," = 0 (24)
0(eY). Dyt + C21D,@1,'U, + C22Dyi,' U, + 2Dy Dy iy +
c31w," U, + cszal”Uz2 + C21Dy,' U, + C22D,1,'U, —
51" — 5"y’ — C7' +y — 0" By + C65,' Dy +
C21D,7,'U; + C22D1u0 U, + C110, 1, cos(.QlTO)Ul

C120,u, cos(.QzTO)U2 + 2031y, sm(.QlTO)Ul2 iy

2C32u, sm(.QZTO)U2 i, +C21p, sm(.()lTO)DOU1 iy +

C22u, sin(2,T0)D,U, & u(, + C410, p; cos(,TO)U, 1y’ +

C420,u, cos(2,TO)U,u, = 0 (25)
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V-Equation:
0(°). D’y — C75," +,"" + C21Dy,' U, +
€22Dy%,' U, + C31%,"T," + €325,"U," — aC31%,"T," —

aC32=0 (26)

0(e)). Dy’0, — C75," + 7" — "By’ — 20’7
411, B, — 30y B, " — 20, — 20 ""1702 + 2D0D1v0 +
C315,"T," + €325, T, — 85,9, 7, + C6U,'V," +
+2C67,2'7y" + C21D,¥,'U; + C22Do%,'T, +
€21D,v,'T, + €22D,7, "0, —aC31%,"0,” — aC32V1”U22
2C31py, sm(QlTO)U1 \70" + 2C32y, sm(QZTO)UZ vy

C21y, sin(Q,TO)D,U, ¥ V0 + €22, sin(Q,TO)D,U, v VO —
2aC31y, sm(QlTO)U1 Vo' — 2aC32u, sm(QzTO)U2 Vo
C41Q,, cos(QlTO)le_/O’ + C420, 4, cos(Q,TO)U, v, =

0 27

The homogeneous solution of the leading order egqugtions
Equation (24) and Equation (27) can be expressed as:

IIII !— mnr

C6i,"' v,

U(x, Ty, Ty)o = G(X)n exp(iw, Ty) + CC
V(x, Ty, Ty)o = n(x)y exp(ir, Tp) + CC

(28)
(29)

Where (CC) is the complex conjugate, ¢(x), and n(x), are the
complex modal functions for the axial and transverse vibrations
for each mode (n) and, w, and A, are the eigenvalues for the axial
and transverse vibrations for each mode (n).

3.1. Axial natural frequencies and mode shape

The analytical expression for the axial frequencies is obtained
as:

2nn—i.ln(£)
—% n=123,..
(a-b)L

(30)

w, =

Where:

€2104 , C22U> JC212U12+2C21C22T11l72+C2221722—4C31U12—4C32Uzz+4cs
— 2 ' 2 7 2
a = — 2 — 2 »
€5—C310,°-C320,

€2101 , C220, JC2121712+2cz1czzl71172+c222U22—4C31U12—4C32U22+4CS
—_2 ' 2

b

2
€5-C310,°-320,°
With the modal shape expressed as:

¢ ()5 = Gn(exp(ikyx) + exp(ik,x)) (3D

The constant G,, can be obtained using the orthogonality
relationship.

3.2. Transverse natural frequencies and mode shape

Conversely to the axial vibrations, direct analytical estimation is
not possible for the natural frequencies of the transverse
vibrations. However, the natural frequencies can be estimated by
solving the quartic equation (32) and the condition of obtaining a
non-trivial solution of the boundary condition matrix (33)
simultaneously with a nonlinear numerical routine:

2%y + (€7 - €310, - €320," + aC310," +
aC320,") 2%, — (€210, + C220;) iy — 22,
1,234 and n =1,2,345 ...

0 j=

(32)

314

Boundary condition matrix:

1
H2

| 1 1 1 1

Zin Z2n Z3n Zan |
|(Z1n)Z-EXp(i-Z1n) (zn)? exp(i.z2n)  (23n)?.exp(i. z3p) (Z4n)2-eXp(i-Z4n)|
(210)3.€xp(i. 21,)  (221)%. exp(i. 25,)  (23,).€xp(i. z3,)  (24,)3 exp(i. z4y,)

1§ |

For a non-trivial solution, the determinant of (G) must varnish, that
is:

DET(G) =0 (33)
Where (4,,), are the natural frequencies and (Z,) are the
eigenvalues. The mode function of the transverse vibration
corresponding to the nth eigenvalue is expressed as:

n(x), = Hl,.[e*“nt—(A+B+C+D)—E] (34)

eX Zan i, le Zln'i-(zln)3-zzn_ ezln'i.(Z1n)3- Z3n— eZint, Z4n-(21n)2 Zyn

(22n= Z4n)-(Z3n— Zan) [€ 721 L (2pn)% — € 731t (23]

A=
B =

e zan-l [e Zinlzy,, (210)% Z3n— € 220 Lzin.(zan) 3+ %20 . 240 2100 (220)?
(Z2n— Zan)-(Z3n— Zan) [ 7210 L (2pn)%— e 31+ (231)2]
eXZan-l [e 23 1z, (230)3 ~ €73 Lzynzin(23n) %+ €220 (230)% Z3n

(Z2n— Zan)-(Z3n— Zan) [ 721 L(zpn)%— e Z3n L (z37)2]

C =
D:

eXZand [—eZ2n -z, (23n)% 23n— €3 Lzpn (z3n)+ € 3L 24 Zpn (23n)°
(Zan— zan)-(Zzn— Z4n) .[e 7210 ¢ (22n)2—eZ3n: ¢ (z3n)?]

E = eXZ2nl(zin— z4n).[e 1L (210)% - e Z3-L(z3n)Y] +
(Z2n— Zan)- [ 72 1(z3n)2— € 73 L (230)?]

ex 73 (Zin— Zan)-[e P10 L (z1n)*= e?2i, (z2n)?]

(230~ Zan)- [€ 72 L(z3n)2— € 734 (230)?]

The constant H1 can be obtained using the orthogonality
relationship.

3.3. Axial principal parametric resonance

Substituting equation (28) and equation (29) into the equations
(25) and (27) gives;

Dy*#, — C51," + C21Dyw,'U, + C22D,1,'U, + €311, U, +
c321,"0," = - (€212002D [, 4 2 XAVXD [,

2 6n(x)6“n(X) Ozn(X)03n(X) _
)exp(leO) +Y(T1) ( o t o o

Ox4
2 t(x) exp(i,T,) U2 i—

aX(T1)
aT1

an(x) 82n(x)
€610 exp (20ATy) + [cszuz
2 (c21, 22 exp(—i, T, ) +
C21p, 6"’(") exp(ityTy)0y w) —
€224, 222 exp(~i0, T))U, ) +

(
(
(c2zp, 2 e 20 exp(i0,T) U, ) —
(
(

20

64>(x)

Ca10, 1, ""’(") D exp(—i, T)T; ) -

Ca10, 1, ""’(") D exp (i, To) T, ) -

NIRN[RN[RN|RPN|RPRN

n
H3. | Hin
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a¢(x)

2 (420,11, 22 exp(~i,Ty) T ) -
(C42!22 1Ly ""’(x’ exp(L.QZTO)UZ)

C32u, 2 (fc(x) exp( i2,Ty) U2 i—

C31pu, ———exp(—i, Ty) U1 i+

C31y, exp(i2,Ty) U, L] X(TDexp(iwTy) +
[C32 0, 5 ¢(x)
((]21‘411 aqb(x) exp (i, T U, a))
((]22‘412 aqb(x) exp(i 2,T)U, w
(C41.(21;11 a¢(x) exp(i, THU

22¢(x)
x
o2 ¢(X)

exp(iN,Ty) U2 i+

(C42[)2 1 "’"’(") exp(i,Ty) U,
2 ¢<x>

C31y,
cc=o"

T1exp(—iwT,) + NST +
(35)

exp(t()lTo) U, L] X

D20, — C70," + ©,""" + C21Dyw,'U, + C22Dyw,'U, +
€319, 0,% + €329,"U," — aC319," U, — aC329,"U," =

aY(T1) nx) = nx) = )
(o (e, oo, o)

- 2 AT
6Y (T1)°V(TT) (Z2)" 219 1 oy (r127(TT) (242)
4y (T1)?Y(T1) 222 f”;(;‘) f’az(j) +

3
8Y(T1?Y(TD f”’(;‘) 970 ) |

ax2  9x3

2 anlx) a%n(x) a3n(x)
8Y(T1)?Y(TT) 22

0x2 _ 9x3

3C6.Y(T1)?Y(T1) 22X f’"(") "";;") 9 a”’fz") +

an( )62 (x) 37(x)
8Y(TDPY(TD) = === =T —

a a .

2ce. Y(T1)2Y(T1)( "(;‘)) a”(z")> exp(ilTy) +
(2X(T1)Y(T1) +4X(TOYTD L 202 ;’3(")
3X(T1)Y(T1)a "(")"’ ‘”")) exp(iwT,) exp(— LATO) -
(C6X(T1)Y(T1) 0003 T 4
CoX(TNHY (T 1) 2 "’"(") 2 a“”(;‘)) exp(iwTy) exp(—iATy) +
[(—(622 1 22 Uz/l) —1(c420,, 22 0,) +
aC32uza 0 7,7 — C32y26 a”(z") 7,% )exp(—l.()zTO) +

an(x) 6n(x)
(2 (c21m Z20,2) - 2 (c410,, 22T, ) +

ac31ul%u1 l—c31ul"a’7(2)u1 l) exp(—i0,T,) —

dx*

dd(x) 0% r](x) +

1 ) = 1 an(x)
(;(czm1 197,2) -2 (c410,, 22T, ) +
aC31u, 219, - €31, ° a"(z") 7, l) exp(i,T,) —

(2 (c22u, 222 Uz/l) —2(c420,,227,) +
ac32u, % "(’" U, —

C32u, —— 2 "( ) U, l) exp(L.QZTO)] Y(T1)exp(ilATy) +
[(l(czmlelA) -2 (ca10,, 20 o) 7,) -
ac31u1" LGN 631,11a ) g L) exp(iyTy) +
({22 22002420 220,) -
aC32, 2107, % i +

€320, 10 7,0 exp(if,To)| V(T Dexp(—iaT) + NST +

2 a4m

315

cc (36)
Here NST denotes non-secular terms. The next task is to determine
the requirements for X(T1) and Y(T1), that permits the solutions
of U, and ¥, to be independent of secular terms. However,
examining equations (35) and (36), it can be observed that various
scenarios exist. With a focus on the principal parametric resonance
cases when the pulsation frequencies of the phases Q1 and Q2 are
close to 2w but far from 2A. Also, consider the possibility of
having internal resonance (w = 21) and away from internal
resonance (w # 2A) relationship between the axial and the
transverse natural frequencies.

The proximity of the nearness can be expressed as:

Q1 =2w + €0, and Q2 = 2w + €0, (37)

Therefore, Q1 = Q2
Where o, is the detuning parameter.

Substituting the equations of nearness to resonance (37) into
equations (35) and (36), replacing eT0 with T1 and collating the
secular terms, the principal parametric resonance conditions are
identified and assessed as follows:

3.4. When w is far from 24

If w is far from 22 then none of the coupled nonlinear terms will
generate secular terms, therefore resulting in the uncoupled
response.

The two equations will have bounded solutions only if the
solvability condition holds. The solvability condition demands that
the coefficient of exp(iwT,) and exp(iAT,) vanishes [17-19],
that is, X (T1) and Y (T1) should satisfy the following relation:

— (c21 ZIVAD 4 0222200
dT1 dx

2¢(x)w ‘”““)) + [c32m, 22
(C21 1—exp(l<72T1)U1 )
(CZZ Uy exp(lale)Uz w)

(C41u1—exp(lazT1)U1 )

(C42u2 exp(lasz)Uz w)
(C41e3c72,u1 exp(lale)Ul)

exp(lale)Uz)
exp(lale) U, l]X(Tl) =

ax(n) 29(x) 77
ox Uz

exp(lale) Uz i+

(C42e3c72,u2
C31u1

(38)

Y (T1) mx) ) 77 .

(— 00 (21297, + €22 7297, + 2n(x0) i) +

2 a4m
dx*

[ 2 =
6Y (T (TD) (742) 22+ 2v (11 (7D (752)
4Y(T1)2Y(T1) 571(;‘) anx) 5 VI(X) +

dx  dx*

8Y(T1)2Y(T1) 677(;‘) 8%n(x) 8%n(x) +

dx2  9x3

8Y(T1)2Y(T1) a"lix) 3%n(x) 637](")

dx2 _ 9x3

3C6.Y(T1)?Y(TD 6"(;‘) 90 )

dx  dx2

8Y(T1)2Y(T1) 677(;‘) 3*n(x) 537](95)

dx2  9x3
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3 2o ()2 %) _
2¢6.v(11)?Y (1) (22 —) =0 (39)

0x2

With the inner product defined for complex functions on [0, 1] as:

(f.g)= [ fgdx (40)

Equations (52) and (53) can be cast as:

ax(T1)

+QX(T1) exp(io,T;) =0 (41

aY(T1)

+SY(T1)?Y(T1) =0 (42)

Where:

fo (x)[cszu2 a¢>g )Uz i+= ((,‘21[11 [163) Ulw)]dx

T (210, +C220,) Re ‘gix)¢(x)dx+2w Jy d)@Ax

Jo ¢(x)[ (czzuza¢(x)uzw) ((,‘41;1 a¢(X)U1w)]dx
a‘b(x)t1)(x)dx+21w fo ¢ (x)p(x)dx

Jo r/)(x)[ (c4zu2a¢(x)uzw)——(c41sazula‘§( )Ul)]dx
3¢(X)¢
ax

(C210,+C220) [

(€210, +C220) [ ()dx+2iw fo P(x)p(x)dx

Er e a¢()

Jy ¢(X)[——(C42£azu2 oU )+cs1u

(€210, +C2205) [ ‘gi")¢(x)dx+zlw I ¢(x)¢(x)dx

Ul ]dx

1[_raneoN2anto Bn(X) 294
fO [6( ox ) ox +2( ox ax* ] ()dx

S = +
<((:21U1+(:22U2)flan(x n(x)dx+2dfo r](x)r](x)dx>

b [ aMX)ANX)3*n(x) | L8n(x)32NX)33nX)] =
0 dx dx o9x* 8 5% 9x2 ax3J

n(x)dx

<(C21U1+(:22U2) folagch)n(x)dx+2M fo n(x)n(x)dx>

I [ g2 (083100 4 - an()8nG)0%n
0 ax  9x%  9x3 dx Ox

n(x)dx+2i f; n(x)n(x)dx>

(X)} dx

laTI(x)

—<(c21u1+czzuz) o

Bn(x)azn(x)63n(x) 3. (90202 |——
fo[ ax 9x2 9x3 2"6( ax) ax2 ]n(x)dx

16n(x)

—<(cz1ul+czzuz) o n()dx+2id [ n(x)n(x)dx>

Where Q and S are complex numbers such that:
Q=Qf+iQ'and S = S® + is! (43)
To estimate the stability region for the axial vibration due to the

principal parametric resonance, X (T1) is expressed in polar form
as:

T1opi - —_ (~Tioyi
X(T1) =B(T1)e(T) and X(T1) = B(T1)e(T) (44)
Substituting equation (44) into equation (41)

dB(Tl) 0‘2X(T1)L

+QB(TDH+2X 9 (45)

With complex amplitudes expressed as;
b = bR +ib! (46)

B(T1) = be’™ and B(T1) = be'™ (47)

Substituting (46) into (47), (47) into (45) and separate to real and
imaginary components;

<V+QR
Q' +%

=0 ()

To find a non-trivial solution, the determinant of the matrix must
varnish. Therefore;

4QR%4401%— 5,2
S . (49)

y==x 2

Stable solutions require thaty = 0.
boundaries can be expressed as:

o, = F2 /QRZ +0Q'* (50)

Therefore; the stability regions can be expressed as:

01,02 = 2w F 2¢ /QR2+QI2 (51)

3.5. When w is close to 24

Therefore, the stability

However, to examine the coupled nonlinear dynamics of the
system, which is the scenario when w = 23, another detuning
parameter o, is introduced.

w=21+¢0; (52)
2AT0 = wT0 — 0,T1 and (w — A)TO=AT0+ 0, T1  (53)

The two equations (50) and (51) will have bounded solutions only
if the solvability condition holds. The solvability condition
demands that the coefficient of exp(iwT,) and exp(iAT,)
vanishes [17-19], that is, with eTO = T1, X (T1) and Y (T1) should
satisfy the following relation:

(C21 a);(Trll) Ap(x) 77 7, + c222XT0 6X(T1) a¢(x) W0 G
ax(n) an(x)a4n(x) () 3n(x)
2¢)( ) )+Y(T1) ( ax  Ox* + dx2  ox3
on(x) o? n(x) _
C6—- a > ) exp(—Tloyi) +

[cszuz 2 expio,Ty) U, i+
(CZlulwexp(lale)U1 )
(CZZuZMexp(lale)U2 )

(C41u1 %exp(lale)Ul )

(C42u2% exp(lasz)U2 )

3 (C41£02u1 o exp(lale)Ul) —

: (C42£02u2 3o exp(iale)l_lz)

€31y, 2 a"’(z exp(io,T,) U, z] X(TDH =0 (54)

aY(T1) anx) on(x) .
(‘T (c212220, + 222227, + 27 () i) +

2 57 _ 2 9%00x)
6Y(T1)’V(TT) (22) 210 1 oy (r1y27(TT) (212)" 210
4Y (T1)?Y(T1) 222D o 900 +

dx  dx*

8Y(T1)2Y(T1) 677(;‘) 6277(") 637](") +

dx2  9x3
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371(96) 0%n(x) 3n(x)
ax2  9x3

8Y(T1)2Y(T1D) 2™

3C6. Y(Tl)ZY(Tl) ""(") "’;S" "a’)’fz")
o) nx) 3%TG

8Y(T1)%Y(T1) ";‘ a’;z" a’j{;‘

2
2c6.v(T1)*7(TT) (22) —";"(2"))+
00 0* ”(") + X(THY(TD) L2W

+

o d>(x) ne

6x+

(2X(T1)Y(T1)
4X(T1)Y(T1)a o) ;’3("’
3X(T1)Y(T1)a ”(")"’ “’("’) exp(T1oyi) —
(C6X(T1)Y(T1) f""i") 2*n@)

dx2
C6X(T1)Y(T1) ™

+

+
an(x) a? CD(x)
ox

)exp(Tlo‘lL) =0 (55)

With the inner product defined for complex functions on [0, 1] as:

1 ,_
(f.g)=[, fgdx
The equations can be cast as:
9X(T1)
aT1

(57)

ay(T1)

0

Where:

1[an@a*nce) , 32nx)a3nx)
0| ax ax* ax2__ax3

Iy [(c21ul+czzuz)d¢(")

an(x)d?
9x

n(x)]qh(x)dx

J2 =

+2iw ¢(x)]¢(x)dx

92 d)(x) — 2 re)

<(221u1 Ulw) ]dx

P(X)dx+2iw fo S ()P dx

fo 50| cazu,
(621U1+(:22U2) o

13¢>(X)

fo —¢(x)[ (czzuza‘g( )Uzcu) <c41ula‘§; )Ulw)]dx

(€210, +C2205) [ 2295 Gyax+2iw [y ()G dx

fo —¢(x)[ (C42u2 Qgi )Uzw)——(c4lsaz/,¢1 bl )Ul)]dx
(€210, +C220,) [ 22X ‘gi")zp(x)dxnzw Jy dPCax

a¢>(x) 8?2 ¢>(x)

Io-#

(€210, +C220y) [,

(x)[——(c42£azu2 )+L‘31/,L ——==U, I.]dX

13¢>(x)

—Zpx)dx+2iw fo ¢(x)¢(X)dX

s’

—<(cz1u1+czzuz)f

254700 |——
2000.1(2020) LI

K2 =

+
10n(X)—7—~

n(x)dx+2iA n(X)ﬂ(X)dX>

6n(x)62 n(x)a%n (x)]
8 ax 9x2 9x3 |

1an(x)r/(x)dx+2L}L fo n0On(x) dx)

an(x)82n(x)a3n(x) an(x)o (x)62 (x)
fO[ T ax7 225 360 bx a2 }"(x)dx

I’ [ an(0an)I*n(x) |
0 dx dx o9x* '

n(x)dx

<(cz1u1+czzuz)f

<(cz 10, +C220,) folag;x)

n(x)dx+2iA n(X)ﬂ(X)dX>

67](96)6271(96)6371(1) 3. (0n(x) 327](%)
fo[ ax 9x2  9x3 266( ax)

n(x)dx

19n(0)——

<(L'21U1+L'22U2)f —oon()dx+2iA n(x)n(x)dx)

92033 a4q>(x)an(x)
9x2  9x3 ' ax*
10n(X)——

+4-

1[990 (x)34n(x) |
fO [2 ox  ax*

]n(x)dx
K3 =

—<(L'21U1+CZZU2)f —oon()dx+2iA n(x)n(x)dx>

921033 d(x) c 61](x)02<1>(x)] dx

ax2 _ 9x3

6d>(x)62n(x)
2T 9x  ox2

M)~

C6

ax

2

—<(C21U1+C22U2)f0

N dx+2i f n(x)n(x)dx>

(56)

—J2Y(T1)?exp(—ioyTy) + J3X(T1) exp(—io,T,) =0

+K2(Y(T1)?Y(T1) + K3(X(T)Y(T1) exp(ioy Ty)) =

(58)
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To determine X(T1) and Y(T1), the solution of equations (57) and
(58) is expressed in polar form:

Y(T1) = 2ay(TDe™T™ and Y(TT) =

%ay(Tl)e_iﬁY(Tl) (59)
X(T1) = 2 ax(T1)e ™ and Y(TT) =
~ax(T1)e~#rD) (60)

Substituting into the solvability condition and separating real and
imaginary parts. The following set of modulation equation is
formed:

0 = =0+ J3Rax(T1) cos(¥2) —J3lax(T1) sin(2)
M cos(ip1) — 12’“y<“> sin(y1) (61)
0= day(T1) , K2Ray(T1)? | K3Ray(T1)ax(T1) cos(1) —
T oam 4 2
TN G ) (62)
_ Apx(T1) _ J2lay(T1)? ] ZR“y (ry?
0 = ax(T1) o > cos(y1) + ————=sin(yY1) +
J3lax(T1) cos(h2) —J3Rax(T1) sin(2) (63)
_ dBy(T1) , K2lay(T1)? | K3lay(T1)ax(T1)
0 =ay(T1) ar1 + 4 2 cos(bL) +
KSRy T G 1) (64)
Where:

Y1 = Bx(T1) — 2By(T1) + 0, T1
and {2 =0,T1— 2Bx(T1)
J2R, J3R, K2R, K3R are the real part of J2, J3, K2, and K3

J21, J31, K21, K3l are the imaginary part of J2, J3, K2, and K3

Seeking for stationary solutions, a(x)’' = a(y)' = ¢1' =2’ =
0 in modulation equations (61) to (64),

0 = 2J3Rax(T1) cos(y2) — 2J31ax(T1) sin(yp2) —
J2Ray(T1)? cos(y1) — J2Iay(T1)? sin(y1) (65)
0= K2RaZ(T1)3 K3Ray(T1)ax(T1) cos(W1) —

K31ay(T1)ax(T1) 1n(1,bl) (66)
0 = ax(T1)o, — J21ay(T1)? cos(y1) +
J2Ray(T1)?sin(y1) +

2J3Iax(T1) cos(y2) — 2J3Rax(T1) sin(y2) (67)
0= ay(Tl) (20’1+0'2) + K21a3;(T1)3 K3Iay(T21)ax(T1) 05(1,[)1) +
KSRay(Tl)ax(Tl) n(ll)l) (68)

2

The linear solutions can be obtained by setting the coefficient of
the nonlinear terms to zero. Therefore,
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204 sin(081)+0, s in(01)+K2I1ay(T1)? cos(61)+K2Ray(T1)?sin(1)

OZX(Tl) = ay(Tl) =0 (69) K2R IKZIZay(T1)4+4K2Ialay(T1)2+2K21¢12ay(T1)2+K2R2ay(T1)4+4¢112+4¢11¢12+a'22
K2R2ay(T1)%

The nonlinear solutions can be obtained by solving for

ax(T1) and ay(T1) completely. Equation (62) and (64) can be  From;

rewritten as:
(sin(y¥2 + 62))% + (cos(y2 + 62))? =1 (83)

_ (K2Ray(T1)*\ _

(2RI = R1 cos(yp1 + 61) (70) We have:
2

- (% +o+ ?) = R1sin(y1+ 61) (71) G12(J2I% + J2R?) 4 2G1J2Ro,ax(T1) + G22(J2I? + J2R?) —
2G2J210,ax(T1) + 0,2ax(T1)* — 4ax(T1)*(J31% + J3R?) =

Where, 0 (84)

tan(91) = ﬂ (72) Resolving equations (75) and (84) for real and positive values of
ay(T1l)and ax(T1).

R1 = Jax(T1)?(K3I? + K3R?)) (73) Consequently,

From, _1 (J3I
I/JZ = —tan 1 (B_R) -

; 2 2 _ _1 [ax(T1)20,-J21ay(T1)? cos(1)+J2Ray(T1)? sin(y1)
(sin(¥1+601))* + (cos(Ppl +01))* =1 tan [ (74§2Ray(T1)2cos(l/)l)+]21ay(T1)2 v
We obtained;

Therefore, considering the n-th values of ax(T1), ay(T1), px(T1)
and By(T1) corresponding to the n-th modal functions and the n-th
natural frequencies, the n-th solution of the coupled problem is
expressed as:

K2Pay(T1)* + 4K2I%0,ay(T1)? + 2K21%0,ay(T1)? +
K2R?ay(T1)* + 40,% + 40,0, + 0,2 — 4ax(T1)*(K3I* +

K3R*) =0 (75)
And: u(x, t), = ax(T1),¢(x), cos(w,TO + Bx(T1),) + 0(¢) (86)
Substituting into the equations (86);
Wl = tan-1 [KZIay(T1)2+261+62] —tan-! (ﬂ)
K2Ray(T1)2 K3R

o) 1= et ax(T)y = @t ay(T1)y = i YTy =
1/)1n+0'1nT1 Bx(Tl)n — M’ 01 = an + go—zn’
02 = 26, + £, 01 =02 = Qand o, T1 = ,T0 — 24,T0

Also, equations (61) and (63) can be rewritten as:

(]2Ray(T1)2 cos(P1)+j21ay(T1)? sin(¢1)) —R2 cos(z/}Z + 92) (77)
g With the solvability condition fulfilled, the particular solution of

B (ax(mzaz _ Jaiay(ricospn) ]ZRay(Tl)zsin(wl)) B equation (35) for the internal resonance condition is obtained as:
2 2 2 -
R2sin(y2 + 62) (78) u, = Clax(Ty) cos(By(Ty) + To(w + 2)) +
Wh C2ax(Ty) cos(Bx(Ty) + To(w — 2)) + 2C3 cos(ToR)  (87)
ere:
" Where:
tan(02) = ]—, (79)
J3R
Cl=
Aoy dp()
R2 = [ax(T1)2(J3I? +J3R?) (80) Coria T Dron O TG0 200 g, 2
j ¢>(x)(czzn 4’(")U21+021nd¢(")011)dx Q2+, 2[C5—C32(T,)2—C31(T4)?]
Transforming the equations (77) and (78) to; 221,98 D00y 42050, D0, 2o, 2.
> 2 C32u, 22 (Up)4i
(IZR GZ+12161) — R2 cos(y2 + 62) 81) Iy £ 300)(c2202220,i+ 2109297, 1) dx -2 + w2 [C5-€32(T5)2~C31(T1)?]
2
s C2 =
— (e J2C2 ) PROD) - R sin(y2 + 62) (82) o GO0 o oy, G Y00
2 2 2 > €324, 5 (0)? 4 L
. jOLe¢(x)(czzn ¢(X)U2L+C21ﬂd¢(x)Uzl)dx Q2+wy2[C5-C32(T,)2-C31(T,)?]
Where: 4101112820, ca20,4,%% 07, d
Gl - > - €314 d¢(x)/lj )Zi
204 c0s(81)+0, cos(01)+K21ay(T1)? cos(81)—K2Ray(T1)? sin(81) fo (b(x)(C229d¢(x)l72L+C21ﬂd¢(x)U l)dx 92+mn [C5—C32(T,)2—C31(0,)?]
KZR\]Kzlzay(T1)4+4K210’1ay(T1)2+2K210'22ay(T1)24+K2R2ay(T1)4+4o'12+4o'1o'2+o'22 _61191#1U1+ €120, 1T
K2R?ay(T1) dox)

- jo 4>(x)(czzn "’(")uzwczm Ull)dx Q2 +wp2[C5-C32(T,)2—C31(T4)?]

G2 = The first order approximate solution is expressed as:

(x,t) = Tiy ax,|p(0)nlcos (5 =22 + px, ) +
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0(e) (88)
Where the phase angles ¢x, are given by:
antyn) = 719

4, Results and Discussion

This section presents the numerical solutions of the nonlinear
dynamics of a cantilever pipe, conveying steady pressurized
air/water two-phase flow.

Table 1: Summary of pipe and flow parameter

Parameter Parameter
Parameter Name Unit Values
External Diameter D, (m) 0.0113772
Internal Diameter Di(m) 0.00925
Length L (m) 0.1467
Pipe density ppipe (kg/m3) 7800
Gas density paas (Kg/m®) 1.225
Water density pwater (Kg/m?) 1000
Tensile and compressive
stiffness EA (N) 7.24E+06
Bending stiffness El (N) 1.56E+03

4.1. Results for w is far from 2 (Uncoupled axial and transverse
vibration)

Numerical examples are presented for the first two modes to
examine the effects of the variation in the void fraction of the
conveyed two-phase flow on the parametric stability boundaries
based on equation (51).

Amplitude of pulsation of phase 2 (u2=2)

= forMode 1
212 H
-
Q
E 10 4
[-%
s 8 1
c
S
5 61
3 e \/f=0.1
5 47 ——Vf=0.3
£
227 V§=0.5
T‘_:E'
E 0 T T v T T ]

-6 -4 -2 0 2 4 6

o
(a)
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Amplitude of pulsation of phase 2 (u2=2)

12 forMode 2

10

Amplitudes of pulsation of phase 1 (u1)

(b)
Figure 2: Parametric stability boundaries of mode 1 and mode 2 for varying

void fractions.

In Figures 2a and 2b, stable and unstable boundaries are plotted
for the parametric resonance cases for the first and second mode
for three different void fractions. In all the figures, the regions
between the boundaries are unstable while other areas are stable.
The stability boundaries are wider for the second mode as
compared to the first mode. However, for the first and second
modes, Increase in the void fraction is observed to reduce the
stability boundaries.

4.2. Results for o is close to 2\ (Internal resonance case)

The internal resonance case presents a coupling between the axes
which results in the transference of energy between the axes. For
varying amplitude of pulsation for the two phases, both phases
slightly detuned by 0.2 from the axial frequency and the axial and
transverse frequencies also detuned by 0.2. The amplitude
response curves are plotted for various void fractions.

Mode 1's axial amplitude response curves for void
fraction of 0.1
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Mode 1's axial amplitude response curves for void

Mode 1's transverse amplitude response curves for void
fraction 0of 0.3
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Figure 4: Amplitude response curves of the tip’s transverse vibration for

Mode 1's axial amplitude response curves for void
fraction of 0.5

mode 1
Mode 2's axial amplitude response curves for void
fraction of 0.1
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Figure 3: Amplitude response curves of the tip’s axial vibration for mode 1
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Figure 5: Amplitude response curves of the tip’s axial vibration for mode 2
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Mode 2's transverse amplitude response curves for void
fraction of 0.1
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Mode 2's transverse amplitude response curves for void
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Mode 2's transverse amplitude response curves for void
fraction of 0.5
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©
Figure 6: Amplitude response curves of the tip’s transverse vibration for
mode 2

As aresult of the internal coupling between the planar axis, energy
is transferred, oscillation is observed in both the axial and
transverse directions as a result of the parametric axial vibrations.
Figures 2, 3, 4, 5 and 6 shows that for both mode 1 and mode 2, an
increase in the void fraction is observed to reduce the amplitude of
oscillations due to increasing in mass content in the pipe and which
further dampens the motions of the pipe. However, at a high void
fraction of 0.5, Figures Sc and 6¢ show the occurrence of a
resonance peak in the second mode in both axial and transverse
oscillations.

5. Conclusion

In this study, the axial vibrations of a cantilevered pipe have
been investigated. The velocity is assumed to be harmonically
varying about a mean value. The method of multiple scales is
applied to the equation of motion to determine the velocity-
dependent frequencies and the study of the parametric resonance

321

behavior of the system. Away from the internal resonance
condition, the influence of small fluctuations of flow velocities of
the phases on the stability of the system is examined. The
boundaries separating stable and unstable regions are estimated
and it was observed that an increase in the void fraction reduces
the stability boundaries. With internal resonance, transverse
oscillations will also be generated due to the transfer of energy
from the resonated axial vibrations. However, an increase in void
fraction dampens the motions of the pipe.
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